Lumileds LAFL-C4-0700 Automotive forward lighting source Datasheet

LUXEON Altilon
Automotive Forward
Lighting Source
Technical Datasheet DS66
LUXEON Altilon
®
Automotive Forward Lighting Source
Introduction
LUXEON® Altilon LEDs are specifically designed and tested to meet and exceed
expectations for reliability, performance, and lifetime in automotive forward lighting
applications. With advanced technologies, LUXEON Altilon meets both SAE and
ECE color specifications and provides finer granularity than existing systems. PPAP
documentation is available upon request. LUXEON Altilon LEDs provide significant
flexibility and are superior LED products for:
• High Beam/Low Beam
• Daytime Running Lights (DRL)
• Static Bending Lights
• Position Lamps
• AFS Functionality
Hg
Table of Contents
Product Information......................................................................................................................................................3
Part Number Description..........................................................................................................................................3
Test Conditions for Optical Characteristics ........................................................................................................3
Environmental Compliance........................................................................................................................................3
Optical Characteristics.................................................................................................................................................4
Measured and Typical Optical Performance by Part Number............................................................................4
Typical Luminance Performance...............................................................................................................................5
Typical Use Condition Matrix—Relative Flux ......................................................................................................5
Typical Relative Luminous Flux vs. Forward Current .........................................................................................6
Typical Relative Luminous Flux vs. Case Temperature ........................................................................................6
Electrical Characteristics..............................................................................................................................................7
Typical Electrical Characteristics at Temperature Extremes..............................................................................8
Typical DC Forward Current vs. Forward Voltage.................................................................................................9
Absolute Maximum Ratings.......................................................................................................................................10
Reliability Expectations and Thermal Design Requirements..............................................................................11
Mechanical Dimensions..............................................................................................................................................12
Color Bin Definitions..................................................................................................................................................14
Laser Marking Definitions..........................................................................................................................................15
Flux Bin Definitions.....................................................................................................................................................16
Typical Spectrum........................................................................................................................................................17
Typical Color vs. Angle..............................................................................................................................................17
Color Shift vs. Case Temperature.............................................................................................................................18
Color Shift vs. DC Drive Current............................................................................................................................19
Typical Radiation Pattern............................................................................................................................................20
Packing Information.....................................................................................................................................................21
Product Labeling Information....................................................................................................................................24
LUXEON Altilon Datasheet DS66 20130320
2
Product Information
Part Number Description
LUXEON Altilon LEDs are tested and binned at 1000 mA, with current pulse duration of 20ms.
LUXEON Altilon
L
A
F
L
-
Standard Prefix for LUXEON Altilon
C
Default
2
S
Number of Chips -
Solder or Spade
2 or 4
-
X
X
X
X
Minimum Flux Bin
Lugs - S or L
LUXEON Altilon Core
L
A
C
L
Standard Prefix for LUXEON Altilon Core
-
C
Default
2
S
Number of Chips 2 or 4
Solder
Configuration
-
X
X
X
X
Minimum Flux Bin
Test Conditions for Optical Characteristics
Junction Temperature vs. Case Temperature
Philips Lumileds specifies performance at constant case temperature for LUXEON Altilon. This datasheet specifies performance at constant case
temperature of 25°C, except where noted. The data sheet that follows will specify performance at constant case temperature of 25°C.
Case temperature refers to the temperature of a thermocouple mounted under the head of one of the mounting screws, and is a value that can
be measured rather than calculated (see Figure 7). A junction-to-case thermal resistance of 2.1°C/W is assumed for the 1x2 configuration and
1.4°C/W for the 1x4 configuration. This approach will more accurately capture product performance capabilities compared to average junction
temperature alone.
Environmental Compliance
Philips Lumileds is committed to providing environmentally friendly products to the lighting industry. LUXEON Altilon is compliant to the
European Union directives on the restriction of hazardous substances in electronic equipment, namely, the RoHS, ELV, and REACH directives.
Philips Lumileds will not intentionally add the following restricted materials to the LUXEON Altilon product: lead, mercury, cadmium, hexvalent
chromium, polybrominated biphenyls (PBB), or polybrominated diphenyl ethers (PBDE).
LUXEON Altilon Datasheet DS66 20130320
3
Optical Characteristics
Measured and Typical Optical Performance by Part Number
Table 1.
Measured Test Condition
I000 mA Pulsed Operation (20 msec)
Part Number
Form Factor
Case Temperature Tc = 25°C
Minimum Luminous Flux (lm) [I,2]
LUXEON Altilon
LAFL - C2* - 0350
LAFL - C2* - 0425
1x2
1x2
350
425
LAFL - C2* - 0500
LAFL - C4* - 0700
LAFL - C4* - 0850
LAFL - C4* - 0925
LAFL - C4* - 1000
LAFL - C4* - 1050
1x2
1x4
1x4
1x4
1x4
1x4
500
700
850
925
1000
1050
LUXEON Altilon Core
LACL - C2S - 0350
LACL - C2S - 0425
LACL - C2S - 0500
LACL - C4S - 0700
LACL - C4S - 0850
LACL - C4S - 0925
LACL - C4S - 1000
LACL - C4S - 1050
1x2
1x2
1x2
1x4
1x4
1x4
1x4
1x4
350
425
500
700
850
925
1000
1050
Notes for Table 1:
1. Philips Lumileds tests flux values via a pulsed measurement at a case temperature of 25°C.
2. Minimum luminous flux guaranteed within published operating conditions. Philips Lumileds maintains a tolerance of ± 10% on flux
measurements.
3. ‘*’ Indicates the inclusion or exclusion of the spade lug connector, indicated with an ‘L’ for spade lug, and an ‘S’ for those parts without.
See Part Number Description below for more details.
LUXEON Altilon Datasheet DS66 20130320
4
Typical Luminance Performance
Typical luminance is calculated based on the total lumens emitted from the smallest rectangle covering the optical source. This method accounts for
variations in chip and phosphor placement as well as spacing between discrete chips. Figure 1 below indicates the orientation used to determine the
source area used for luminance calculations.
Y
Dimension
X Dimension
Figure 1. Area surrounding optical source for luminance measurements.
For the 1x4 configuration, the typical X and Y dimensions are 4.51 and 1.06 mm, respectively.
For the 1x2 configuration, the typical X and Y dimensions are 2.21 and 1.06 mm, respectively.
Typical Use Condition Matrix—Relative Flux
Normalized to Tc = 25°C, 1000 mA, 20 msec pulses
The graphs on the next page predict the relative flux under various use conditions normalized to the test conditions of 1000 mA pulsed operation
(20 msec pulse) at case temperature of 25°C. These graphs can be used to determine the effects of case temperature and forward current on the
values of minimum and typical flux to define performance at the expected use condition. For example:
Given a flux at Tc = 25°C and 1000 mA (20 msec pulse) of 700 lm for 1x4 configuration, the flux value under different conditions can be predicted.
If expected use condition is 700 mA at Tc = 100°C, the relative percentage of flux would be approximately 70% of the reference value.
Hence, the predicted flux at 700 mA and Tc = 100°C: 700 lm x 0.7 = 490 lm.
LUXEON Altilon Datasheet DS66 20130320
5
Typical Relative Luminous Flux vs. Forward Current
1.2
Normalized Luminous Flux
1
0.8
Case Temperature
-40 C
0C
0.6
25 C
55 C
0.4
85 C
0.2
110 C
130 C
0
300
400
500
600
700
800
900
1000
1100
Forward Current (mA)
Figure 2. Typical relative luminous flux vs. forward current.
Typical Relative Luminous Flux vs. Case Temperature
1.4
350 mA
700 mA
1.2
Normaliized Luminous Flux
x
1000 mA
1
08
0.8
0.6
0.4
0.2
0
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
130
Case Temperature (oC)
Figure 3. Typical relative luminous flux vs. case temperature.
LUXEON Altilon Datasheet DS66 20130320
6
Electrical Characteristics
Table 2.
Test Condition
1000 mA Pulsed Operation
Dynamic
Form Case Temperature Tc = 25°C
Resistance [3]
[1,2]
Factor
Forward Voltage Vf (Ω)
(V) RD
Min.
Typical
Max.
1x2
5.6
6.4
7.5
1.2
1x4
11.2
12.7
15.0
1.8
Notes for Table 2:
1. Philips Lumileds tests forward voltage values via a pulsed measurement at junction temperature of 25°C.
2. Philips Lumileds maintains a tolerance of ±0.06V on forward voltage measurements.
3. Dynamic resistance is the inverse of the slope in linear forward voltage model for LEDs.
ESD Protection
Diode
ESD Protection
Diode
1x2 Configuration
1x4 Configuration
Figure 4. Electrical schematic of forward lighting sources.
LUXEON Altilon Datasheet DS66 20130320
7
Typical Electrical Characteristics at Temperature Extremes
Table 3.
Typical Condition
Typical Condition
1000 mA DC Operation 1000 mA DC Operation
FormCase Temperature TC = - 40°CCase Temperature TC = 130°C
Factor
Forward Voltage Vf [1] Forward Voltage Vf [1]
(V)(V)
Min.
Typical
Max.
Min.
Typical
Max.
1x2
5.6
6.8
7.9
5.0
5.9
7.3
1x4
11.2
13.2
15.8
10.0
11.8
14.5
Notes for Table 3:
1. Philips Lumileds tests forward voltage values via a pulsed measurement at junction temperature of 25°C. Typical product performance at
maximum and minimum allowable case temperature to allow for electronic driver design. Values provided are guard banded to ensure that
minimum and maximum values are not exceeded under stated use conditions.
LUXEON Altilon Datasheet DS66 20130320
8
Typical DC Forward Current vs. Forward Voltage
The graphs below predict the change in forward voltage compared to the value at case temperature of 25°C at 1000 mA under various use
conditions. These graphs can be used to determine the effects of case temperature and forward current on the values of minimum, typical and
maximum forward voltage to define performance at the expected use condition.
Typical DC Forward Current vs. Forward Voltage 1x4 Configuration
1100
1000
Forward Current (mA)
900
800
700
Case Temperature
-40 C
600
0C
25 C
500
55 C
85 C
400
110 C
130 C
300
0.8
0.85
0.9
0.95
1
1.05
1.1
Normalized Forward Voltage
Figure 5. Typical forward current vs. forward voltage for 1x4 configuration.
Typical DC Forward Current vs. Forward Voltage 1x2 Configuration
1100
1000
Case Temperature
-40 C
Forward Current (mA)
900
0C
25 C
800
55 C
85 C
700
110 C
600
130 C
500
400
300
0.75
0.8
0.85
0.9
0.95
1
1.05
1.1
Normalized Forward Voltage
Figure 6. Typical forward current vs. forward voltage for 1x2 configuration.
Notes for Figures 5 and 6:
1. All values compared to reference value at case temperature of 25°C and 1000 mA DC forward current.
LUXEON Altilon Datasheet DS66 20130320
9
Absolute Maximum Ratings
Table 4.
Parameter
Value
Maximum DC Forward Current (mA) [1]
Minimum DC Forward Current (mA) [1]
Maximum Transient Peak Current
Maximum Vf at 1000 mA & -40°C [2]
Minimum Vf at 1000 mA & 130°C [3]
Maximum AC Ripple
ESD Sensitivity [4]
1100
100
1500 mA for ≤ 10 ms
15.8 Volts (1x4)
7.9 Volts (1x2)
10.0 Volts (1x4)
5.0 Volts (1x2)
≤50 mA rms at ≥10 kHz
8kV HBM, 2kV CDM, 400V MM
Storage Temperature
Minimum Operating Case Temperature
Maximum Case Temperature (1000 mA) [5]
Maximum Allowed Solder Pad Temperature
-40°C to +130°C
-40°C
130°C
270°C, max. 30 sec.
Notes for Table 4:
1. Although no damage to the device will occur, driving these high power LEDs at drive currents below 350 mA or above 1000 mA may result in
unpredictable performance. Please consult your Philips Lumileds sales representative for further information.
2. Product Vf at 1000 mA operation, case temperature -40°C after 1000 hours of operation at rated conditions.
3. Product Vf at 1000 mA operation, case temperature 130°C after 1000 hours of operation at rated conditions.
4. Measured using human body model, contact discharge method, and machine model (per AEC-Q101C).
5. Maximum case temperature for short term operation only. See section on reliability expectation and thermal design requirements for
recommendations on maximum case temperature to ensure life of vehicle performance.
6. LEDs are not designed to be driven in reverse bias.
JEDEC Moisture Sensitivity
Table 6.
Level
Floor Life
TimeConditions
1
LUXEON Altilon Datasheet DS66 20130320
unlimited
[ 30°C /85% RH
10
Reliability Expectations and Thermal Design Requirements
Table 6.
Operating Condition
B50L80
B3L80
1000 mA, Tc = 130°C
15000hrs
5000
1000 mA, Tc = 110°C
40000
15000
700 mA, Tc = 110°C
75000
25000
500 mA, Tc = 110°C
120000
35000
Notes for Table 6:
1. As measured at the position indicated in Figure 7.
2. Lumen maintenance is a projected average value based on constant current operation while respecting the specified maximum case
temperature. Observation of design limits included in this data sheet is required in order to achieve this projected Lumen Maintenance.
3. Lifetime shown is an estimation of expected lifetimes (Bxx, Lyy) computed as 90% lower confidence limit of the LUXEON Altilon product as
a function of drive current and case temperature. The lifetime estimates in the above table reflect statistical figures based on calculations of
technical data and are subject to change.
LUXEON AltilonLUXEON Altilon Core
TOP VIEW
VIEW Y
SIDE VIEW
Figure 7. Case temperature measurement.
LUXEON Altilon Datasheet DS66 20130320
11
Mechanical Dimensions
LUXEON Altilon
Figure 8. Mechanical dimensions for 1x2 solder pad configuration electrical connection.
Notes for Figure 8:
1. Drawings are not to scale.
2. All dimensions are in millimeters.
3. Tolerance, unless otherwise specified: ± 0.10 mm.
4. Materials: Lead frame = Tin Brass; Heat Slug = Copper; Body = LCP, Matte Black.
5. Lead frame and heat slug plated with 0.10 μm Gold over 2.5 μm Nickel.
6. Cleanliness: Parts are tested for solderability per MIL-STD-883, Method 2003 & 2004.
LUXEON Altilon Datasheet DS66 20130320
12
LUXEONCore
Altilon Core
LUXEON Altilon
1X41x4
Figure 9. Mechanical dimensions for 1x4 LUXEON Altilon Core.
LUXEON
Altilon Core
1x2
LUXEON Altilon
Core
1X2
LUXEON Altilon Core 1x2
Figure 10. Mechanical dimensions for 1x2 LUXEON Altilon Core.
Notes for Figures 9 & 10:
1. Drawings are not to scale.
2. All dimensions are in millimeters.
3. Tolerance, unless otherwise specified: ± 0.10 mm.
4. Materials: Base: Copper; Substrate: Ceramic.
5. Cleanliness: Parts are tested for solderability per MIL-STD-883, Method 2003 & 2004.
LUXEON Altilon Datasheet DS66 20130320
13
Color Bin Definitions
Case Temperature TC = 25°C, 1000 mA Pulsed (20 msec)
Product is tested at 1000 mA Pulsed (20 msec) at an operating case temperature of 25°C. The color specification is defined in Figure 11 and the
coordinate table shown below.
0.375
0.365
0.355
0.345
y
A3
B3
B1
A1
0.335
0.325
0.315
SAE/ECE Specification
0.305
0.295
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
x
Figure 11. LUXEON Altilon color binning structure.
Table 7.
Automotive Color Binning Structure
Bin Code
X
Y
Typical CCT
(K)
Bin Code
X
Y
Typical CCT
(K)
B1
0.32
0.32
0.329
0.329
0.323
0.3488
5700
A1
0.3546
0.3308
0.317466
0.314792
0.32
0.32
0.320438
0.345467
0.3488
0.323
B3
0.329
0.329
0.3375
0.335
0.3308
0.3546
5500
A3
0.36
0.336
0.335
0.3375
0.346904
0.344443
0.336
0.36
5200
0.366019
0.344232
6000
Notes for Table 7:
1. Typical CRI (Color Rendering Index) is 70.
2. Philips Lumileds maintains a tolerance of ± 0.005 on X and Y chromaticity measurements.
LUXEON Altilon Datasheet DS66 20130320
14
Laser Marking Definitions
Laser Marking Definition
TileID + Bincode + unit location at tile
123456-000119999
TileID (YYMMDD - Serial Running Number)
123456-000
Bincode (Presented as PNP bin with lookup table
11
Unit location at tile
9999
Table 8. 1X2 Lookup Table
Table 9. 1X4 Lookup Table
PNP Bin
Catcode
PNP Bin
Bincat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
HB1A
JB1A
KB1A
LB1A
HB3A
JB3A
KB3A
LB3A
HA1A
JA1A
KA1A
LA1A
HA3A
JA3A
KA3A
LA3A
RA1A
RA3A
RB1A
RB3A
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
MB1A
NB1A
PB1A
QB1A
MB3A
NB3A
PB3A
QB3A
MA1A
NA1A
PA1A
QA1A
MA3A
NA3A
PA3A
QA3A
SA1A
SA3A
SB1A
SB3A
WA1A
WA3A
WB1A
WB3A
XA1A
XA3A
XB1A
XB3A
YA1A
YA3A
YB1A
YB3A
LUXEON Altilon Datasheet DS66 20130320
15
Flux Bin Definitions
Flux Bin Definitions
for Case Temperature Tc = 25°C, 1000 mA Pulsed (20 msec)
The table below shows the luminous flux bin structure, tested and binned at 1000 mA pulsed (20 msec), Tc = 25°C.
Table 10.
Applicable
Product
Minimum Photometric Flux
(Lm)
Maximum Photometric Flux
(Lm)
H
1x2
J
R
K
350
425
465
500
425
465
500
600
M
N
S
1x4
P
W
X
Y
Q
700
850
925
1000
1050
1100
1150
1200
850
925
1000
1050
1100
1150
1200
1400
LUXEON Altilon Datasheet DS66 20130320
Bin Code
16
Typical Spectrum
Case Temperature Tc = 25°C, 1000 mA Pulsed (20 msec)
1.0
Normailized Intensityy
0.8
0.6
0.4
0.2
0.0
350
400
450
500
550
600
650
700
750
800
850
W
Wavelength
l
th (nm)
( )
Figure 12. Color spectrum of typical CCT part, integrated measurement.
Typical Color vs. Angle
Applicable for DC Current Range of 350 mA to 1000 mA
0.05
Shift in Color Coordinate
0.045
x 1x2
0.04
y 1x2
0.035
x 1x4
y 1x4
0.03
0.025
0.02
0.015
0.01
0.005
0
-80
-60
-40
-20
0
20
40
60
80
Angular Displacement
Figure 13. Typical color shift in x,y chromaticity over angle.
LUXEON Altilon Datasheet DS66 20130320
17
Color Shift vs. Case Temperature
Color Shift vs. Case Temperature
0.025
Collor Shift in
n x Coordiinate
0 02
0.02
350 mA
0.015
700 mA
0.01
1000 mA
0.005
0
0 005
-0.005
-0.01
-0.015
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
130
Case Temperature (oC)
Figure 14. Typical change in x chromaticity vs. case temperature.
0.025
Co
olor Shift iin y Coord
dinate
0.02
350 mA
A
0.015
700 mA
0.01
1000 mA
0.005
0
-0.005
-0.01
-0.015
0 015
-40
-30
-20
-10
0
10
20
30
40
50
60
Case Temperature
70
80
90
100
110
120
130
(oC)
Figure 15. Typical change in y chromaticity vs. case temperature.
LUXEON Altilon Datasheet DS66 20130320
18
Color Shift vs. DC Drive Current
Color Shift vs. DC Drive Current
0.01
Color Shift in x coordinate
0.005
0
0C
-0.005
25 C
55 C
85 C
-0.01
110 C
130 C
-0.015
300
400
500
600
700
800
900
1000
1100
Forward Current (mA)
Figure 16. Typical change in x chromaticity vs. drive current.
0.02
0C
25 C
Color Shift in y coordinate
0.015
55 C
85 C
0.01
110 C
130 C
0.005
0
-0.005
-0.01
-0.015
-0.02
300
400
500
600
700
800
900
1000
1100
Forward Current (mA)
Figure 17. Typical change in y chromaticity vs. drive current.
LUXEON Altilon Datasheet DS66 20130320
19
Typical Radiation Pattern
1.1
1x2
1
1x4
0.9
Normalized Intensityy
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-90 -80 -70 -60 -50 -40 -30 -20 -10
0
10
20
30
40
50
60
70
80
90
Angular Displacement (Degrees)
Figure 18. Typical representative spatial radiation pattern.
LUXEON Altilon Datasheet DS66 20130320
20
Packing Information
The LUXEON Altilon product will be shipped in tubes as shown below.
Notes:
1. Drawings are not to scale.
2. All dimensions are in millimeters.
3. Tube length: 700 mm, capacity: 42 LEDs.
4. Expected weight: full approximately 275g, empty approximately 120g.
5. Material: clear PVC with ESD-coating.
Tubes will be packed into bundles of 15 tubes maximum and shipped in boxes measuring 759mm long by 229mm wide by 81mm deep.
LUXEON Altilon Datasheet DS66 20130320
21
LUXEON Altilon Core Packaging for 1X4 Configuration
LUXEON Altilon Datasheet DS66 20130320
22
LUXEON Altilon Core Packaging for 1X2 Configuration
LUXEON Altilon Datasheet DS66 20130320
23
Product Labeling Information
Each tube of LUXEON Altilon will be labeled as shown below:
QTY = number of parts in shipping tube or reel
CAT code = four character alpha category code with flux bin, color bin, and voltage bin. In the example shown above, flux bin = N, color bin = B1,
and forward voltage bin = A (full distribution of voltage specification).
Part No. consists of standard notation LAFL - C#S or LACL - C#S where # is the number of emitters. The last four character string is the
minimum flux specification in lumens.
Each box will have a box label as shown below.
The label indicates the part number of the LUXEON Altilon product with the CAT code and the quantity of products contained inside the box.
LUXEON Altilon Datasheet DS66 20130320
24
Company Information
Philips Lumileds is a leading provider of LEDs for everyday lighting applications. The company’s records for light output,
efficacy and thermal management are direct results of the ongoing commitment to advancing solid-state lighting technology
and enabling lighting solutions that are more environmentally friendly, help reduce CO2 emissions and reduce the need for
power plant expansion. Philips Lumileds LUXEON® LEDs are enabling never before possible applications in outdoor lighting,
shop lighting, home lighting, consumer electronics, and automotive lighting.
Philips Lumileds is a fully integrated supplier, producing core LED material in all three base colors, (Red, Green, Blue) and
white. Philips Lumileds has R&D centers in San Jose, California and in the Netherlands, and production capabilities in
San Jose, Singapore and Penang, Malaysia. Founded in 1999, Philips Lumileds is the high flux LED technology leader and is
dedicated to bridging the gap between solid-state technology and the lighting world. More information about the company’s
LUXEON LED products and solid-state lighting technologies can be found at www.philipslumileds.com.
©2013 Philips Lumileds Lighting Company. All rights reserved.
Product specifications are subject to change without notice.
www.philipslumileds.com
www.philipslumileds.cn.com
Similar pages