PD - 95645B IRGB8B60KPbF IRGS8B60KPbF IRGSL8B60KPbF INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • VCES = 600V C Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Lead-Free. IC = 19A G tsc>10µs, TJ=175°C E VCE(on) typ. = 1.8V n-channel Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220AB D2Pak TO-262 IRGB8B60KPbF IRGS8B60KPbF IRGSL8B60KPbF Absolute Maximum Ratings Parameter Max. Units V VCES Collector-to-Emitter Voltage 600 IC @ TC = 25°C Continuous Collector Current 28 IC @ TC = 100°C Continuous Collector Current 19 INOMINAL Nominal Current 8.0 ICM 34 ILM Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 167 W c 34 PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range A 83 -55 to +175 °C Storage Temperature Range, for 10 sec. 300 (0.063 in. (1.6mm) from case) Thermal / Mechanical Characteristics Parameter g RθJC Junction-to-Case- IGBT RθCS RθJA Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount RθJA Junction-to-Ambient (PCB Mount, Steady State) Weight www.irf.com d e Min. Typ. Max. ––– ––– 0.90 ––– 0.50 ––– ––– ––– 62 ––– ––– 40 ––– 1.44 ––– Units °C/W g 1 01/25/2010 IRGB/S/SL8B60KPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Min. Typ. Max. Units 600 — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.57 — VCE(on) — 1.8 2.2 — 2.2 2.5 Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage — V Conditions Ref.Fig. VGE = 0V, IC = 500µA V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 8.0A, VGE = 15V, TJ = 25°C 5,6,7 IC = 8.0A, VGE = 15V, TJ = 150°C 8,9,10 V — 2.3 2.6 IC = 8.0A, VGE = 15V, TJ = 175°C VGE(th) Gate Threshold Voltage 3.5 4.5 5.5 VCE = VGE, IC = 250µA ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -9.5 — gfe ICES Forward Transconductance — 3.7 — Zero Gate Voltage Collector Current — 1.0 150 — 200 500 — 800 1320 — — ±100 IGES Gate-to-Emitter Leakage Current 8,9,10, mV/°C VCE = VGE, IC = 1mA (25°C-125°C) S VCE = 50V, IC = 8.0A, PW = 80µs µA VGE = 0V, VCE = 600V, TJ = 150°C 11 VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Ref.Fig. IC = 8.0A Qg Total Gate Charge (turn-on) — 29 — Qge Gate-to-Emitter Charge (turn-on) — 3.7 — nC VCC = 480V VGE = 15V 17 CT1 Qgc Gate-to-Collector Charge (turn-on) — 14 — Eon Turn-On Switching Loss — 160 268 Eoff Turn-Off Switching Loss — 160 268 Etot Total Switching Loss — 320 433 TJ = 25°C td(on) Turn-On delay time — 23 27 IC = 8.0A, VCC = 400V tr Rise time — 22 26 td(off) Turn-Off delay time — 140 150 tf Fall time — 32 42 Eon Turn-On Switching Loss — 220 330 Eoff Turn-Off Switching Loss — 270 381 Etot Total Switching Loss — 490 608 TJ = 150°C td(on) Turn-On delay time — 22 27 IC = 8.0A, VCC = 400V tr Rise time — 21 25 td(off) Turn-Off delay time — 180 198 tf Fall time — 40 56 Cies Input Capacitance — 440 — Coes Output Capacitance — 38 — Cres Reverse Transfer Capacitance — 16 — RBSOA Reverse Bias Safe Operating Area IC = 8.0A, VCC = 400V µJ ns CT4 VGE = 15V, RG = 50Ω, L = 1.1mH f VGE = 15V, RG = 50Ω, L = 1.1mH µJ ns IC = 8.0A, VCC = 400V CT4 VGE = 15V, RG = 50Ω, L = 1.1mH 12,14 f WF1,WF2 13,15 VGE = 15V, RG = 50Ω, L = 1.1mH CT4 TJ = 150°C WF1 WF2 VGE = 0V pF VCC = 30V 16 f = 1.0MHz TJ = 150°C, IC = 34A, Vp = 600V FULL SQUARE VCC=500V,VGE = +15V to 0V,RG = 50Ω SCSOA Notes to 2 Short Circuit Safe Operating Area 10 — — CT4 TJ = 25°C µs 4 CT2 TJ = 150°C, Vp = 600V, RG = 100Ω CT3 VCC=360V,VGE = +15V to 0V WF3 are on page 13. www.irf.com 35 175 30 150 25 125 20 100 Ptot (W) IC (A) IRGB/S/SL8B60KPbF 15 75 10 50 5 25 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 100 µs 10 IC A) IC (A) 10 1ms 1 10ms 0.1 1 DC 0 0.01 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGB/S/SL8B60KPbF 40 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 25 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 0 1 VCE (V) 2 3 4 5 6 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 40 35 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 25 ICE (A) ICE (A) 25 35 20 15 10 5 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 www.irf.com 20 20 18 18 16 16 14 14 12 VCE (V) VCE (V) IRGB/S/SL8B60KPbF ICE = 4.0A ICE = 8.0A 10 8 ICE = 16A 6 12 10 ICE = 4.0A ICE = 8.0A 8 ICE = 16A 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C Fig. 8 - Typical VCE vs. VGE TJ = -40°C 100 20 18 80 16 12 10 ICE = 4.0A 8 ICE = 8.0A 6 ICE = 16A ICE (A) VCE (V) 14 T J = 25°C T J = 150°C 60 40 T J = 150°C 20 4 TJ = 25°C 2 0 0 5 10 15 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 11 - Typ. Transfer Characteristics VCE = 360V; tp = 10µs 5 IRGB/S/SL8B60KPbF 600 1000 Swiching Time (ns) 500 Energy (µJ) 400 EOFF 300 200 tdOFF 100 tF EON tdON 100 tR 0 10 0 5 10 15 20 0 5 Fig. 12 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.1mH; VCE= 400V, RG= 50Ω; VGE= 15V 700 20 Fig. 13 - Typ. Switching Time vs. IC TJ = 150°C; L=1.1mH; VCE= 400V RG= 50Ω; VGE= 15V Swiching Time (ns) EON 500 Energy (µJ) 15 10000 600 EOFF 400 300 200 1000 tdOFF tdON 100 tF 100 tR 0 10 0 100 200 300 400 RG ( Ω) Fig. 14 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V 6 10 IC (A) IC (A) 500 0 100 200 300 400 500 RG ( Ω) Fig. 15 - Typ. Switching Time vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V www.irf.com IRGB/S/SL8B60KPbF 1000 16 Cies Coes 12 Cres 10 100 VGE (V) Capacitance (pF) 14 10 300V 400V 8 6 4 2 0 1 1 10 0 100 5 VCE (V) 10 15 20 25 30 Q G , Total Gate Charge (nC) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 17 - Typical Gate Charge vs. VGE ICE = 8.0A; L = 600µH Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 τJ 0.10 0.1 0.05 0.02 0.01 R1 R1 τJ τ1 R2 R2 τC τ1 τ2 τ2 τ Ri (°C/W) 0.491 τi (sec) 0.000190 0.409 0.001153 Ci= τi/Ri Ci i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) www.irf.com 7 IRGB/S/SL8B60KPbF L L VCC DUT 0 80 V + - DUT Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC 480V Rg 1K DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 8 www.irf.com IRGB/S/SL8B60KPbF tf 500 Vce 400 12 600 10 500 8 Ice 6 200 4 5% Ice 100 Vce (V) 5% Vce 0 Eoff Loss -100 -200 0.4 0.6 10% Ice 300 12 200 8 100 0 0.2 16 2 Ice 0 20 Vce 90% Ice Ice (A) Vce (V) tr 400 90% Ice 300 24 Ice (A) 600 0.8 -2 0 -4 -100 1 4 5% Vce 0 Eon Loss -4 0.3 0.5 Time (uS) 0.7 0.9 Time (uS) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 80 400 350 60 300 200 40 Ice (A) Vce (V) 250 150 100 20 50 0 0.00 10.00 20.00 30.00 40.00 0 50.00 Time (uS) Fig. WF3- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 www.irf.com 9 IRGB/S/SL8B60KPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27& 2'( $66(0%/('21:: ,17+($66(0%/</,1(& Note: "P" in assembly line position indicates "Lead-Free" ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& TO-220AB package is not recommended for Surface Mount Application. 10 www.irf.com IRGB/S/SL8B60KPbF D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information 7+,6,6$1,5)6:,7+ 3$57180%(5 /27&2'( ,17(51$7,21$/ $66(0%/('21:: 5(&7,),(5 )6 /2*2 ,17+($66(0%/</,1(/ '$7(&2'( 1RWH3LQDVVHPEO\OLQH $66(0%/< SRVLWLRQLQGLFDWHV/HDG)UHH /27&2'( <($5 :((. /,1(/ OR ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( www.irf.com 3$57180%(5 )6 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7 237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( 11 IRGB/S/SL8B60KPbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 1RWH3LQDVVHPEO\OLQH SRVLWLRQLQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& OR ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 12 3$57180%(5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7 237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( www.irf.com IRGB/S/SL8B60KPbF D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω. This is only applied to TO-220AB package. This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Energy losses include "tail" and diode reverse recovery, using Diode HF03D060ACE. Rθ is measured at TJ of approximately 90°C. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/2010 www.irf.com 13