Renesas HIP6301CBZ Microprocessor core voltage regulator multi-phase buck pwm controller Datasheet

HIP6301
NOT RECOMMENDED FOR NEW DESIGNS
NO RECOMMENDED REPLACEMENT
contact our Technical Support Center at
1-888-INTERSIL or www.intersil.com/tsc
DATASHEET
FN4765
Rev 6.00
December 27, 2004
Microprocessor CORE Voltage Regulator Multi-Phase Buck PWM Controller
The HIP6301 multi-phase PWM control IC together with its
companion gate drivers, the HIP6601B, HIP6602B,
HIP6603B or HIP6604B and external MOSFETs provides a
precision voltage regulation system for advanced
microprocessors. Multiphase power conversion is a marked
departure from earlier single phase converter configurations
previously employed to satisfy the ever increasing current
demands of modern microprocessors. Multi-phase
convertors, by distributing the power and load current results
in smaller and lower cost transistors with fewer input and
output capacitors. These reductions accrue from the higher
effective conversion frequency with higher frequency ripple
current due to the phase interleaving process of this
topology. For example, a three phase convertor operating at
350kHz will have a ripple frequency of 1.05MHz. Moreover,
greater convertor bandwidth of this design results in faster
response to load transients.
Outstanding features of this controller IC include
programmable VID codes from the microprocessor that
range from 1.100V to 1.850V with a system accuracy of
1%. Pull up currents on these VID pins eliminates the need
for external pull up resistors. In addition “droop”
compensation, used to reduce the overshoot or undershoot
of the CORE voltage, is easily programmed with a single
resistor.
Another feature of this controller IC is the PGOOD monitor
circuit which is held low until the CORE voltage increases,
during its Soft-Start sequence, to within 10% of the
programmed voltage. Overvoltage, 15% above programmed
CORE voltage, results in the converter shutting down and
turning the lower MOSFETs ON to clamp and protect the
microprocessor. Under voltage is also detected and results
in PGOOD low if the CORE voltage falls 10% below the
programmed level. Overcurrent protection reduces the
regulator current to less than 25% of the programmed trip
value. These features provide monitoring and protection for
the microprocessor and power system.
Features
• Multi-Phase Power Conversion
• Precision Channel Current Sharing
- Loss Less Current Sampling - Uses rDS(ON)
• Precision CORE Voltage Regulation
- 1% System Accuracy Over Temperature
• Microprocessor Voltage Identification Input
- 5-Bit VID Input
- 1.100V to 1.850V in 25mV Steps
- Programmable “Droop” Voltage
• Fast Transient Recovery Time
• Over Current Protection
• Automatic Selection of 2, 3, or 4 Phase Operation
• High Ripple Frequency, (Channel Frequency) Times
Number Channels . . . . . . . . . . . . . . . . . .100kHz to 6MHz
• Pb-Free Available (RoHS Compliant)
Ordering Information
PART NUMBER
TEMP. (°C)
PACKAGE
PKG. DWG #
HIP6301CB
0 to 70
20 Ld SOIC
M20.3
HIP6301CBZ
(Note)
0 to 70
20 Ld SOIC
(Pb-free)
M20.3
HIP6301CB-T
20 Ld SOIC Tape and Reel
HIP6301CBZ-T
(Note)
20 Ld SOIC Tape and Reel
(Pb-free)
HIP6301CBZA-T
(Note)
20 Ld SOIC Tape and Reel
(Pb-free)
HIP6301EVAL2
Evaluation Platform
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding
compounds/die attach materials and 100% matte tin plate termination finish, which are
RoHS compliant and compatible with both SnPb and Pb-free soldering operations.
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
Pinout
HIP6301 (SOIC)
TOP VIEW
VID4 1
FN4765 Rev 6.00
December 27, 2004
20 VCC
VID3 2
19 PGOOD
VID2 3
18 PWM4
VID1 4
17 ISEN4
VID0 5
16 ISEN1
COMP 6
15 PWM1
FB 7
14 PWM2
FS/DIS 8
13 ISEN2
GND 9
12 ISEN3
VSEN 10
11 PWM3
Page 1 of 17
HIP6301
Block Diagram
VCC
PGOOD
POWER-ON
RESET (POR)
+
VSEN
THREE
STATE
UV
X 0.9
-
OV
LATCH
CLOCK AND
SAWTOOTH
GENERATOR
S
+
OVP
X1.15

+
-
+
+
PWM1
PWM
-
SOFTSTART
AND FAULT
LOGIC
FS/EN
-

+
PWM2
PWM
-
-
COMP
+

+
PWM
-
VID0
PWM3
-
VID1
VID2
+
D/A
VID3
+
VID4
-

-
E/A
CURRENT
FB
CORRECTION
+
PWM4
PWM
-
PHASE
NUMBER
CHANNEL
DETECTOR
ISEN1
I_TOT
+
+

OC
I_TRIP
+
ISEN2
+
+
ISEN3
ISEN4
GND
FN4765 Rev 6.00
December 27, 2004
Page 2 of 17
HIP6301
Simplified Power System Diagram
SYNCHRONOUS
RECTIFIED BUCK
CHANNEL
VSEN
PWM 1
SYNCHRONOUS
RECTIFIED BUCK
CHANNEL
PWM 2
MICROPROCESSOR
HIP6301
SYNCHRONOUS
RECTIFIED BUCK
CHANNEL
PWM 3
PWM 4
VID
SYNCHRONOUS
RECTIFIED BUCK
CHANNEL
Functional Pin Description
converter. Pulling this pin to ground disables the converter
and three states the PWM outputs. See Figure 10.
VID4 1
20 VCC
VID3 2
19 PGOOD
VID2 3
18 PWM4
VID1 4
17 ISEN4
VID0 5
16 ISEN1
VSEN (Pin 10)
COMP 6
15 PWM1
FB 7
14 PWM2
Power good monitor input. Connect to the microprocessorCORE voltage.
FS/DIS 8
13 ISEN2
GND 9
12 ISEN3
VSEN 10
11 PWM3
VID4 (Pin 1), VID3 (Pin 2), VID2 (Pin 3), VID1 (Pin 4)
and VID0 (Pin 5)
Voltage Identification inputs from microprocessor. These pins
respond to TTL and 3.3V logic signals. The HIP6301 decodes
VID bits to establish the output voltage. See Table 1.
COMP (Pin 6)
Output of the internal error amplifier. Connect this pin to the
external feedback and compensation network.
FB (Pin 7)
Inverting input of the internal error amplifier.
FS/DIS (Pin 8)
Channel frequency, FSW, select and disable. A resistor from
this pin to ground sets the switching frequency of the
FN4765 Rev 6.00
December 27, 2004
GND (Pin 9)
Bias and reference ground. All signals are referenced to this
pin.
PWM1 (Pin 15), PWM2 (Pin 14), PWM3 (Pin 11) and
PWM4 (Pin 18)
PWM outputs for each driven channel in use. Connect these
pins to the PWM input of a HIP6601B/2B/3B/4B driver. For
systems which use 3 channels, connect PWM4 high. Two
channel systems connect PWM3 and PWM4 high.
ISEN1 (Pin 16), ISEN2 (Pin 13), ISEN3 (Pin 12) and
ISEN4 (Pin 17)
Current sense inputs from the individual converter channel’s
phase nodes. Unused sense lines MUST be left open.
PGOOD (Pin 19)
Power good. This pin is an open-drain logic signal that
indicates when the microprocessor CORE voltage (VSEN
pin) is within specified limits and Soft-Start has timed out.
VCC (Pin 20)
Bias supply. Connect this pin to a 5V supply.
Page 3 of 17
HIP6301
Typical Application - 2 Phase Converter Using HIP6601B Gate Drivers
+12V
BOOT
VIN = +5V
PVCC
UGATE
+5V
VCC
PWM
FB
PHASE
DRIVER
HIP6601B
COMP
LGATE
GND
VCC
VSEN
+VCORE
PWM4
PGOOD
PWM3
VID4
PWM2
VID3
PWM1
VID2
VID1
+12V
BOOT
VIN = +5V
PVCC
UGATE
MAIN
CONTROL
HIP6301
PHASE
VCC
VID0
FS/DIS
ISEN4
NC
ISEN3
NC
PWM
DRIVER
HIP6601B
LGATE
GND
ISEN2
GND
FN4765 Rev 6.00
December 27, 2004
ISEN1
Page 4 of 17
HIP6301
Typical Application - 4 Phase Converter Using HIP6602B Gate Drivers
BOOT1
+12V
VIN = +12V
UGATE1
L01
VCC
PHASE1
LGATE1
+5V
DUAL
DRIVER
HIP6602B
FB
PVCC
BOOT2
COMP
+5V
VIN +12V
VCC
VSEN
UGATE2
L02
ISEN1
PGOOD
PWM1
VID4
PWM2
VID3
ISEN2
VID2
VID1
PHASE2
PWM1
PWM2
LGATE2
GND
MAIN
CONTROL
HIP6301
+VCORE
VID0
ISEN3
FS/DIS
PWM3
PWM4
GND
+12V
BOOT3
VIN+12V
ISEN4
UGATE3
L03
VCC
PHASE3
LGATE3
DUAL
DRIVER
HIP6602B
PVCC
BOOT4
UGATE4
PWM3
+5V
VIN +12V
L04
PHASE4
PWM4
LGATE4
GND
FN4765 Rev 6.00
December 27, 2004
Page 5 of 17
HIP6301
Absolute Maximum Ratings
Thermal Information
Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+7V
Input, Output, or I/O Voltage . . . . . . . . . . GND -0.3V to VCC + 0.3V
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5kV
Thermal Resistance (Typical, Note 1)
JA (°C/W)
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150°C
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150°C
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300°C
(SOIC - Lead Tips Only)
Recommended Operating Conditions
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +5V 5%
Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
CAUTION: Stress above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational section of this specification is not implied.
NOTE:
1. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
Electrical Specifications
Operating Conditions: VCC = 5V, TA = 0°C to 70°C, Unless Otherwise Specified
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
-
10
15
mA
EN = 0V
4.25
8.8
4.5
mA
VCC Rising
4.25
4.38
4.5
V
VCC Falling
3.75
3.88
4.00
V
INPUT SUPPLY POWER
Input Supply Current
POR (Power-On Reset) Threshold
RT = 100k
REFERENCE AND DAC
System Accuracy
Percent system deviation from programmed VID Codes
-1
-
1
%
DAC (VID0 - VID3) Input Low Voltage
DAC Programming Input Low Threshold Voltage
-
-
0.8
V
DAC (VID0 - VID3) Input High Voltage
DAC Programming Input High Threshold Voltage
2.0
-
-
V
VID Pull-Up
VIDx = 0V or VIDx = 3V
10
20
40
A
CHANNEL GENERATOR, SAWTOOTH GENERATOR and Maximum PWM Duty Cycle
Frequency, FSW
RT = 100k, 1%
224
280
336
kHz
Adjustment Range
See Figure 10
0.05
-
1.5
MHz
Disable Voltage
Maximum voltage at FS/DIS to disable controller. IFS/DIS = 1mA.
-
1.2
1.0
V
Sawtooth Amplitude
Amplitude of Sawtooh Generator at Channel Comparator Input
-
1.33
-
Vp-p
-
75
-
%
PWM Maximum Duty Cycle
ERROR AMPLIFIER
DC Gain
RL = 10K to ground
-
72
-
dB
Gain-Bandwidth Product
CL = 100pF, RL = 10K to ground
-
18
-
MHz
Slew Rate
CL = 100pF, RL = 10K to ground
-
5.3
-
V/s
Maximum Output Voltage
RL = 10K to ground
3.6
4.1
-
V
Minimum Output Voltage
RL = 10K to ground
-
0.16
0.5
V
Full Scale Input Current
-
50
-
A
Overcurrent Trip Level
-67.5
-
-87.5
A
ISEN
POWER GOOD MONITOR
Undervoltage Threshold
VSEN Rising
-
0.92
-
VDAC
Undervoltage Threshold
VSEN Falling
-
0.90
-
VDAC
PGOOD Low Output Voltage
IPGOOD = 4mA
-
0.18
0.4
V
FN4765 Rev 6.00
December 27, 2004
Page 6 of 17
HIP6301
Operating Conditions: VCC = 5V, TA = 0°C to 70°C, Unless Otherwise Specified (Continued)
Electrical Specifications
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
1.12
1.15
1.2
VDAC
-
2
-
%
PROTECTION
Overvoltage Threshold
VSEN Rising
Percent Overvoltage Hysteresis
VSEN Falling after Overvoltage
RIN
FB
VIN
HIP6303
ERROR
AMPLIFIER
+
COMPARATOR
CORRECTION

+
-
Q1
PWM
CIRCUIT
+
L01
PWM1
HIP6601B
IL1
-
Q2
PHASE
PROGRAMMABLE
REFERENCE
DAC
+

CURRENT
ISEN1
SENSING
I AVERAGE
CURRENT
AVERAGING
VCORE
+

+
RISEN1
CURRENT
ISEN2
SENSING
CORRECTION
RLOAD
VIN
PHASE
-

COUT
RISEN2
COMPARATOR
+
-
Q3
PWM
CIRCUIT
L02
PWM2
HIP6601B
IL2
Q4
FIGURE 1. SIMPLIFIED BLOCK DIAGRAM OF THE HIP6301 VOLTAGE AND CURRENT CONTROL LOOPS FOR A TWO POWER
CHANNEL REGULATOR
Operation
Figure 1 shows a simplified diagram of the voltage regulation
and current control loops. Both voltage and current feedback
are used to precisely regulate voltage and tightly control
output currents, IL1 and IL2, of the two power channels. The
voltage loop comprises the Error Amplifier, Comparators,
gate drivers and output MOSFETs. The Error Amplifier is
essentially connected as a voltage follower that has as an
input, the Programmable Reference DAC and an output that
is the CORE voltage.
Voltage Loop
Feedback from the CORE voltage is applied via resistor RIN
to the inverting input of the Error Amplifier. This signal can
FN4765 Rev 6.00
December 27, 2004
drive the Error Amplifier output either high or low, depending
upon the CORE voltage. Low CORE voltage makes the
amplifier output move towards a higher output voltage level.
Amplifier output voltage is applied to the positive inputs of
the Comparators via the Correction summing networks. Outof-phase sawtooth signals are applied to the two
Comparators inverting inputs. Increasing Error Amplifier
voltage results in increased Comparator output duty cycle.
This increased duty cycle signal is passed through the PWM
CIRCUIT with no phase reversal and on to the HIP6601B,
again with no phase reversal for gate drive to the upper
MOSFETs, Q1 and Q3. Increased duty cycle or ON time for
the MOSFET transistors results in increased output voltage
to compensate for the low output voltage sensed.
Page 7 of 17
HIP6301
Current Loop
The current control loop works in a similar fashion to the
voltage control loop, but with current control information
applied individually to each channel’s Comparator. The
information used for this control is the voltage that is
developed across rDS(ON) of each lower MOSFET, Q2 and
Q4, when they are conducting. A single resistor converts
and scales the voltage across the MOSFETs to a current
that is applied to the Current Sensing circuit within the
HIP6301. Output from these sensing circuits is applied to the
current averaging circuit. Each PWM channel receives the
difference current signal from the summing circuit that
compares the average sensed current to the individual
channel current. When a power channel’s current is greater
than the average current, the signal applied via the summing
Correction circuit to the Comparator, reduces the output
pulse width of the Comparator to compensate for the
detected “above average” current in that channel.
Droop Compensation
In addition to control of each power channel’s output current,
the average channel current is also used to provide CORE
voltage “droop” compensation. Average full channel current
is defined as 50A. By selecting an input resistor, RIN, the
amount of voltage droop required at full load current can be
programmed. The average current driven into the FB pin
results in a voltage increase across resistor RIN that is in the
direction to make the Error Amplifier “see” a higher voltage
at the inverting input, resulting in the Error Amplifier
adjusting the output voltage lower. The voltage developed
across RIN is equal to the “droop” voltage. See the “Current
Sensing and Balancing” section for more details.
Applications and Convertor Start-Up
Each PWM power channel’s current is regulated. This
enables the PWM channels to accurately share the load
current for enhanced reliability. The HIP6601B, HIP6602B
HIP6603B or HIP6604B MOSFET driver interfaces with the
HIP6301. For more information, see the HIP6601B or
HIP6602B data sheets.
The HIP6301 is capable of controlling up to 4 PWM power
channels. Connecting unused PWM outputs to VCC
automatically sets the number of channels. The phase
relationship between the channels is 360o/number of active
PWM channels. For example, for three channel operation,
the PWM outputs are separated by 120o . Figure 2 shows
the PWM output signals for a four channel system. In all
cases the maximum duty cycle is 75%.
FN4765 Rev 6.00
December 27, 2004
PWM 1
PWM 2
PWM 3
PWM 4
FIGURE 2. FOUR PHASE PWM OUTPUT AT 500kHz
Power supply ripple frequency is determined by the channel
frequency, FSW, multiplied by the number of active
channels. For example, if the channel frequency is set to
250kHz and there are three phases, the ripple frequency is
750kHz.
The IC monitors and precisely regulates the CORE voltage
of a microprocessor. After initial start-up, the controller also
provides protection for the load and the power supply. The
following section discusses these features.
Initialization
The HIP6301 usually operates from an ATX power supply.
Many functions are initiated by the rising supply voltage to
the VCC pin of the HIP6301. Oscillator, Sawtooth Generator,
Soft-Start and other functions are initialized during this
interval. These circuits are controlled by POR, Power-On
Reset. During this interval, the PWM outputs are driven to a
three state condition that makes these outputs essentially
open. This state results in no gate drive to the output
MOSFETs.
Once the VCC voltage reaches 4.375V (+125mV), a voltage
level to insure proper internal function, the PWM outputs are
enabled and the Soft-Start sequence is initiated. If for any
reason, the VCC voltage drops below 3.875V (+125mV), the
POR circuit shuts the converter down and again three states
the PWM outputs.
Soft-Start
After the POR function is completed with VCC reaching
4.375V, the Soft-Start sequence is initiated. Soft-Start, by its
slow rise in CORE voltage from zero, avoids an overcurrent
condition by slowly charging the discharged output
capacitors. This voltage rise is initiated by an internal DAC
that slowly raises the reference voltage to the error amplifier
input. The voltage rise is controlled by the oscillator
frequency and the DAC within the HIP6301, therefore, the
Page 8 of 17
HIP6301
output voltage is effectively regulated as it rises to the final
programmed CORE voltage value.
For the first 32 PWM switching cycles, the DAC output
remains inhibited and the PWM outputs remain three stated.
From the 33rd cycle and for another, approximately 150
cycles the PWM output remains low, clamping the lower
output MOSFETs to ground, see Figure 3. The time
variability is due to the Error Amplifier, Sawtooth Generator
and Comparators moving into their active regions. After this
short interval, the PWM outputs are enabled and increment
the PWM pulse width from zero duty cycle to operational
pulse width, thus allowing the output voltage to slowly reach
the CORE voltage. The CORE voltage will reach its
programmed value before the 2048 cycles, but the PGOOD
output will not be initiated until the 2048th PWM switching
cycle.
The Soft-Start time or delay time, DT = 2048/FSW. For an
oscillator frequency, FSW, of 200kHz, the first 32 cycles or
160s, the PWM outputs are held in a three state level as
explained above. After this period and a short interval
described above, the PWM outputs are initiated and the
voltage rises in 10.08ms, for a total delay time DT of
10.24ms.
Figure 3 shows the start-up sequence as initiated by a fast
rising 5V supply, VCC, applied to the HIP6301. Note the
short rise to the three state level in PWM 1 output during first
32 PWM cycles.
PWM 1
OUTPUT
DELAY TIME
PGOOD
VCORE
5V
VCC
VIN = 12V
FIGURE 3. START-UP OF 4 PHASE SYSTEM OPERATING AT
500kHz
V COMP
DELAY TIME
PGOOD
VCORE
Figure 4 shows the waveforms when the regulator is
operating at 200kHz. Note that the Soft-Start duration is a
function of the Channel Frequency as explained previously.
Also note the pulses on the COMP terminal. These pulses
are the current correction signal feeding into the comparator
input (see the Block Diagram on page 2).
Figure 5 shows the regulator operating from an ATX supply.
In this figure, note the slight rise in PGOOD as the 5V supply
rises. The PGOOD output stage is an open drain NMOS
transistor. On rising VCC, the pull-up resistor begins to move
PGOOD output slightly positive before the NMOS transistor
pulls “down”, generating the slight rise in PGOOD output
voltage.
5V
VCC
VIN = 12V
FIGURE 4. START-UP OF 4 PHASE SYSTEM OPERATING AT
200kHz
12V ATX
SUPPLY
PGOOD
Note that Figure 5 shows the 12V gate driver voltage
available before the 5V supply to the HIP6301 has reached
its threshold level. If conditions were reversed and the 5V
supply was to rise first, the start-up sequence would be
different. In this case the HIP6303 will sense an overcurrent
condition due to charging the output capacitors. The supply
will then restart and go through the normal Soft-Start cycle.
VCORE
5 V ATX
SUPPLY
VIN = 5V, CORE LOAD CURRENT = 31A
FREQUENCY 200kHz
ATX SUPPLY ACTIVATED BY ATX “PS-ON PIN”
FIGURE 5. SUPPLY POWERED BY ATX SUPPLY
FN4765 Rev 6.00
December 27, 2004
Page 9 of 17
HIP6301
Fault Protection
Overcurrent
The HIP6301 protects the microprocessor and the entire
power system from damaging stress levels. Within the
HIP6301 both Overvoltage and Overcurrent circuits are
incorporated to protect the load and regulator.
In the event of an overcurrent condition, the overcurrent
protection circuit reduces the average current delivered to
less than 25% of the current limit. When an overcurrent
condition is detected, the controller forces all PWM outputs
into a three state mode. This condition results in the gate
driver removing drive to the output stages. The HIP6301
goes into a wait delay timing cycle that is equal to the SoftStart ramp time. PGOOD also goes “low” during this time
due to VSEN going below its threshold voltage. To lower the
average output dissipation, the Soft-Start initial wait time is
increased from 32 to 2048 cycles, then the Soft-Start ramp is
initiated. At a PWM frequency of 200kHz, for instance, an
overcurrent detection would cause a dead time of 10.24ms,
then a ramp of 10.08ms.
Overvoltage
The VSEN pin is connected to the microprocessor CORE
voltage. A CORE overvoltage condition is detected when the
VSEN pin goes more than 15% above the programmed VID
level.
The overvoltage condition is latched, disabling normal PWM
operation, and causing PGOOD to go low. The latch can
only be reset by lowering and returning VCC high to initiate a
POR and Soft-Start sequence.
During a latched overvoltage, the PWM outputs will be
driven either low or three state, depending upon the VSEN
input. PWM outputs are driven low when the VSEN pin
detects that the CORE voltage is 15% above the
programmed VID level. This condition drives the PWM
outputs low, resulting in the lower or synchronous rectifier
MOSFETs to conduct and shunt the CORE voltage to
ground to protect the load.
If after this event, the CORE voltage falls below the
overvoltage limit (plus some hysteresis), the PWM outputs
will three state. The HIP6601B family drivers pass the three
state information along, and shuts off both upper and lower
MOSFETs. This prevents “dumping” of the output capacitors
back through the lower MOSFETs, avoiding a possibly
destructive ringing of the capacitors and output inductors. If
the conditions that caused the overvoltage still persist, the
PWM outputs will be cycled between three state and VCORE
clamped to ground, as a hysteretic shunt regulator.
Undervoltage
The VSEN pin also detects when the CORE voltage falls
more than 10% below the VID programmed level. This
causes PGOOD to go low, but has no other effect on
operation and is not latched. There is also hysteresis in this
detection point.
FN4765 Rev 6.00
December 27, 2004
At the end of the delay, PWM outputs are restarted and the
soft-start ramp is initiated. If a short is present at that time,
the cycle is repeated. This is the hiccup mode.
Figure 6 shows the supply shorted under operation and the
hiccup operating mode described above. Note that due to
the high short circuit current, overcurrent is detected before
completion of the start-up sequence so the delay is not quite
as long as the normal Soft-Start cycle.
SHORT APPLIED HERE
PGOOD
SHORT
CURRENT
50A/Div
HICCUP MODE. SUPPLY POWERED BY ATX SUPPLY
CORE LOAD CURRENT = 31A, 5V LOAD = 5A
SUPPLY FREQUENCY = 200kHz, V IN = 12V
ATX SUPPLY ACTIVATED BY ATX “PS-ON PIN”
FIGURE 6. SHORT APPLIED TO SUPPLY AFTER POWER-UP
Page 10 of 17
HIP6301
CORE Voltage Programming
The voltage identification pins (VID0, VID1, VID3, and VID4)
set the CORE output voltage. Each VID pin is pulled to VCC
by an internal 20A current source and accepts opencollector/open-drain/open-switch-to-ground or standard lowvoltage TTL or CMOS signals.
Table 1 shows the nominal DAC voltage as a function of the
VID codes. The power supply system is 1% accurate over
the operating temperature and voltage range.
TABLE 1. VOLTAGE IDENTIFICATION CODES
TABLE 1. VOLTAGE IDENTIFICATION CODES (Continued)
VID4
VID3
VID2
VID1
VID0
VDAC
VID4
VID3
VID2
VID1
VID0
VDAC
1
1
1
1
1
Off
0
1
1
1
1
1.475
1
1
1
1
0
1.100
0
1
1
1
0
1.500
1
1
1
0
1
1.125
0
1
1
0
1
1.525
1
1
1
0
0
1.150
0
1
1
0
0
1.550
1
1
0
1
1
1.175
0
1
0
1
1
1.575
1
1
0
1
0
1.200
0
1
0
1
0
1.600
1
1
0
0
1
1.225
0
1
0
0
1
1.625
1
1
0
0
0
1.250
0
1
0
0
0
1.650
1
0
1
1
1
1.275
0
0
1
1
1
1.675
1
0
1
1
0
1.300
0
0
1
1
0
1.700
1
0
1
0
1
1.325
0
0
1
0
1
1.725
1
0
1
0
0
1.350
0
0
1
0
0
1.750
1
0
0
1
1
1.375
0
0
0
1
1
1.775
1
0
0
1
0
1.400
0
0
0
1
0
1.800
1
0
0
0
1
1.425
0
0
0
0
1
1.825
1
0
0
0
0
1.450
0
0
0
0
0
1.850
FN4765 Rev 6.00
December 27, 2004
Page 11 of 17
HIP6301
RIN
RFB
Cc
COMP
FB
VIN
HIP6301
+
CORRECTION
+
-
L01
Q1
PWM
CIRCUIT
PWM
VCORE
HIP6601B
IL
Q2
+
-
PHASE
DIFFERENCE
+
REFERENCE
DAC
RLOAD
COMPARATOR
GENERATOR
COUT
SAWTOOTH
ERROR
AMPLIFIER
ISEN
CURRENT
RISEN
SENSING
CURRENT
SENSING
FROM
OTHER
CHANNELS
TO OTHER
CHANNELS
ONLY ONE OUTPUT
STAGE SHOWN
INDUCTOR
CURRENT(S)
FROM
OTHER
CHANNELS
AVERAGING
TO OVER
CURRENT
TRIP
+
COMPARATOR
REFERENCE
FIGURE 7. SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM SHOWING CURRENT AND VOLTAGE SAMPLING
Current Sensing and Balancing
Overview
The HIP6301 samples the on-state voltage drop across each
synchronous rectifier FET, Q2, as an indication of the
inductor current in that phase, see Figure 7. Neglecting AC
effects (to be discussed later), the voltage drop across Q2 is
simply rDS(ON)(Q2) x inductor current (IL). Note that IL, the
inductor current, is either 1/2, 1/3, or 1/4 of the total current
(ILT), depending on how many phases are in use.
The voltage at Q2’s drain, the PHASE node, is applied to the
RISEN resistor to develop the IISEN current to the HIP6301
ISEN pin. This pin is held at virtual ground, so the current
r DS  ON   Q2 
through RISEN is I = ----------------------------------L
R ISEN
The IISEN current provides information to perform the
following functions:
1. Detection of an overcurrent condition
2. Reduce the regulator output voltage with increasing load
current (droop)
3. Balance the IL currents in multiple channels
FN4765 Rev 6.00
December 27, 2004
Overcurrent, Selecting RISEN
The current detected through the RISEN resistor is averaged
with the current(s) detected in the other 1, 2, or 3 channels.
The averaged current is compared with a trimmed, internally
generated current, and used to detect an overcurrent
condition.
The nominal current through the RISEN resistor should be
50A at full output load current, and the nominal trip point for
overcurrent detection is 165% of that value, or 82.5A
 I r
 Q2 
L DS  ON 
-.
Therefore, R ISEN = ---------------------------------------------
50A
For a full load of 25A per phase, and an rDS(ON) (Q2) of
4m, RISEN = 2k.
The overcurrent trip point would be 165% of 25A, or ~ 41A
per phase. The RISEN value can be adjusted to change the
overcurrent trip point, but it is suggested to stay within 25%
of nominal.
Droop, Selection of RIN
The average of the currents detected through the RISEN
resistors is also steered to the FB pin. There is no DC return
path connected to the FB pin except for RIN, so the average
Page 12 of 17
HIP6301
With a high dv/dt load transient, typical of high performance
microprocessors, the largest deviations in output voltage
occur at the leading and trailing edges of the load transient.
In order to fully utilize the output-voltage tolerance range, the
output voltage is positioned in the upper half of the range
when the output is unloaded and in the lower half of the
range when the controller is under full load. This droop
compensation allows larger transient voltage deviations and
thus reduces the size and cost of the output filter
components.
RIN should be selected to give the desired “droop” voltage at
the normal full load current 50A applied through the RISEN
resistor (or at a different full load current if adjusted as under
“Overcurrent, Selecting RISEN” above).
RIN = Vdroop/50A
Where: VCORE
VIN
L
FSW
= DC value of the output or VID voltage
= DC value of the input or supply voltage
= value of the inductor
= switching frequency
Example: For VCORE = 1.6V,
VIN = 12V,
L = 1.3H,
FSW = 250kHz,
Then iPK-PK = 4.3A
25
20
AMPERES
current creates a voltage drop across RIN. This drop
increases the apparent VCORE voltage with increasing load
current, causing the system to decrease VCORE to maintain
balance at the FB pin. This is the desired “droop” voltage
used to maintain VCORE within limits under transient
conditions.
15
10
5
0
For a Vdroop of 80mV, RIN = 1.6k
The AC feedback components, RFB and Cc, are scaled in
relation to RIN.
Current Balancing
The detected currents are also used to balance the phase
currents.
FIGURE 8. TWO CHANNEL MULTIPHASE SYSTEM WITH
CURRENT BALANCING DISABLED
Each phase’s current is compared to the average of all
phase currents, and the difference is used to create an offset
in that phase’s PWM comparator. The offset is in a direction
to reduce the imbalance.
Figures 8 and 9 show the inductor current of a two phase
system without and with current balancing.
20
AMPERES
The balancing circuit can not make up for a difference in
rDS(ON) between synchronous rectifiers. If a FET has a
higher rDS(ON), the current through that phase will be
reduced.
25
15
10
5
0
Inductor Current
The inductor current in each phase of a multi-phase Buck
converter has two components. There is a current equal to
the load current divided by the number of phases (ILT / n),
and a sawtooth current, (iPK-PK) resulting from switching.
The sawtooth component is dependent on the size of the
inductors, the switching frequency of each phase, and the
values of the input and output voltage. Ignoring secondary
effects, such as series resistance, the peak to peak value of
the sawtooth current can be described by:
2
V IN  V CORE  – V CORE
i PK – PK = ---------------------------------------------------------------- L   F SW   V IN 
FN4765 Rev 6.00
December 27, 2004
FIGURE 9. TWO CHANNEL MULTIPHASE SYSTEM WITH
CURRENT BALANCING ENABLED
The inductor, or load current, flows alternately from VIN
through Q1 and from ground through Q2. The HIP6301
samples the on-state voltage drop across each Q2 transistor
to indicate the inductor current in that phase. The voltage
drop is sampled 1/3 of a switching period, i/FSW, after Q1 is
turned OFF and Q2 is turned on. Because of the sawtooth
current component, the sampled current is different from the
average current per phase. Neglecting secondary effects,
Page 13 of 17
HIP6301
I LT
------- +  V IN V CORE – 3V
2
n
CORE
I SAMPLE = ----------------------------------------------------------------------------------- 6L   F SW   V IN 
Where: ILT = total load current
n = the number of channels
Example: Using the previously given conditions, and
ForILT = 100A,
n =4
Then ISAMPLE = 25.49A
As discussed previously, the voltage drop across each Q2
transistor at the point in time when current is sampled is
rDSON (Q2) x ISAMPLE. The voltage at Q2’s drain, the
PHASE node, is applied through the RISEN resistor to the
HIP6301 ISEN pin. This pin is held at virtual ground, so the
current into ISEN is:
 I SAMPLE r DS  ON   Q2 
I SENSE = ------------------------------------------------------------------R ISEN
 I SAMPLE r DS  ON   Q2 
R ISEN = ------------------------------------------------------------------50A
Example: From the previous conditions,
where ILT
ISAMPLE
rDS(ON) (Q2)
Then: RISEN
ICURRENT TRIP
Short circuit ILT
= 100A,
= 25.49A,
= 4m
= 2.04K and
= 165%
= 165A.
Channel Frequency Oscillator
The channel oscillator frequency is set by placing a resistor,
RT, to ground from the FS/DIS pin. Figure 10 is a curve
showing the relationship between frequency, FSW, and
resistor RT. To avoid pickup by the FS/DIS pin, it is important
to place this resistor next to the pin.
Layout Considerations
MOSFETs switch very fast and efficiently. The speed with
which the current transitions from one device to another
causes voltage spikes across the interconnecting
impedances and parasitic circuit elements. These voltage
spikes can degrade efficiency, radiate noise into the circuit
and lead to device overvoltage stress. Careful component
layout and printed circuit design minimizes the voltage
spikes in the converter. Consider, as an example, the turnoff
transition of the upper PWM MOSFET. Prior to turnoff, the
upper MOSFET was carrying channel current. During the
turnoff, current stops flowing in the upper MOSFET and is
picked up by the lower MOSFET. Any inductance in the
switched current path generates a large voltage spike during
the switching interval. Careful component selection, tight
layout of the critical components, and short, wide circuit
FN4765 Rev 6.00
December 27, 2004
traces minimize the magnitude of voltage spikes. Contact
Intersil for evaluation board drawings of the component
placement and printed circuit board.
There are two sets of critical components in a DC-DC
converter using a HIP6301 controller and a HIP6601B gate
driver. The power components are the most critical because
they switch large amounts of energy. Next are small signal
components that connect to sensitive nodes or supply critical
bypassing current and signal coupling.
1,000
500
200
100
50
RT (k)
the sampled current (ISAMPLE) can be related to the load
current (ILT) by:
20
10
5
2
1
10
20
50 100 200
500 1,000 2,000 5,000 10,000
CHANNEL OSCILLATOR FREQUENCY, FSW (kHz)
FIGURE 10. RESISTANCE RT vs FREQUENCY
The power components should be placed first. Locate the
input capacitors close to the power switches. Minimize the
length of the connections between the input capacitors, CIN,
and the power switches. Locate the output inductors and
output capacitors between the MOSFETs and the load.
Locate the gate driver close to the MOSFETs.
The critical small components include the bypass capacitors
for VCC and PVCC on the gate driver ICs. Locate the
bypass capacitor, CBP , for the HIP6301 controller close to
the device. It is especially important to locate the resistors
associated with the input to the amplifiers close to their
respective pins, since they represent the input to feedback
amplifiers. Resistor RT, that sets the oscillator frequency
should also be located next to the associated pin. It is
especially important to place the RSEN resistor(s) at the
respective terminals of the HIP6301.
A multi-layer printed circuit board is recommended. Figure 11
shows the connections of the critical components for one output
channel of the converter. Note that capacitors CIN and COUT
could each represent numerous physical capacitors. Dedicate
one solid layer, usually the middle layer of the PC board, for a
ground plane and make all critical component ground
Page 14 of 17
HIP6301
bulk capacitor’s ESR determines the output ripple voltage
and the initial voltage drop following a high slew-rate
transient’s edge. In most cases, multiple capacitors of small
case size perform better than a single large case capacitor.
connections with vias to this layer. Dedicate another solid layer as
a power plane and break this plane into smaller islands of
common voltage levels. Keep the metal runs from the PHASE
terminal to inductor LO1 short. The power plane should support
the input power and output power nodes. Use copper filled
polygons on the top and bottom circuit layers for the phase nodes.
Use the remaining printed circuit layers for small signal wiring.
The wiring traces from the driver IC to the MOSFET gate and
source should be sized to carry at least one ampere of current.
Bulk capacitor choices include aluminum electrolytic, OSCon, Tantalum and even ceramic dielectrics. An aluminum
electrolytic capacitor’s ESR value is related to the case size
with lower ESR available in larger case sizes. However, the
equivalent series inductance (ESL) of these capacitors
increases with case size and can reduce the usefulness of
the capacitor to high slew-rate transient loading.
Unfortunately, ESL is not a specified parameter. Consult the
capacitor manufacturer and measure the capacitor’s
impedance with frequency to select a suitable component.
Component Selection Guidelines
Output Capacitor Selection
The output capacitor is selected to meet both the dynamic
load requirements and the voltage ripple requirements. The
load transient for the microprocessor CORE is characterized
by high slew rate (di/dt) current demands. In general,
multiple high quality capacitors of different size and dielectric
are paralleled to meet the design constraints.
Output Inductor Selection
One of the parameters limiting the converter’s response to a
load transient is the time required to change the inductor
current. Small inductors in a multi-phase converter reduces
the response time without significant increases in total ripple
current.
Modern microprocessors produce severe transient load rates.
High frequency capacitors supply the initially transient current
and slow the load rate-of-change seen by the bulk capacitors.
The bulk filter capacitor values are generally determined by
the ESR (effective series resistance) and voltage rating
requirements rather than actual capacitance requirements.
The output inductor of each power channel controls the
ripple current. The control IC is stable for channel ripple
current (peak-to-peak) up to twice the average current. A
single channel’s ripple current is approximately:
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
careful not to add inductance in the circuit board wiring that
could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load on
specific decoupling requirements.
V IN – V OUT V OUT
I = --------------------------------  ---------------F SW  L
V IN
The current from multiple channels tend to cancel each other
and reduce the total ripple current. Figure 12 gives the total
ripple current as a function of duty cycle, normalized to the
parameter  Vo    LxF SW  at zero duty cycle. To determine
the total ripple current from the number of channels and the
duty cycle, multiply the y-axis value by  Vo    LxF SW  .
Use only specialized low-ESR capacitors intended for
switching-regulator applications for the bulk capacitors. The
+5VIN
USE INDIVIDUAL METAL RUNS
FOR EACH CHANNEL TO HELP
ISOLATE OUTPUT STAGES
+12V
CBP
LOCATE NEXT TO IC PIN(S)
CBP
CT
VCC
CBOOT
HIP6301
CIN
LOCATE NEAR TRANSISTOR
LO1
HIP6601B
VCORE
PHASE
COMP FS/DIS
RFB
LOCATE NEXT
TO FB PIN
PWM
VCC PVCC
COUT
RT
FB
LOCATE NEXT TO IC PIN
RSEN
RIN
VSEN
ISEN
KEY
ISLAND ON POWER PLANE LAYER
ISLAND ON CIRCUIT PLANE LAYER
VIA CONNECTION TO GROUND PLANE
FIGURE 11. PRINTED CIRCUIT BOARD POWER PLANES AND ISLANDS
FN4765 Rev 6.00
December 27, 2004
Page 15 of 17
HIP6301
Small values of output inductance can cause excessive power
dissipation. The HIP6303 is designed for stable operation for
ripple currents up to twice the load current. However, for this
condition, the RMS current is 115% above the value shown in
the following MOSFET Selection and Considerations section.
With all else fixed, decreasing the inductance could increase
the power dissipated in the MOSFETs by 30%.
SINGLE
CHANNEL
0.8
VO / (LX FSW)
RIPPLE CURRENT (APEAK-PEAK)
1.0
0.6
2 CHANNEL
0.4
0.2
4 CHANNEL
0
0.1
0.2
0.3
0.4
0.5
DUTY CYCLE (VO/VIN)
FIGURE 12. RIPPLE CURRENT vs DUTY CYCLE
Input Capacitor Selection
The important parameters for the bulk input capacitors are the
voltage rating and the RMS current rating. For reliable
operation, select bulk input capacitors with voltage and current
ratings above the maximum input voltage and largest RMS
current required by the circuit. The capacitor voltage rating
should be at least 1.25 times greater than the maximum input
voltage and a voltage rating of 1.5 times is a conservative
guideline. The RMS current required for a multi-phase
converter can be approximated with the aid of Figure 13.
CURRENT MULTIPLIER
0.5
SINGLE
CHANNEL
0.4
0.3
2 CHANNEL
2
I O  r DS  ON    V IN – V OUT 
P LOWER = --------------------------------------------------------------------------------V IN
4 CHANNEL
0
0.1
0.2
0.3
0.4
0.5
DUTY CYCLE (VO/VIN)
FIGURE 13. CURRENT MULTIPLIER vs DUTY CYCLE
First determine the operating duty ratio as the ratio of the
output voltage divided by the input voltage. Find the Current
Multiplier from the curve with the appropriate power
channels. Multiply the current multiplier by the full load
output current. The resulting value is the RMS current rating
required by the input capacitor.
FN4765 Rev 6.00
December 27, 2004
The equations assume linear voltage-current transitions and
do not model power loss due to the reverse-recovery of the
lower MOSFETs body diode. The gate-charge losses are
dissipated by the Driver IC and don't heat the MOSFETs.
However, large gate-charge increases the switching time,
tSW which increases the upper MOSFET switching losses.
Ensure that both MOSFETs are within their maximum
junction temperature at high ambient temperature by
calculating the temperature rise according to package
thermal-resistance specifications. A separate heatsink may
be necessary depending upon MOSFET power, package
type, ambient temperature and air flow.
2
3 CHANNEL
0
In high-current PWM applications, the MOSFET power
dissipation, package selection and heatsink are the
dominant design factors. The power dissipation includes two
loss components; conduction loss and switching loss. These
losses are distributed between the upper and lower
MOSFETs according to duty factor (see the following
equations). The conduction losses are the main component
of power dissipation for the lower MOSFETs, Q2 and Q4 of
Figure 1. Only the upper MOSFETs, Q1 and Q3 have
significant switching losses, since the lower device turns on
and off into near zero voltage.
I O  r DS  ON   V OUT I O  V IN  t SW  F SW
P UPPER = ------------------------------------------------------------ + ---------------------------------------------------------V IN
2
0.2
0.1
For bulk capacitance, several electrolytic capacitors (Panasonic
HFQ series or Nichicon PL series or Sanyo MV-GX or
equivalent) may be needed. For surface mount designs, solid
tantalum capacitors can be used, but caution must be
exercised with regard to the capacitor surge current rating.
These capacitors must be capable of handling the surgecurrent at power-up. The TPS series available from AVX, and
the 593D series from Sprague are both surge current tested.
MOSFET Selection and Considerations
3 CHANNEL
0
Use a mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use ceramic capacitance for
the high frequency decoupling and bulk capacitors to supply
the RMS current. Small ceramic capacitors should be placed
very close to the drain of the upper MOSFET to suppress the
voltage induced in the parasitic circuit impedances.
A diode, anode to ground, may be placed across Q2 and Q4
of Figure 1. These diodes function as a clamp that catches
the negative inductor swing during the dead time between
the turn off of the lower MOSFETs and the turn on of the
upper MOSFETs. The diodes must be a Schottky type to
prevent the lossy parasitic MOSFET body diode from
conducting. It is usually acceptable to omit the diodes and let
the body diodes of the lower MOSFETs clamp the negative
inductor swing, but efficiency could drop one or two percent
as a result. The diode's rated reverse breakdown voltage
must be greater than the maximum input voltage.
Page 16 of 17
HIP6301
Small Outline Plastic Packages (SOIC)
M20.3 (JEDEC MS-013-AC ISSUE C)
20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE
N
INDEX
AREA
INCHES
H
0.25(0.010) M
B M
E
-B-
1
2
3
L
SEATING PLANE
-A-
h x 45o
A
D
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
0.0926
0.1043
2.35
2.65
-
A1
0.0040
0.0118
0.10
0.30
-
B
0.014
0.019
0.35
0.49
9
C
0.0091
0.0125
0.23
0.32
-
D
0.4961
0.5118
12.60
13.00
3
E
0.2914
0.2992
7.40
7.60
4
e
-C-
µ
e
A1
B
0.25(0.010) M
C
0.10(0.004)
C A M
B S
MILLIMETERS
0.050 BSC
1.27 BSC
-
H
0.394
0.419
10.00
10.65
-
h
0.010
0.029
0.25
0.75
5
L
0.016
0.050
0.40
1.27
6
N

20
0o
20
8o
0o
7
8o
Rev. 1 1/02
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section
2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010
inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual
index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
© Copyright Intersil Americas LLC 2000-2004. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.
For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN4765 Rev 6.00
December 27, 2004
Page 17 of 17
Similar pages