PD - 96229 IRF6729MPbF IRF6729MTRPbF HEXFET® Power MOSFET plus Schottky Diode Typical values (unless otherwise specified) RoHs Compliant and Halogen-Free VDSS VGS RDS(on) RDS(on) l Integrated Monolithic Schottky Diode 30V max ±20V max 1.4mΩ@ 10V 2.2mΩ@ 4.5V l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) l Ultra Low Package Inductance 42nC 14nC 4.9nC 40nC 29nC 1.8V l Optimized for High Frequency Switching l Ideal for CPU Core DC-DC Converters l Optimized for Sync. FET socket of Sync. Buck Converter l Low Conduction and Switching Losses l Compatible with existing Surface Mount Techniques l 100% Rg tested DirectFET ISOMETRIC MX Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) l SQ SX ST MQ MT MX MP Description The IRF6729MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6729MPbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6729MPbF has been optimized for parameters that are critical in synchronous buck converter’s Sync FET sockets. Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h Typical RDS(on) (mΩ) 6 ID = 31A 5 4 3 T J = 125°C 2 1 T J = 25°C 0 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com e e f VGS, Gate-to-Source Voltage (V) VDS Max. Units 30 ±20 31 25 190 250 260 25 V A mJ A 14.0 ID= 25A 12.0 10.0 VDS= 24V VDS= 15V 8.0 6.0 4.0 2.0 0.0 0 20 40 60 80 100 120 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.83mH, RG = 25Ω, IAS = 25A. 1 04/02/09 IRF6729MTRPbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS Min. Conditions Typ. Max. Units VGS = 0V, ID = 1.0mA V Reference to 25°C, ID = 10mA mV/°C mΩ VGS = 10V, ID = 31A Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient 30 ––– ––– 4.0 ––– ––– Static Drain-to-Source On-Resistance ––– ––– 1.4 2.2 1.8 2.7 Gate Threshold Voltage Gate Threshold Voltage Coefficient 1.35 ––– 1.8 -4.2 Drain-to-Source Leakage Current ––– ––– ––– ––– 2.35 V ––– mV/°C VDS = VGS, ID = 10mA 100 µA VDS = 24V, VGS = 0V 5.0 mA IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ––– ––– ––– ––– 100 -100 nA VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V gfs Qg Qgs1 Forward Transconductance Total Gate Charge 120 ––– ––– 42 ––– 63 S VGS = -20V VDS = 15V, ID = 25A Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge ––– ––– 11 4.9 ––– ––– Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 14 12.1 ––– ––– Output Charge ––– ––– 18.9 29 ––– ––– Gate Resistance Turn-On Delay Time ––– ––– 1.3 22 2.2 ––– Ω Rise Time Turn-Off Delay Time ––– ––– 37 20 ––– ––– ns Fall Time Input Capacitance ––– ––– 15 6030 ––– ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 1360 560 ––– ––– Min. Typ. Max. Units ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss i i VGS = 4.5V, ID = 25A VDS = VGS, ID = 150µA VDS = 15V nC VGS = 4.5V ID = 25A See Fig. 15 nC VDS = 16V, VGS = 0V i VDD = 15V, VGS = 4.5V ID = 25A RG = 1.8Ω pF See Fig. 17 VGS = 0V VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS A MOSFET symbol showing the 0.80 V integral reverse p-n junction diode. TJ = 25°C, IS = 25A, VGS = 0V 45 60 ns nC di/dt = 300A/µs Continuous Source Current (Body Diode) ––– ISM Pulsed Source Current (Body Diode) ––– ––– 250 VSD Diode Forward Voltage ––– ––– trr Reverse Recovery Time Reverse Recovery Charge ––– ––– 30 40 Qrr g ––– Conditions 31 TJ = 25°C, IF = 25A i i Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6729MTRPbF Absolute Maximum Ratings e e f PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG Max. Units 2.8 1.8 104 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range °C Thermal Resistance Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.2 ––– °C/W 0.022 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 τJ 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τA τ1 τ2 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci= τi/Ri 0.1 0.0001 0.001 τA Ri (°C/W) τi (sec) 14.507 12.335077 8.742 0.1865935 18.806 1.9583548 2.945 0.0065404 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-005 R4 R4 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (At lower pulse widths ZthJA & ZTHJC are combined) Notes: Rθ is measured at TJ of approximately 90°C. Used double sided cooling , mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6729MTRPbF 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 1 2.5V 0.1 BOTTOM 10 2.5V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.01 0.1 1 10 1 0.1 100 VDS, Drain-to-Source Voltage (V) 10 100 Fig 5. Typical Output Characteristics 1000 2.0 VDS = 15V ≤60µs PULSE WIDTH ID = 31A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 100 T J = 150°C T J = 25°C T J = -40°C 10 1 0.1 V GS = 10V V GS = 4.5V 1.5 1.0 0.5 1 2 3 4 -60 -40 -20 0 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 10 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C Typical RDS(on) ( mΩ) Ciss Coss 1000 Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 8 C oss = C ds + C gd 10000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Crss 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 50 100 150 200 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6729MTRPbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) 100µsec 100 100 10 T J = 150°C T J = 25°C 1 T J = -40°C 1msec 10msec 10 DC 1 VGS = 0V TA = 25°C TJ = 150°C Single Pulse 0.1 0 0.01 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.10 Fig 10. Typical Source-Drain Diode Forward Voltage 100 50 2.2 2.0 ID = 10mA 1.8 1.6 1.4 0 75 100 100.00 2.4 Typical VGS(th) Gate threshold Voltage (V) ID, Drain Current (A) 150 50 10.00 Fig11. Maximum Safe Operating Area 200 25 1.00 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 1200 ID 1.3A 2.2A BOTTOM 25A TOP 1000 800 600 400 200 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6729MTRPbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 15a. Gate Charge Test Circuit Qgd Qgs2 Qgs1 Fig 15b. Gate Charge Waveform V(BR)DSS 15V D.U.T V RGSG 20V DRIVER L VDS tp + - VDD IAS A I AS 0.01Ω tp Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - V DD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10% VGS td(on) Fig 17a. Switching Time Test Circuit 6 tr t d(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6729MTRPbF Driver Gate Drive D.U.T + RG * • • • • P.W. Period *** D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test D= Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - P.W. + V DD ** + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel ISD *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs DirectFET Board Footprint, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D S G S D www.irf.com D 7 IRF6729MTRPbF DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE A B C D E F G H J K L M R P MIN 6.25 4.80 3.85 0.35 0.68 0.68 1.38 0.80 0.38 0.88 2.28 0.616 0.020 0.08 MAX 6.35 5.05 3.95 0.45 0.72 0.72 1.42 0.84 0.42 1.01 2.41 0.676 0.080 0.17 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.0235 0.0008 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.039 0.095 0.0274 0.0031 0.007 DirectFET Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" 8 www.irf.com IRF6729MTRPbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6729MTRPBF). For 1000 parts on 7" reel, order IRF6729MTR1PBF STANDARD OPTION METRIC CODE MAX MIN A 330.0 N.C 20.2 B N.C C 13.2 12.8 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS TR1 OPTION (QTY 1000) (QTY 4800) METRIC IMPERIAL IMPERIAL MAX MIN MIN MAX MAX MIN N.C 6.9 12.992 N.C 177.77 N.C 0.75 0.795 N.C 19.06 N.C N.C 0.50 0.53 0.504 0.520 12.8 13.5 0.059 0.059 N.C N.C 1.5 N.C 2.31 3.937 N.C 58.72 N.C N.C 0.53 N.C N.C 0.724 N.C 13.50 0.47 0.488 N.C 11.9 0.567 12.01 0.47 0.469 11.9 0.606 12.01 N.C LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 0.319 0.311 7.90 8.10 0.154 3.90 0.161 4.10 0.469 0.484 11.90 12.30 0.215 5.45 0.219 5.55 0.201 5.10 0.209 5.30 0.256 6.50 0.264 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/2009 www.irf.com 9