IRF IRGS8B60KPBF Insulated gate bipolar transistor Datasheet

PD - 95645B
IRGB8B60KPbF
IRGS8B60KPbF
IRGSL8B60KPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
VCES = 600V
C
Low VCE (on) Non Punch Through IGBT Technology.
10µs Short Circuit Capability.
Square RBSOA.
Positive VCE (on) Temperature Coefficient.
Lead-Free.
IC = 19A
G
tsc>10µs, TJ=175°C
E
VCE(on) typ. = 1.8V
n-channel
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
D2Pak
TO-262
IRGB8B60KPbF IRGS8B60KPbF IRGSL8B60KPbF
Absolute Maximum Ratings
Parameter
Max.
Units
V
VCES
Collector-to-Emitter Voltage
600
IC @ TC = 25°C
Continuous Collector Current
28
IC @ TC = 100°C
Continuous Collector Current
19
INOMINAL
Nominal Current
8.0
ICM
34
ILM
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
167
W
c
34
PD @ TC = 100°C Maximum Power Dissipation
TJ
Operating Junction and
TSTG
Storage Temperature Range
A
83
-55 to +175
°C
Storage Temperature Range, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Thermal / Mechanical Characteristics
Parameter
g
RθJC
Junction-to-Case- IGBT
RθCS
RθJA
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
RθJA
Junction-to-Ambient (PCB Mount, Steady State)
Weight
www.irf.com
d
e
Min.
Typ.
Max.
–––
–––
0.90
–––
0.50
–––
–––
–––
62
–––
–––
40
–––
1.44
–––
Units
°C/W
g
1
01/25/2010
IRGB/S/SL8B60KPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Min. Typ. Max. Units
600
—
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
—
0.57
—
VCE(on)
—
1.8
2.2
—
2.2
2.5
Collector-to-Emitter Breakdown Voltage
Collector-to-Emitter Voltage
—
V
Conditions
Ref.Fig.
VGE = 0V, IC = 500µA
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 8.0A, VGE = 15V, TJ = 25°C
5,6,7
IC = 8.0A, VGE = 15V, TJ = 150°C
8,9,10
V
—
2.3
2.6
IC = 8.0A, VGE = 15V, TJ = 175°C
VGE(th)
Gate Threshold Voltage
3.5
4.5
5.5
VCE = VGE, IC = 250µA
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-9.5
—
gfe
ICES
Forward Transconductance
—
3.7
—
Zero Gate Voltage Collector Current
—
1.0
150
—
200
500
—
800
1320
—
—
±100
IGES
Gate-to-Emitter Leakage Current
8,9,10,
mV/°C VCE = VGE, IC = 1mA (25°C-125°C)
S
VCE = 50V, IC = 8.0A, PW = 80µs
µA
VGE = 0V, VCE = 600V, TJ = 150°C
11
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Ref.Fig.
IC = 8.0A
Qg
Total Gate Charge (turn-on)
—
29
—
Qge
Gate-to-Emitter Charge (turn-on)
—
3.7
—
nC VCC = 480V
VGE = 15V
17
CT1
Qgc
Gate-to-Collector Charge (turn-on)
—
14
—
Eon
Turn-On Switching Loss
—
160
268
Eoff
Turn-Off Switching Loss
—
160
268
Etot
Total Switching Loss
—
320
433
TJ = 25°C
td(on)
Turn-On delay time
—
23
27
IC = 8.0A, VCC = 400V
tr
Rise time
—
22
26
td(off)
Turn-Off delay time
—
140
150
tf
Fall time
—
32
42
Eon
Turn-On Switching Loss
—
220
330
Eoff
Turn-Off Switching Loss
—
270
381
Etot
Total Switching Loss
—
490
608
TJ = 150°C
td(on)
Turn-On delay time
—
22
27
IC = 8.0A, VCC = 400V
tr
Rise time
—
21
25
td(off)
Turn-Off delay time
—
180
198
tf
Fall time
—
40
56
Cies
Input Capacitance
—
440
—
Coes
Output Capacitance
—
38
—
Cres
Reverse Transfer Capacitance
—
16
—
RBSOA
Reverse Bias Safe Operating Area
IC = 8.0A, VCC = 400V
µJ
ns
CT4
VGE = 15V, RG = 50Ω, L = 1.1mH
f
VGE = 15V, RG = 50Ω, L = 1.1mH
µJ
ns
IC = 8.0A, VCC = 400V
CT4
VGE = 15V, RG = 50Ω, L = 1.1mH
12,14
f
WF1,WF2
13,15
VGE = 15V, RG = 50Ω, L = 1.1mH
CT4
TJ = 150°C
WF1
WF2
VGE = 0V
pF
VCC = 30V
16
f = 1.0MHz
TJ = 150°C, IC = 34A, Vp = 600V
FULL SQUARE
VCC=500V,VGE = +15V to 0V,RG = 50Ω
SCSOA
Notes  to
2
Short Circuit Safe Operating Area
10
—
—
CT4
TJ = 25°C
µs
4
CT2
TJ = 150°C, Vp = 600V, RG = 100Ω
CT3
VCC=360V,VGE = +15V to 0V
WF3
are on page 13.
www.irf.com
35
175
30
150
25
125
20
100
Ptot (W)
IC (A)
IRGB/S/SL8B60KPbF
15
75
10
50
5
25
0
0
0
20
40
60
80 100 120 140 160 180
0
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
100 µs
10
IC A)
IC (A)
10
1ms
1
10ms
0.1
1
DC
0
0.01
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGB/S/SL8B60KPbF
40
40
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
35
30
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
25
20
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
6
0
1
VCE (V)
2
3
4
5
6
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
40
35
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
ICE (A)
ICE (A)
25
35
20
15
10
5
0
0
1
2
3
4
5
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
www.irf.com
20
20
18
18
16
16
14
14
12
VCE (V)
VCE (V)
IRGB/S/SL8B60KPbF
ICE = 4.0A
ICE = 8.0A
10
8
ICE = 16A
6
12
10
ICE = 4.0A
ICE = 8.0A
8
ICE = 16A
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
100
20
18
80
16
12
10
ICE = 4.0A
8
ICE = 8.0A
6
ICE = 16A
ICE (A)
VCE (V)
14
T J = 25°C
T J = 150°C
60
40
T J = 150°C
20
4
TJ = 25°C
2
0
0
5
10
15
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 360V; tp = 10µs
5
IRGB/S/SL8B60KPbF
600
1000
Swiching Time (ns)
500
Energy (µJ)
400
EOFF
300
200
tdOFF
100
tF
EON
tdON
100
tR
0
10
0
5
10
15
20
0
5
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 150°C; L=1.1mH; VCE= 400V,
RG= 50Ω; VGE= 15V
700
20
Fig. 13 - Typ. Switching Time vs. IC
TJ = 150°C; L=1.1mH; VCE= 400V
RG= 50Ω; VGE= 15V
Swiching Time (ns)
EON
500
Energy (µJ)
15
10000
600
EOFF
400
300
200
1000
tdOFF
tdON
100
tF
100
tR
0
10
0
100
200
300
400
RG ( Ω)
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 150°C; L=1.1mH; VCE= 400V
ICE= 8.0A; VGE= 15V
6
10
IC (A)
IC (A)
500
0
100
200
300
400
500
RG ( Ω)
Fig. 15 - Typ. Switching Time vs. RG
TJ = 150°C; L=1.1mH; VCE= 400V
ICE= 8.0A; VGE= 15V
www.irf.com
IRGB/S/SL8B60KPbF
1000
16
Cies
Coes
12
Cres
10
100
VGE (V)
Capacitance (pF)
14
10
300V
400V
8
6
4
2
0
1
1
10
0
100
5
VCE (V)
10
15
20
25
30
Q G , Total Gate Charge (nC)
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 8.0A; L = 600µH
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
τJ
0.10
0.1
0.05
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ1
τ2
τ2
τ
Ri (°C/W)
0.491
τi (sec)
0.000190
0.409
0.001153
Ci= τi/Ri
Ci i/Ri
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
7
IRGB/S/SL8B60KPbF
L
L
VCC
DUT
0
80 V
+
-
DUT
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
480V
Rg
1K
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
8
www.irf.com
IRGB/S/SL8B60KPbF
tf
500
Vce
400
12
600
10
500
8
Ice
6
200
4
5% Ice
100
Vce (V)
5% Vce
0
Eoff Loss
-100
-200
0.4
0.6
10% Ice
300
12
200
8
100
0
0.2
16
2
Ice
0
20
Vce
90% Ice
Ice (A)
Vce (V)
tr
400
90% Ice
300
24
Ice (A)
600
0.8
-2
0
-4
-100
1
4
5% Vce
0
Eon
Loss
-4
0.3
0.5
Time (uS)
0.7
0.9
Time (uS)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
80
400
350
60
300
200
40
Ice (A)
Vce (V)
250
150
100
20
50
0
0.00
10.00
20.00
30.00
40.00
0
50.00
Time (uS)
Fig. WF3- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
www.irf.com
9
IRGB/S/SL8B60KPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27& 2'(
$66(0%/('21::
,17+($66(0%/</,1(&
Note: "P" in assembly line
position indicates "Lead-Free"
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB package is not recommended for Surface Mount Application.
10
www.irf.com
IRGB/S/SL8B60KPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
7+,6,6$1,5)6:,7+
3$57180%(5
/27&2'(
,17(51$7,21$/
$66(0%/('21::
5(&7,),(5
)6
/2*2
,17+($66(0%/</,1(/
'$7(&2'(
1RWH3LQDVVHPEO\OLQH
$66(0%/<
SRVLWLRQLQGLFDWHV/HDG)UHH
/27&2'(
<($5
:((.
/,1(/
OR
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
www.irf.com
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
11
IRGB/S/SL8B60KPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQH
SRVLWLRQLQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
OR
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
12
3$57180%(5
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
www.irf.com
IRGB/S/SL8B60KPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω.
‚ This is only applied to TO-220AB package.
ƒ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
„ Energy losses include "tail" and diode reverse recovery, using Diode HF03D060ACE.
Rθ is measured at TJ of approximately 90°C.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/2010
www.irf.com
13
Similar pages