NTC thermistors for temperature sensing and compensation Leaded NTC thermistors, lead spacing 2.5 mm Series/Type: B57964S Date: March 2013 © EPCOS AG 2013. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited. Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Applications Temperature measurement and compensation Dimensional drawing Features Short response time High measuring accuracy Epoxy resin encapsulation Improved resistance to humidity Insulated leads of silver-plated nickel wire, AWG 26 (black) Lead spacing 2.5 mm Options Non-standard lead lengths AWG 30 on request Dimensions in mm Approx. weight 150 mg Delivery mode Bulk (standard), cardboard tape available on request General technical data Climatic category Max. power Resistance tolerance Rated temperature Dissipation factor Thermal cooling time constant Heat capacity (IEC 60068-1) (at 25 °C) (in air) (in air) P25 ∆RR/RR TR δth τc Cth 55/155/56 60 ±1, ±3, ±5 25 approx. 1.6 approx. 16 approx. 26 mW % °C mW/K s mJ/K Electrical specification and ordering codes R25 Ω 2k 2.8 k 5k No. of R/T characteristic 1008 8016 8016 B25/100 K 3560 ±1% 3988 ±1% 3988 ±1% + = Resistance tolerance F = ±1% H = ±3% J = ±5% Please read Cautions and warnings and Important notes at the end of this document. Page 2 of 26 Ordering code B57964S0202+000 B57964S0282+000 B57964S0502+000 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Reliability data Test Standard Storage in dry heat IEC 60068-2-2 Storage in damp heat, steady state Rapid temperature cycling Endurance Long-term stability (empirical value) Test conditions Storage at upper category temperature T: 155 °C t: 1000 h IEC Temperature of air: 40 °C 60068-2-78 Relative humidity of air: 93% Duration: 56 days IEC Lower test temperature: 55 °C 60068-2-14 Upper test temperature: 155 °C Number of cycles: 100 Pmax: 60 mW t: 1000 h Temperature: 70 °C t: 10000 h Please read Cautions and warnings and Important notes at the end of this document. Page 3 of 26 ∆R25/R25 (typical) < 2% Remarks < 1% No visible damage < 2% No visible damage < 3% No visible damage No visible damage < 3% No visible damage Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Reliability data according to AEC Q200, Rev. D Test Standard High temperature exposure (storage) Biased humidity MIL-STD-202, method 108 MIL-STD-202, method 103 Operational life Temperature cycling Terminal strength (leaded) Test conditions Storage at T = 125 °C t = 1000 h T = 85 °C Relative humidity of air 85% t = 1000 h Test voltage max. 0.3 V DC on NTC1) MIL-STD-202, T = 125 °C method 108 t = 1000 h Test voltage max. 0.3 V DC on NTC1) JESD 22, Lower test temperature: 55 °C method JA-104 Upper test temperature: 125 °C 1000 cycles Dwell time: max. 30 min at each temperature Transition time in air: max. 1 min MIL-STD-202, Test leaded device integrity method 211 Condition A: 2.27 N2) Mechanical shock MIL-STD-202, method 213, condition C Vibration MIL-STD-202, method 204 Acceleration: 40 g 2) Pulse duration: 6 ms Number of bumps: 3, each direction Acceleration: 5 g t = 20 min 12 cycles in each of 3 directions Frequency range: 10 to 2000 Hz ∆R25/R25 (typical) < 2% <2% Remarks No visible damage No visible damage < 2% No visible damage < 2% No visible damage < 1% No visible damage < 1% No visible damage < 1% No visible damage 1) Self heating of the NTC thermistor must not exceed 0.2 K, steady state. Test conditions deviating from AEC Q200, Rev. D. 2) Deviating from AEC Q200, Rev. D. Note Contact of NTC thermistors with any liquids and solvents shall be prevented. It must be ensured that no water enters the NTC thermistors (e.g. through plug terminals). Avoid dewing and condensation unless thermistor is specified for these conditions. Please read Cautions and warnings and Important notes at the end of this document. Page 4 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 R/T characteristics R/T No. T (°C) 1008 8016 B25/100 = 3560 K B25/100 = 3988 K RT/R25 α (%/K) RT/R25 α (%/K) 55.0 50.0 45.0 40.0 35.0 53.104 39.318 29.325 22.03 16.666 6.1 6.0 5.8 5.7 5.5 96.3 67.01 47.17 33.65 24.26 7.4 7.2 6.9 6.7 6.4 30.0 25.0 20.0 15.0 10.0 12.696 9.7251 7.5171 5.8353 4.5686 5.4 5.2 5.1 4.9 4.8 17.7 13.04 9.707 7.293 5.533 6.2 6.0 5.8 5.6 5.5 5.0 0.0 5.0 10.0 15.0 3.605 2.8665 2.2907 1.8438 1.492 4.7 4.5 4.4 4.3 4.1 4.232 3.265 2.539 1.99 1.571 5.3 5.1 5.0 4.8 4.7 20.0 25.0 30.0 35.0 40.0 1.2154 1.0000 0.82976 0.68635 0.57103 4.0 3.9 3.8 3.7 3.6 1.249 1.0000 0.8057 0.6531 0.5327 4.5 4.4 4.3 4.1 4.0 45.0 50.0 55.0 60.0 65.0 0.48015 0.40545 0.3417 0.28952 0.24714 3.5 3.4 3.3 3.2 3.1 0.4369 0.3603 0.2986 0.2488 0.2083 3.9 3.8 3.7 3.6 3.5 70.0 75.0 80.0 85.0 90.0 0.21183 0.18194 0.1568 0.13592 0.11822 3.1 3.0 2.9 2.8 2.8 0.1752 0.1481 0.1258 0.1072 0.09177 3.4 3.3 3.2 3.2 3.1 95.0 100.0 105.0 110.0 115.0 0.1034 0.090741 0.079642 0.070102 0.061889 2.7 2.6 2.6 2.5 2.4 0.07885 0.068 0.05886 0.05112 0.04454 3.0 2.9 2.9 2.8 2.7 120.0 125.0 130.0 135.0 140.0 0.054785 0.048706 0.043415 0.038722 0.034615 2.4 2.3 2.3 2.2 2.2 0.03893 0.03417 0.03009 0.02654 0.02348 2.6 2.6 2.5 2.5 2.4 145.0 150.0 155.0 0.031048 0.02791 0.025193 2.1 2.1 2.0 0.02083 0.01853 0.01653 2.4 2.3 2.3 Please read Cautions and warnings and Important notes at the end of this document. Page 5 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 R/T No. T (°C) 160.0 165.0 1008 8016 B25/100 = 3560 K RT/R25 α (%/K) 0.02279 2.0 0.020667 2.0 B25/100 = 3988 K RT/R25 α (%/K) 170.0 175.0 180.0 185.0 190.0 0.01878 0.01709 0.015582 0.014227 0.013012 1.9 1.9 1.8 1.8 1.8 195.0 200.0 205.0 210.0 215.0 0.011934 0.010964 0.0101 0.0093191 0.0085949 1.7 1.7 1.7 1.6 1.6 220.0 225.0 230.0 235.0 240.0 0.0079384 0.0073411 0.006798 0.0063087 0.0058623 1.6 1.5 1.5 1.5 1.5 245.0 250.0 0.0054487 0.0050705 1.4 1.4 Please read Cautions and warnings and Important notes at the end of this document. Page 6 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Taping and packing 1 Taping of SMD NTC thermistors 1.1 Cardboard tape for case size 0402 and 0603 (taping to IEC 60286-3) Dimensions (mm) Case size 0402 (8-mm tape) Case size 0603 (8-mm tape) Tolerance A0 × B0 0.60 × 1.15 0.95 × 1.80 ±0.2 T2 0.70 1.10 T 0.60 0.90 max. D0 1.50 1.50 ±0.10 P0 4.00 4.00 ±0.101) P2 2.00 2.00 ±0.05 P1 2.00 4.00 ±0.10 W 8.00 8.00 ±0.30 E 1.75 1.75 ±0.10 F 3.50 3.50 ±0.05 G 0.75 0.75 min. 1) ≤0.2 mm over 10 sprocket holes. Please read Cautions and warnings and Important notes at the end of this document. Page 7 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 1.2 Blister tape for case size 0805 and 1206 (taping to IEC 60286-3) Dimensions (mm) Case size 0805 (8-mm tape) Case size 1206 (8-mm tape) Tolerance A0 × B0 1.60 × 2.40 1.90 × 3.50 ±0.2 K0 1.40 1.40 max. T2 2.5 2.5 max. D0 1.50 1.50 +0.10/–0 D1 1.00 1.00 min. P0 4.00 4.00 ±0.102) P2 2.00 2.00 ±0.05 P1 4.00 4.00 ±0.10 W 8.00 8.00 ±0.30 E 1.75 1.75 ±0.10 F 3.50 3.50 ±0.05 G 0.75 0.75 min. 2) ≤0.2 mm over 10 sprocket holes. Please read Cautions and warnings and Important notes at the end of this document. Page 8 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 1.3 Reel packing Packing survey Case size Chip 8-mm tape thickness3) Reel dimensions mm mm Blister Card- A board Packing units pcs./reel Tol. W1 Tol. W2 180-mm 330-mm reel reel 0402 0.5 x 180 3/+0 8.4 +1.5/0 14.4 max. 10000 0603 0.8 x 180 3/+0 8.4 +1.5/0 14.4 max. 4000 330 ±2.0 12.4 +1.5/0 18.4 max. 16000 0805 1206 2 0.8 x 3/+0 ±2.0 8.4 12.4 +1.5/0 +1.5/0 14.4 max. 18.4 max. 16000 x 180 330 4000 1.2 3000 12000 0.8 x 180 2/+0 8.4 +1.5/0 14.4 max. 4000 1.2 x 180 2/+0 8.4 +1.5/0 14.4 max. 2000 Packing codes The last two digits of the complete ordering code state the packing mode: Last two digits 60 SMD Cardboard tape 180-mm reel packing 62 SMD Blister tape 180-mm reel packing 70 SMD Cardboard tape 330-mm reel packing 72 SMD Blister tape 330-mm reel packing 3) Chip thickness depends on the resistance value. Please read Cautions and warnings and Important notes at the end of this document. Page 9 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 3 Taping of radial leaded NTC thermistors Dimensions and tolerances Lead spacing F = 2.5 mm and 5.0 mm (taping to IEC 60286-2) Dimensions (mm) w th d P0 P1 F ∆h ∆p W W0 W1 W2 H H0 H1 D0 t L L1 Lead spacing 2.5 mm 11.0 5.0 0.5/0.6 12.7 5.1 2.5 0 0 18.0 5.5 9.0 3.0 18.0 16.0 32.2 4.0 0.9 11.0 4.0 Lead spacing 5 mm 11.5 6.0 0.5/0.6 12.7 3.85 5.0 0 0 18.0 5.5 9.0 3.0 18.0 16.0 32.2 4.0 0.9 11.0 4.0 Please read Cautions and warnings and Important notes at the end of this document. Tolerance of lead spacing 2.5/5 mm max. max. ±0.05 ±0.3 ±0.7 +0.6/0.1 ±2.0 ±1.3 ±0.5 min. +0.75/0.5 max. +2.0/0 ±0.5 max. ±0.2 max. max. max. Remarks ±1 mm / 20 sprocket holes measured at top of component body peel-off force ≥5 N without wires Page 10 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Types of packing Ammo packing Ammo type x y z I 80 240 210 Packing unit: 1000 - 2000 pcs./reel Reel packing Packing unit: 1000 - 2000 pcs./reel Reel dimensions (in mm) Reel type d f n w I 360 max. 31 ±1 approx. 45 54 max. II 500 max. 23 ±1 approx. 59 72 max. Please read Cautions and warnings and Important notes at the end of this document. Page 11 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Cassette packing Packing unit: 1000 - 2000 pcs./cassette Bulk packing The components are packed in cardboard boxes, the size of which depends on the order quantity. Please read Cautions and warnings and Important notes at the end of this document. Page 12 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 4 Packing codes The last two digits of the complete ordering code state the packing mode: Last two digits 00, 01, 02, 03,04, 05, 06, 07, 08 Bulk 40 Bulk 45 Bulk 50 Radial leads, kinked Cardboard tape Cassette packing 51 Radial leads, kinked Cardboard tape 360 or 500-mm reel packing 52 Radial leads, straight Cardboard tape Cassette packing 53 Radial leads, straight Cardboard tape 360 or 500-mm reel packing 54 Radial leads, kinked Cardboard tape AMMO packing 55 Radial leads, straight Cardboard tape AMMO packing (If no packing code is indicated, this corresponds to 40) Example 1: B57164K0102J000 B57164K0102J052 Bulk Cardboard tape, cassette packing Example 2: B57881S0103F002 B57881S0103F251 Bulk Cardboard tape, reel packing Please read Cautions and warnings and Important notes at the end of this document. Page 13 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Mounting instructions 1 Soldering 1.1 Leaded NTC thermistors Leaded thermistors comply with the solderability requirements specified by CECC. When soldering, care must be taken that the NTC thermistors are not damaged by excessive heat. The following maximum temperatures, maximum time spans and minimum distances have to be observed: Dip soldering Iron soldering Bath temperature max. 260 °C max. 360 °C Soldering time max. 4 s max. 2 s Distance from thermistor min. 6 mm min. 6 mm Under more severe soldering conditions the resistance may change. 1.2 Leadless NTC thermistors In case of NTC thermistors without leads, soldering is restricted to devices which are provided with a solderable metallization. The temperature shock caused by the application of hot solder may produce fine cracks in the ceramic, resulting in changes in resistance. To prevent leaching of the metallization, solder with silver additives or with a low tin content should be used. In addition, soldering methods should be employed which permit short soldering times. 1.3 SMD NTC thermistors SMD NTC thermistors can be provided with a nickel barrier termination or on special request with silver-palladium termination. The usage of mild, non-activated fluxes for soldering is recommended as well as a proper cleaning of the PCB. Nickel barrier termination The nickel barrier layer of the silver/nickel/tin termination (see figure 1) prevents leaching of the silver base metalization layer. This allows great flexibility in the selection of soldering parameters. The tin prevents the nickel layer from oxidizing and thus ensures better wetting by the solder. The nickel barrier termination is suitable for all commonly-used soldering methods. Note: SMD NTCs with AgPd termination are not approved for lead-free soldering. Figure 1 SMD NTC thermistors, structure of nickel barrier termination Please read Cautions and warnings and Important notes at the end of this document. Page 14 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 1.3.1 Solderability (test to IEC 60068-2-58) Preconditioning: Immersion into flux F-SW 32. Evaluation criterion: Wetting of soldering areas ≥95%. Solder Bath temperature (°C) Dwell time (s) SnPb 60/40 215 ±3 3 ±0.3 SnAg (3.0 ... 4.0), Cu (0.5 ... 0.9) 245 ±3 3 ±0.3 1.3.2 Resistance to soldering heat (test to IEC 60068-2-58) Preconditioning: Immersion into flux F-SW 32. Evaluation criterion: Leaching of side edges ≤1/3. Solder Bath temperature (°C) Dwell time (s) SnPb 60/40 260 ±5 10 ±1 SnAg (3.0 ... 4.0), Cu (0.5 ... 0.9) 260 ±5 10 ±1 Please read Cautions and warnings and Important notes at the end of this document. Page 15 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Wave soldering Temperature characteristic at component terminal with dual wave soldering Solder joint profiles for silver/nickel/tin terminations Please read Cautions and warnings and Important notes at the end of this document. Page 16 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Reflow soldering Recommended temperature characteristic for reflow soldering following JEDEC J-STD-020D Profile feature Preheat and soak - Temperature min - Temperature max - Time Average ramp-up rate Liquidous temperature Time at liquidous Peak package body temperature Time (tP)3) within 5 °C of specified classification temperature (Tc) Average ramp-down rate Time 25 °C to peak temperature Tsmin Tsmax tsmin to tsmax Tsmax to Tp TL tL Tp1) Tp to Tsmax Sn-Pb eutectic assembly Pb-free assembly 100 °C 150 °C 60 ... 120 s 3 °C/ s max. 183 °C 60 ... 150 s 220 °C ... 235 °C2) 150 °C 200 °C 60 ... 180 s 3 °C/ s max. 217 °C 60 ... 150 s 245 °C ... 260 °C2) 20 s3) 30 s3) 6 °C/ s max. maximum 6 min 6 °C/ s max. maximum 8 min 1) Tolerance for peak profile temperature (TP) is defined as a supplier minimum and a user maximum. 2) Depending on package thickness. For details please refer to JEDEC J-STD-020D. 3) Tolerance for time at peak profile temperature (tP) is defined as a supplier minimum and a user maximum. Note: All temperatures refer to topside of the package, measured on the package body surface. Number of reflow cycles: 3 Please read Cautions and warnings and Important notes at the end of this document. Page 17 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Solder joint profiles for silver/nickel/tin terminations 1.3.3 Recommended geometry of solder pads Recommended maximum dimensions (mm) Case size inch/mm A B C 0402/1005 0.6 0.6 1.7 0603/1608 1.0 1.0 3.0 0805/2012 1.3 1.2 3.4 1206/3216 1.8 1.2 4.5 1.3.4 Notes Iron soldering should be avoided, hot air methods are recommended for repair purposes. Please read Cautions and warnings and Important notes at the end of this document. Page 18 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 2 Conductive adhesion An alternative to soldering is the gluing of thermistors with conductive adhesives. The benefit of this method is that it involves no thermal stress. The adhesives used must be chemically inert. 3 Clamp contacting Pressure contacting by means of clamps is particularly suitable for applications involving frequent switching and high turn-on powers. 4 Robustness of terminations (leaded types) The leads meet the requirements of IEC 60068-2-21. They may not be bent closer than 4 mm from the solder joint on the thermistor body or from the point at which they leave the feedthroughs. During bending, any mechanical stress at the outlet of the leads must be removed. The bending radius should be at least 0.75 mm. Tensile strength: Test Ua1: Leads 0.25 < 0.35 < 0.50 < 0.80 < ∅ ≤0.25 mm = 1.0 N ∅ ≤0.35 mm = 2.5 N ∅ ≤0.50 mm = 5.0 N ∅ ≤0.80 mm = 10.0 N ∅ ≤1.25 mm = 20.0 N Bending strength: Test Ub: Two 90°-bends in opposite directions at a weight of 0.25 kg. Torsional strength: Test Uc: severity 2 The lead is bent by 90° at a distance of 6 to 6.5 mm from the thermistor body. The bending radius of the leads should be approx. 0.75 mm. Two torsions of 180° each (severity 2). When subjecting leads to mechanical stress, the following should be observed: Tensile stress on leads During mounting and operation tensile forces on the leads are to be avoided. Bending of leads Bending of the leads directly on the thermistor body is not permissible. A lead may be bent at a minimum distance of twice the wire's diameter +2 mm from the solder joint on the thermistor body. During bending the wire must be mechanically relieved at its outlet. The bending radius should be at least 0.75 mm. Twisting of leads The twisting (torsion) by 180° of a lead bent by 90° is permissible at 6 mm from the bottom of the thermistor body. Please read Cautions and warnings and Important notes at the end of this document. Page 19 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 5 Sealing and potting When thermistors are sealed, potted or overmolded, there must be no mechanical stress caused by thermal expansion during the production process (curing / overmolding process) and during later operation. The upper category temperature of the thermistor must not be exceeded. Ensure that the materials used (sealing / potting compound and plastic material) are chemically neutral. 6 Cleaning Washing processes may damage the product due to the possible static or cyclic mechanical loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts, which might lead to reduced reliability or lifetime. 7 Storage In order to maintain their solderability, thermistors must be stored in a non-corrosive atmosphere. Humidity, temperature and container materials are critical factors. Do not store SMDs where they are exposed to heat or direct sunlight. Otherwise, the packing material may be deformed or SMDs may stick together, causing problems during mounting. After opening the factory seals, such as polyvinyl-sealed packages, use the SMDs as soon as possible. The components should be left in the original packing. Touching the metallization of unsoldered thermistors may change their soldering properties. Storage temperature: 25 °C up to 45 °C Relative humidity (without condensation): ≤75% annual mean <95%, maximum 30 days per annum Solder the thermistors listed in this data book after shipment from EPCOS within the time specified: SMDs with nickel barrier termination: 12 months SMDs with AgPd termination: 6 months Leaded components: 24 months Please read Cautions and warnings and Important notes at the end of this document. Page 20 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 8 Placement and orientation of SMD NTC thermistors on PCB a) Component placement It is recommended that the PC board should be held by means of some adequate supporting pins such as shown left to prevent the SMDs from being damaged or cracked. b) Cracks When placing a component near an area which is apt to bend or a grid groove on the PC board, it is advisable to have both electrodes subjected to uniform stress, or to position the component's electrodes at right angles to the grid groove or bending line (see c) Component orientation). c) Component orientation Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board. Please read Cautions and warnings and Important notes at the end of this document. Page 21 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Cautions and warnings See "Important notes". Storage Store thermistors only in original packaging. Do not open the package prior to storage. Storage conditions in original packaging: storage temperature 25 °C ... +45 °C, relative humidity ≤75% annual mean, <95% maximum 30 days per annum, dew precipitation is inadmissible. Do not store thermistors where they are exposed to heat or direct sunlight. Otherwise, the packing material may be deformed or components may stick together, causing problems during mounting. Avoid contamination of thermistor surface during storage, handling and processing. Avoid storage of thermistors in harmful environments like corrosive gases (SOx, Cl etc). Use the components as soon as possible after opening the factory seals, i.e. the polyvinyl-sealed packages. Solder thermistors within the time specified after shipment from EPCOS. For leaded components this is 24 months, for SMD components with nickel barrier termination 12 months, for SMD components with AgPd termination 6 months. Handling NTC thermistors must not be dropped. Chip-offs or any other damage must not be caused during handling of NTCs. Do not touch components with bare hands. Gloves are recommended. Avoid contamination of thermistor surface during handling. Washing processes may damage the product due to the possible static or cyclic mechanical loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts, which might lead to reduced reliability or lifetime. Bending / twisting leads A lead (wire) may be bent at a minimum distance of twice the wire’s diameter plus 4 mm from the component head or housing. When bending ensure the wire is mechanically relieved at the component head or housing. The bending radius should be at least 0.75 mm. Twisting (torsion) by 180° of a lead bent by 90° is permissible at 6 mm from the bottom of the thermistor body. Soldering Use resin-type flux or non-activated flux. Insufficient preheating may cause ceramic cracks. Rapid cooling by dipping in solvent is not recommended. Complete removal of flux is recommended. Please read Cautions and warnings and Important notes at the end of this document. Page 22 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Mounting Ensure that no thermo-mechanical stress occurs due to production processes (curing or overmolding processes) when thermistors are sealed, potted or overmolded or during their subsequent operation. The maximum temperature of the thermistor must not be exceeded. Ensure that the materials used (sealing/potting compound and plastic material) are chemically neutral. Electrodes/contacts must not be scratched or damaged before/during/after the mounting process. Contacts and housing used for assembly with the thermistor must be clean before mounting. Ensure that adjacent materials are designed for operation at temperatures comparable to the surface temperature of the thermistor. Be sure that surrounding parts and materials can withstand the temperature. Avoid contamination of the thermistor surface during processing. The connections of sensors (e.g. cable end, wire end, plug terminal) may only be exposed to an environment with normal atmospheric conditions. Tensile forces on cables or leads must be avoided during mounting and operation. Bending or twisting of cables or leads directly on the thermistor body is not permissible. Avoid using chemical substances as mounting aids. It must be ensured that no water or other liquids enter the NTC thermistors (e.g. through plug terminals). In particular, water based substances (e.g. soap suds) must not be used as mounting aids for sensors. Operation Use thermistors only within the specified operating temperature range. Use thermistors only within the specified power range. Environmental conditions must not harm the thermistors. Only use the thermistors under normal atmospheric conditions or within the specified conditions. Contact of NTC thermistors with any liquids and solvents shall be prevented. It must be ensured that no water enters the NTC thermistors (e.g. through plug terminals). For measurement purposes (checking the specified resistance vs. temperature), the component must not be immersed in water but in suitable liquids (e.g. Galden). Avoid dewing and condensation unless thermistor is specified for these conditions. Bending or twisting of cables and/or wires is not permissible during operation of the sensor in the application. Be sure to provide an appropriate fail-safe function to prevent secondary product damage caused by malfunction. This listing does not claim to be complete, but merely reflects the experience of EPCOS AG. Please read Cautions and warnings and Important notes at the end of this document. Page 23 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Symbols and terms Symbol English German A AWG Area American Wire Gauge Fläche Amerikanische Norm für Drahtquerschnitte B B25/100 B value B value determined by resistance measurement at 25 °C and 100 °C B-Wert B-Wert, ermittelt durch Widerstandsmessungen bei 25 °C und 100 °C Cth Heat capacitance Wärmekapazität I Current Strom N Number (integer) Anzahl (ganzzahliger Wert) P25 Pdiss Pel Pmax Maximum power at 25 °C Power dissipation Electrical power Maximum power within stated temperature range Maximale Leistung bei 25 °C Verlustleistung Elektrische Leistung Maximale Leistung im angegebenenTemperaturbereich ∆RB/RB Resistance tolerance caused by spread of B value Insulation resistance Parallel resistance Rated resistance Resistance tolerance Series resistance Resistance at temperature T (e.g. R25 = resistance at 25 °C) Widerstandstoleranz, die durch die Streuung des B-Wertes verursacht wird Isolationswiderstand Parallelwiderstand Nennwiderstand Widerstandstoleranz Serienwiderstand Widerstand bei Temperatur T (z.B. R25 = Widerstand bei 25 °C) T ∆T t TA Tmax Temperature Temperature tolerance Time Ambient temperature Upper category temperature Tmin Lower category temperature Temperatur Temperaturtoleranz Zeit Umgebungstemperatur Obere Grenztemperatur (Kategorietemperatur) Untere Grenztemperatur (Kategorietemperatur) Top TR Tsurf Operating temperature Rated temperature Surface temperature Betriebstemperatur Nenntemperatur Oberflächentemperatur V Vins Vop Vtest Voltage Insulation test voltage Operating voltage Test voltage Spannung Isolationsprüfspannung Betriebsspannung Prüfspannung Rins RP RR ∆RR/RR RS RT Please read Cautions and warnings and Important notes at the end of this document. Page 24 of 26 Temperature measurement and compensation B57964S Leaded NTC thermistors, lead spacing 2.5 mm S964 Symbol English German α Temperature coefficient Temperaturkoeffizient ∆ Tolerance, change Toleranz, Änderung δth Dissipation factor Wärmeleitwert τc τa Thermal cooling time constant Thermal time constant Thermische Abkühlzeitkonstante Thermische Zeitkonstante Abbreviations / Notes Symbol English German Surface-mounted devices Oberflächenmontierbares Bauelement * To be replaced by a number in ordering Platzhalter für Zahl im Bestellnummerncodes, type designations etc. code oder für die Typenbezeichnung. + To be replaced by a letter. Platzhalter für einen Buchstaben. All dimensions are given in mm. Alle Maße sind in mm angegeben. The commas used in numerical values denote decimal points. Verwendete Kommas in Zahlenwerten bezeichnen Dezimalpunkte. Please read Cautions and warnings and Important notes at the end of this document. Page 25 of 26 Important notes The following applies to all products named in this publication: 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application. 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component. 3. The warnings, cautions and product-specific notes must be observed. 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices. 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products. 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI). 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks. Page 26 of 26