CEP75N06/CEB75N06 N-Channel Enhancement Mode Field Effect Transistor FEATURES 60V, 87A, RDS(ON) = 12mΩ @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G S CEB SERIES TO-263(DD-PAK) G G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 S Tc = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Continuous@ TC = 25 C ID @ TC = 100 C Drain Current-Pulsed a IDM Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C 60 Units V ±20 V 87 A 61 A 348 A 200 W 1.3 W/ C Single Pulsed Avalanche Energy d EAS 325 mJ Single Pulsed Avalanche Current IAS TJ,Tstg 50 A -55 to 175 C d Operating and Store Temperature Range Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 0.75 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W Rev 5. 2010.Nov. http://www.cetsemi.com Details are subject to change without notice . 1 CEP75N06/CEB75N06 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 60 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 58V, VGS = 0V 25 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 12 mΩ Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) VGS = VDS, ID = 250µA 2 RDS(on) VGS = 10V, ID = 50A 10 gFS VDS = 25V, ID = 50A 21 S 3650 pF 735 pF 40 pF Dynamic Characteristics c Forward Transconductance Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) 24 VDD = 30V, ID = 50A, VGS = 10V, RGEN = 3.6Ω 48 ns 5.5 11 ns 50 100 ns Turn-Off Fall Time tf 12 24 ns Total Gate Charge Qg 67.9 90.3 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 48V, ID = 50A, VGS = 10V 15 nC 20.4 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 50A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 260µH, IAS = 50A, VDD = 24V, RG = 25Ω, Starting TJ = 25 C 2 87 A 1.3 V CEP75N06/CEB75N06 180 140 25 C 150 ID, Drain Current (A) ID, Drain Current (A) VGS=10,9,8,7V 120 VGS=6V 90 60 VGS=5V 105 70 TJ=125 C 35 30 -55 C 0 0 0 1 2 3 4 5 6 0 RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) C, Capacitance (pF) 2400 1600 Coss 800 Crss 0 5 10 15 20 25 2.6 2.2 ID=50A VGS=10V 1.8 1.4 1.0 0.6 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS IS, Source-drain current (A) VTH, Normalized Gate-Source Threshold Voltage 10 Figure 2. Transfer Characteristics Ciss ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 8 Figure 1. Output Characteristics 3200 1.2 6 VGS, Gate-to-Source Voltage (V) 4000 1.3 4 VDS, Drain-to-Source Voltage (V) 4800 0 2 VGS=0V 10 10 10 -25 0 25 50 75 100 125 150 1 0 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 VDS=48V ID=50A 10 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP75N06/CEB75N06 6 4 2 0 10 20 40 60 80 RDS(ON)Limit 2 100µs 1ms 10ms DC 10 10 0 3 1 TC=25 C TJ=175 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D td(off) tf 90% 90% VOUT VOUT VGS RGEN toff tr td(on) 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 PDM 0.1 -1 0.05 0.02 0.01 Single Pulse 10 t1 t2 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 -2 10 -2 10 -1 10 0 10 1 10 2 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 3 10 4 2