CEP12P10/CEB12P10 P-Channel Enhancement Mode Field Effect Transistor FEATURES -100V, -11A, RDS(ON) =315mΩ @VGS = -10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G G S CEB SERIES TO-263(DD-PAK) G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 Tc = 25 C unless otherwise noted Symbol Limit -100 Units V VGS ±30 V ID -11 A IDM -44 A 75 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C 0.5 W/ C TJ,Tstg -55 to 175 C Symbol Limit Units Operating and Store Temperature Range Thermal Characteristics Parameter Thermal Resistance, Junction-to-Case RθJC 2 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W 2005.August http://www.cetsemi.com 1 CEP12P10/CEB12P10 Electrical Characteristics Parameter TA = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = -250µA -100 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = -100V, VGS = 0V -1 µA IGSSF VGS = 30V, VDS = 0V 100 nA IGSSR VGS = -30V, VDS = 0V -100 nA -4 V 315 mΩ Off Characteristics V On Characteristics c Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance Dynamic Characteristics VGS(th) VGS = VDS, ID = -250µA -2 RDS(on) VGS = -10V, ID = -5.75A 260 gFS VDS = -40V, ID = -5.75A 3.5 S 625 pF 140 pF 45 pF d Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = -25V, VGS = 0V, f = 1.0 MHz Switching Characteristics d Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = -50V, ID = -11A, VGS = -10V, RGEN = 25Ω 15 30 ns 12 25 ns 31 60 ns Turn-Off Fall Time tf 31 60 ns Total Gate Charge Qg 15.6 20 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = -80V, ID = -11A, VGS = -10V 3.6 nC 6.0 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current b IS Drain-Source Diode Forward Voltage c VSD VGS = 0V, IS = -11A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Surface Mounted on FR4 Board, t < 10 sec. c.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. d.Guaranteed by design, not subject to production testing. 2 -11 A -1.5 V CEP12P10/CEB12P10 10 25 C -VGS=10,8,6,5V -ID, Drain Current (A) -ID, Drain Current (A) 10 8 6 -VGS=4V 4 2 -VGS=3V 8 6 4 0 0 2 4 6 8 10 0 4 5 6 Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) C, Capacitance (pF) 3 Figure 1. Output Characteristics Ciss 600 450 300 Coss 150 Crss 0 0 5 10 15 20 25 2.2 1.9 ID=-5.75A VGS=-10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 -VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS -IS, Source-drain current (A) VTH, Normalized Gate-Source Threshold Voltage 2 -VGS, Gate-to-Source Voltage (V) 750 ID=-250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 1 -VDS, Drain-to-Source Voltage (V) 900 1.2 -55 C TJ=125 C 2 0 1.3 5 VGS=0V 10 10 10 -25 0 25 50 75 100 125 150 1 0 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) -VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 10 V =-80V DS ID=-11A 8 6 4 2 0 100µs 10 4 8 12 16 1ms 1 10ms DC 10 10 0 2 RDS(ON)Limit -ID, Drain Current (A) -VGS, Gate to Source Voltage (V) CEP12P10/CEB12P10 0 TC=25 C TJ=175 C Single Pulse -1 10 0 10 1 10 2 10 Qg, Total Gate Charge (nC) -VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D td(off) tf 90% 90% VOUT VOUT VGS RGEN toff tr td(on) 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 -1 PDM 0.1 t1 0.05 t2 0.02 0.01 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 Single Pulse 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 1 10 2 3