Product Folder Sample & Buy Technical Documents Tools & Software Support & Community MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 MSP430FR572x Mixed-Signal Microcontrollers 1 Device Overview 1.1 Features 1 • Embedded Microcontroller – 16-Bit RISC Architecture up to 8-MHz Clock – Wide Supply Voltage Range (2 V to 3.6 V) – –40°C to 85°C Operation • Optimized Ultra-Low-Power Modes – Active Mode: 81.4 µA/MHz (Typical) – Standby (LPM3 With VLO): 6.3 µA (Typical) – Real-Time Clock (RTC) (LPM3.5 With Crystal): 1.5 µA (Typical) – Shutdown (LPM4.5): 0.32 µA (Typical) • Ultra-Low-Power Ferroelectric RAM (FRAM) – Up to 16KB of Nonvolatile Memory – Ultra-Low-Power Writes – Fast Write at 125 ns per Word (16KB in 1 ms) – Built-In Error Correction Coding (ECC) and Memory Protection Unit (MPU) – Universal Memory = Program + Data + Storage – 1015 Write Cycle Endurance – Radiation Resistant and Nonmagnetic • Intelligent Digital Peripherals – 32-Bit Hardware Multiplier (MPY) – Three-Channel Internal DMA – Real-Time Clock (RTC) With Calendar and Alarm Functions – Five 16-Bit Timers With up to Three Capture/Compare Registers – 16-Bit Cyclic Redundancy Checker (CRC) • High-Performance Analog – 16-Channel Analog Comparator With Voltage Reference and Programmable Hysteresis – 14-Channel 10-Bit Analog-to-Digital Converter (ADC) With Internal Reference and Sample-andHold • 200 ksps at 100-µA Consumption 1.2 • • • Enhanced Serial Communication – eUSCI_A0 and eUSCI_A1 Support: • UART With Automatic Baud-Rate Detection • IrDA Encode and Decode • SPI at Rates up to 10 Mbps – eUSCI_B0 Supports: • I2C With Multiple-Slave Addressing • SPI at Rates up to 10 Mbps – Hardware UART Bootloader (BSL) • Power Management System – Fully Integrated LDO – Supply Voltage Supervisor for Core and Supply Voltages With Reset Capability – Always-On Zero-Power Brownout Detection – Serial Onboard Programming With No External Voltage Needed • Flexible Clock System – Fixed-Frequency DCO With Six Selectable Factory-Trimmed Frequencies (Device Dependent) – Low-Power Low-Frequency Internal Clock Source (VLO) – 32-kHz Crystals (LFXT) – High-Frequency Crystals (HFXT) • Development Tools and Software – Free Professional Development Environment (Code Composer Studio™ IDE) – Low-Cost Full-Featured Kit (MSP-EXP430FR5739) – Full Development Kit (MSP-FET430U40A) – Target Board (MSP-TS430RHA40A) • Family Members – See Table 3-1 for Available Device Variants and Packages – For Complete Module Descriptions, See the MSP430FR57xx Family User's Guide Applications Home Automation Security • • Sensor Management Data Acquisition CAUTION These products use FRAM nonvolatile memory technology. FRAM retention is sensitive to extreme temperatures, such as those experienced during reflow or hand soldering. See Absolute Maximum Ratings for more information. CAUTION System-level ESD protection must be applied in compliance with the device-level ESD specification to prevent electrical overstress or disturb of data or code memory. See the application report MSP430™ System-Level ESD Considerations (SLAA530) for more information. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 1.3 www.ti.com Description The TI MSP430FR572x family of ultra-low-power microcontrollers consists of multiple devices that feature embedded FRAM nonvolatile memory, ultra-low-power 16-bit MSP430™ CPU, and different peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven lowpower modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. Peripherals include a 10-bit ADC, a 16-channel comparator with voltage reference generation and hysteresis capabilities, three enhanced serial channels capable of I2C, SPI, or UART protocols, an internal DMA, a hardware multiplier, an RTC, five 16-bit timers, and digital I/Os. Device Information (1) PART NUMBER BODY SIZE (2) PACKAGE MSP430FR5729RHA VQFN (40) 6 mm × 6 mm MSP430FR5729DA TSSOP (38) 12.5 mm × 6.2 mm MSP430FR5728RGE VQFN (24) 4 mm × 4 mm MSP430FR5728PW TSSOP (28) 9.7 mm × 4.4 mm (1) (2) 1.4 For the most current part, package, and ordering information, see the Package Option Addendum in Section 8, or see the TI website at www.ti.com. The dimensions shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8. Functional Block Diagram Figure 1-1 shows the functional block diagram for the MSP430FR5721, MSP430FR5725, and MSP430FR5729 devices in the RHA package. For the functional block diagrams for all device variants and package options, see Section 6.1. PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16KB Clock System ACLK 8KB SMCLK 4KB (FR5721) FRAM MCLK CPUXV2 and Working Registers 1KB Boot ROM Power Management SYS Watchdog P3.x I/O Ports P1/P2 2×8 I/Os (FR5729) (FR5725) PA P2.x REF Interrupt, Wake up PA 1×16 I/Os SVS RAM Memory Protection Unit PB P4.x I/O Ports P3/P4 1×8 I/Os 1x 2 I/Os Interrupt, Wake up PB 1×10 I/Os MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG, SBW Interface TA0 TA1 TB0 TB1 TB2 (2) Timer_A 3 CC Registers (3) Timer_B 3 CC Registers RTC_B MPY32 CRC eUSCI_A0: UART, IrDA, SPI eUSCI_B0: SPI, I2C eUSCI_A1: UART, IrDA, SPI ADC10_B 10 bit 200 ksps Comp_D 16 channels 14 channels (12 ext/2 int) Copyright © 2016, Texas Instruments Incorporated Figure 1-1. Functional Block Diagram – RHA Package – MSP430FR5721, MSP430FR5725, MSP430FR5729 2 Device Overview Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table of Contents 1 2 3 Device Overview ......................................... 1 5.18 PMM, Core Voltage ................................. 26 1.1 Features .............................................. 1 5.19 PMM, SVS, BOR .................................... 26 1.2 Applications ........................................... 1 5.20 Wake-up Times From Low-Power Modes 26 1.3 Description ............................................ 2 5.21 Timer_A 27 1.4 Functional Block Diagram ............................ 2 5.22 Revision History ......................................... 4 Device Comparison ..................................... 5 5.23 Related Products ..................................... 6 5.25 Terminal Configuration and Functions .............. 7 5.26 4.1 5.27 3.1 4 4.2 4.3 4.4 4.5 5 Pin Diagram – RHA Package – MSP430FR5721, MSP430FR5723, MSP430FR5725, MSP430FR5727, Pin Diagram – DA Package – MSP430FR5721, MSP430FR5723, MSP430FR5725, MSP430FR5727, Pin Diagram – RGE Package – MSP430FR5720, MSP430FR5722, MSP430FR5724, MSP430FR5726, Pin Diagram – PW Package – MSP430FR5720, MSP430FR5722, MSP430FR5724, MSP430FR5726, 5.24 5.28 5.29 MSP430FR5729 7 MSP430FR5729 8 MSP430FR5728 8 MSP430FR5728 9 Signal Descriptions .................................. 10 Specifications ........................................... 14 ........................ ........................................ Recommended Operating Conditions ............... 5.1 Absolute Maximum Ratings 14 5.2 ESD Ratings 14 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 14 Active Mode Supply Current Into VCC Excluding External Current ..................................... 15 Low-Power Mode Supply Currents (Into VCC) Excluding External Current.......................... 16 Thermal Resistance Characteristics ................ Schmitt-Trigger Inputs – General-Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI) ....................... Inputs – Ports P1 and P2 (P1.0 to P1.7, P2.0 to P2.7) ........................ Leakage Current – General-Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI) ....................... Outputs – General-Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5) ................................. Output Frequency – General-Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5) ................................. 17 18 18 18 7 19 19 5.12 Typical Characteristics – Outputs ................... 20 5.13 5.14 Crystal Oscillator, XT1, Low-Frequency (LF) Mode 22 Crystal Oscillator, XT1, High-Frequency (HF) Mode ...................................................... 23 Internal Very-Low-Power Low-Frequency Oscillator (VLO) ................................................ 24 5.15 6 5.16 DCO Frequencies ................................... 25 5.17 MODOSC............................................ 25 8 .......... ............................................. Timer_B ............................................. eUSCI (UART Mode) Clock Frequency ............. eUSCI (UART Mode)................................ eUSCI (SPI Master Mode) Clock Frequency ....... eUSCI (SPI Master Mode) .......................... eUSCI (SPI Slave Mode) ........................... eUSCI (I2C Mode) ................................... 27 28 28 30 32 10-Bit ADC, Power Supply and Input Range Conditions ........................................... 33 .................... .................. 5.32 REF, External Reference ........................... 5.33 REF, Built-In Reference ............................. 5.34 REF, Temperature Sensor and Built-In VMID ....... 5.35 Comparator_D ....................................... 5.36 FRAM................................................ 5.37 JTAG and Spy-Bi-Wire Interface .................... Detailed Description ................................... 6.1 Functional Block Diagrams.......................... 6.2 CPU ................................................. 6.3 Operating Modes .................................... 6.4 Interrupt Vector Addresses.......................... 6.5 Memory Organization ............................... 6.6 Bootloader (BSL) .................................... 6.7 JTAG Operation ..................................... 6.8 FRAM ............................................... 6.9 Memory Protection Unit (MPU) ..................... 6.10 Peripherals .......................................... 6.11 Input/Output Diagrams ............................. 6.12 Device Descriptors (TLV) ........................... Device and Documentation Support ............... 7.1 Getting Started ...................................... 7.2 Device Nomenclature ............................... 7.3 Tools and Software ................................. 7.4 Documentation Support ............................. 7.5 Related Links ........................................ 7.6 Community Resources .............................. 7.7 Trademarks.......................................... 7.8 Electrostatic Discharge Caution ..................... 7.9 Export Control Notice ............................... 7.10 Glossary ............................................. 5.30 10-Bit ADC, Timing Parameters 33 5.31 10-Bit ADC, Linearity Parameters 33 34 34 35 36 36 37 38 38 43 43 44 46 47 47 48 48 48 68 88 91 91 91 93 95 97 97 97 97 97 98 Mechanical, Packaging, and Orderable Information .............................................. 98 8.1 Packaging Information .............................. Table of Contents Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 27 27 98 3 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from June 15, 2014 to April 25, 2016 • • • • • • • • • • • • • • • • • • • • • • • • • • • 4 Page Added Section 3.1, Related Products ............................................................................................. 6 Moved Tstg to Absolute Maximum Ratings, and removed Handling Ratings table.......................................... 14 Added Section 5.2, ESD Ratings ................................................................................................. 14 Added Section 5.6, Thermal Resistance Characteristics ...................................................................... 17 Changed the note that starts "Tools that access the Spy-Bi-Wire and BSL interfaces..." ................................. 37 Changed all cases of "bootstrap loader" to "bootloader"....................................................................... 47 Corrected spelling of NMIIFG in Table 6-6, System Module Interrupt Vector Registers ................................... 50 Moved and changed the title of Section 6.11, Input/Output Diagrams ...................................................... 68 Switched P1SEL0.x and P1SEL1.x in P1.0 to P1.2 schematic to show correct inputs to multiplexers .................. 68 Switched P1SEL0.x and P1SEL1.x in P1.3 to P1.5 schematic to show correct inputs to multiplexers .................. 70 Switched P1SEL0.x and P1SEL1.x in P1.6 and P1.7 schematic to show correct inputs to multiplexers................ 72 Switched P2SEL0.x and P2SEL1.x in P2.0 to P2.2 schematic to show correct inputs to multiplexers .................. 73 Switched P2SEL0.x and P2SEL1.x in P2.3 and P2.4 schematic to show correct inputs to multiplexers................ 74 Switched P2SEL0.x and P2SEL1.x in P2.5 and P2.6 schematic to show correct inputs to multiplexers................ 76 Switched P2SEL0.x and P2SEL1.x in P2.7 schematic to show correct inputs to multiplexers ........................... 77 Switched P3SEL0.x and P3SEL1.x in P3.0 to P3.3 schematic to show correct inputs to multiplexers .................. 78 Switched P3SEL0.x and P3SEL1.x in P3.4 to P3.6 schematic to show correct inputs to multiplexers .................. 80 Switched P3SEL0.x and P3SEL1.x in P3.7 schematic to show correct inputs to multiplexers ........................... 81 Switched P4SEL0.x and P4SEL1.x in P4.0 schematic to show correct inputs to multiplexers ........................... 82 Switched P4SEL0.x and P4SEL1.x in P4.1 schematic to show correct inputs to multiplexers ........................... 83 Switched PJSEL0.x and PJSEL1.x in PJ.0 to PJ.2 schematic to show correct inputs to multiplexers .................. 84 Switched PJSEL0.x and PJSEL1.x in PJ.3 schematic to show correct inputs to multiplexers ............................ 84 Switched PJSEL0.4 and PJSEL1.4 in PJ.4 schematic to show correct inputs to multiplexers ........................... 86 Switched PJSEL0.5 and PJSEL1.5 in PJ.5 schematic to show correct inputs to multiplexers ........................... 87 Moved Section 6.12, Device Descriptors (TLV) ................................................................................. 88 Replaced former section Development Tools Support with Section 7.3, Tools and Software ............................ 93 Updated Section 7.4, Documentation Support .................................................................................. 95 Revision History Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 3 Device Comparison Table 3-1 summarizes the available family members. Table 3-1. Family Members (1) (2) DEVICE SRAM (KB) SYSTEM CLOCK (MHz) ADC10_B Comp_D MSP430FR5729 16 1 8 12 ext, 2 int ch. 16 ch. MSP430FR5728 16 1 8 6 ext, 2 int ch. 10 ch. 8 ext, 2 int ch. 12 ch. MSP430FR5727 (4) 16 1 8 – 16 ch. 10 ch. MSP430FR5726 16 1 8 – MSP430FR5725 8 1 8 12 ext, 2 int ch. 16 ch. 6 ext, 2 int ch. 10 ch. 8 ext, 2 int ch. 12 ch. – 16 ch. MSP430FR5724 8 1 8 MSP430FR5723 8 1 8 MSP430FR5722 (1) (2) (3) eUSCI FRAM (KB) 8 1 8 MSP430FR5721 4 1 8 MSP430FR5720 4 1 8 – 12 ch. 10 ch. 12 ch. 12 ext, 2 int ch. 16 ch. 6 ext, 2 int ch. 10 ch. 8 ext, 2 int ch. 12 ch. Timer_A (3) Timer_B (4) Channel A: UART, IrDA, SPI Channel B: SPI, I2C 3, 3 3, 3, 3 2 1 3, 3 3 1 1 3, 3 3, 3, 3 2 1 3, 3 3 1 1 3, 3 3, 3, 3 2 1 3, 3 3 1 1 3, 3 3, 3, 3 2 1 3, 3 3 1 1 3, 3 3, 3, 3 2 1 3, 3 3 1 1 I/O PACKAGE 32 RHA 30 DA 17 RGE 21 PW 32 RHA 30 DA 17 RGE 21 PW 32 RHA 30 DA 17 RGE 21 PW 32 RHA 30 DA 17 RGE 21 PW 32 RHA 30 DA 17 RGE 21 PW For the most current package and ordering information, see the Package Option Addendum in Section 8, or see the TI website at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively. Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively. Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Device Comparison 5 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 3.1 www.ti.com Related Products For information about other devices in this family of products or related products, see the following links. Products for MSP 16-Bit and 32-Bit MCUs Low-power mixed-signal processors with smart analog and digital peripherals for a wide range of industrial and consumer applications. Products for Ultra-Low-Power MCUs MSP Ultra-Low-Power microcontrollers (MCUs) from Texas Instruments (TI) offer the lowest power consumption and the perfect mix of integrated peripherals for a wide range of low power and portable applications. Products for MSP430FRxx FRAM MCUs 16-bit microcontrollers for ultra-low-power sensing and system management in building automation, smart grid, and industrial designs. Companion Products for MSP430FR5729 Review products that are frequently purchased or used in conjunction with this product. Reference Designs for MSP430FR5729 TI Designs Reference Design Library is a robust reference design library that spans analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at ti.com/tidesigns. 6 Device Comparison Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 4 Terminal Configuration and Functions 4.1 Pin Diagram – RHA Package – MSP430FR5721, MSP430FR5723, MSP430FR5725, MSP430FR5727, MSP430FR5729 Figure 4-1 shows the pin diagram for the MSP430FR5721, MSP430FR5723, MSP430FR5725, MSP430FR5727, and MSP430FR5729 devices in the 40-pin RHA package. P2.4/TA1.0/UCA1CLK/A7*/CD11 P2.3/TA0.0/UCA1STE/A6*/CD10 P2.7 DVCC DVSS 31 32 33 35 34 30 29 3 28 4 27 5 26 VCORE P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0 P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0 P3.7/TB2.2 P3.6/TB2.1/TB1CLK P3.5/TB1.2/CDOUT P3.4/TB1.1/TB2CLK/SMCLK P2.2/TB2.2/UCB0CLK/TB1.0 P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0 P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK 20 19 18 21 17 22 10 16 23 9 15 8 14 24 13 25 7 11 6 PJ.0/TDO/TB0OUTH/SMCLK/CD6 PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7 PJ.2/TMS/TB2OUTH/ACLK/CD8 PJ.3/TCK/CD9 P4.0/TB2.0 Note: 36 37 39 1 2 12 P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-* P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+* P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2 P3.0/A12*/CD12 P3.1/A13*/CD13 P3.2/A14*/CD14 P3.3/A15*/CD15 P1.3/TA1.2/UCB0STE/A3*/CD3 P1.4/TB0.1/UCA0STE/A4*/CD4 P1.5/TB0.2/UCA0CLK/A5*/CD5 38 40 AVSS PJ.4/XIN PJ.5/XOUT AVSS AVCC RST/NMI/SBWTDIO TEST/SBWTCK P2.6/TB1.0/UCA1RXD/UCA1SOMI P2.5/TB0.0/UCA1TXD/UCA1SIMO P4.1 * Not available on MSP430FR5727, MSP430FR5723 Exposed thermal pad connection to VSS recommended. Figure 4-1. 40-Pin RHA Package (Top View) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 7 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 4.2 www.ti.com Pin Diagram – DA Package – MSP430FR5721, MSP430FR5723, MSP430FR5725, MSP430FR5727, MSP430FR5729 Figure 4-2 shows the pin diagram for the MSP430FR5721, MSP430FR5723, MSP430FR5725, MSP430FR5727, and MSP430FR5729 devices in the 38-pin DA package. PJ.4/XIN PJ.5/XOUT AVSS AVCC P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-* P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+* P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2 P3.0/A12*/CD12 P3.1/A13*/CD13 P3.2/A14*/CD14 P3.3/A15*/CD15 P1.3/TA1.2/UCB0STE/A3*/CD3 P1.4/TB0.1/UCA0STE/A4*/CD4 P1.5/TB0.2/UCA0CLK/A5*/CD5 PJ.0/TDO/TB0OUTH/SMCLK/CD6 PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7 PJ.2/TMS/TB2OUTH/ACLK/CD8 PJ.3/TCK/CD9 P2.5/TB0.0/UCA1TXD/UCA1SIMO 1 38 2 37 3 36 4 35 5 34 6 33 7 32 8 31 9 30 10 29 11 28 12 27 13 26 14 25 15 24 16 23 17 22 18 21 19 20 AVSS P2.4/TA1.0/UCA1CLK/A7*/CD11 P2.3/TA0.0/UCA1STE/A6*/CD10 P2.7 DVCC DVSS VCORE P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0 P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0 P3.7/TB2.2 P3.6/TB2.1/TB1CLK P3.5/TB1.2/CDOUT P3.4/TB1.1/TB2CLK/SMCLK P2.2/TB2.2/UCB0CLK/TB1.0 P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0 P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK RST/NMI/SBWTDIO TEST/SBWTCK P2.6/TB1.0/UCA1RXD/UCA1SOMI * Not available on MSP430FR5727, MSP430FR5723 Figure 4-2. 38-Pin DA Package (Top View) 4.3 Pin Diagram – RGE Package – MSP430FR5720, MSP430FR5722, MSP430FR5724, MSP430FR5726, MSP430FR5728 Figure 4-3 shows the pin diagram for the MSP430FR5720, MSP430FR5722, MSP430FR5724, MSP430FR5726, and MSP430FR5728 devices in the 24-pin RGE package. PJ.4/XIN DVCC DVSS 19 20 21 18 17 13 PJ.0/TDO/TB0OUTH/SMCLK/CD6 PJ.1/TDI/TCLK/MCLK/CD7 PJ.2/TMS/ACLK/CD8 * Not available on MSP430FR5726, MSP430FR5722 Exposed thermal pad connection to VSS recommended. VCORE P1.7/UCB0SOMI/UCB0SCL/TA1.0 P1.6/UCB0SIMO/UCB0SDA/TA0.0 P2.2/UCB0CLK P2.1/UCA0RXD/UCA0SOMI/TB0.0 P2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK 12 14 11 5 6 10 16 15 9 3 4 7 Note: 23 1 2 8 P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-* P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+* P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2 P1.3/TA1.2/UCB0STE/A3*/CD3 P1.4/TB0.1/UCA0STE/A4*/CD4 P1.5/TB0.2/UCA0CLK/A5*/CD5 22 24 PJ.5/XOUT AVSS AVCC RST/NMI/SBWTDIO TEST/SBWTCK PJ.3/TCK/CD9 Figure 4-3. 24-Pin RGE Package (Top View) 8 Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com 4.4 SLASE35B – MAY 2014 – REVISED APRIL 2016 Pin Diagram – PW Package – MSP430FR5720, MSP430FR5722, MSP430FR5724, MSP430FR5726, MSP430FR5728 Figure 4-4 shows the pin diagram for the MSP430FR5720, MSP430FR5722, MSP430FR5724, MSP430FR5726, and MSP430FR5728 devices in the 28-pin PW package. PJ.4/XIN PJ.5/XOUT AVSS AVCC P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-* P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+* P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2 P1.3/TA1.2/UCB0STE/A3*/CD3 P1.4/TB0.1/UCA0STE/A4*/CD4 P1.5/TB0.2/UCA0CLK/A5*/CD5 PJ.0/TDO/TB0OUTH/SMCLK/CD6 PJ.1/TDI/TCLK/MCLK/CD7 PJ.2/TMS/ACLK/CD8 PJ.3/TCK/CD9 1 28 2 27 3 26 4 25 5 24 6 23 7 22 8 21 9 20 10 19 11 18 12 17 13 16 14 15 P2.4/TA1.0/A7*/CD11 P2.3/TA0.0/A6*/CD10 DVCC DVSS VCORE P1.7/UCB0SOMI/UCB0SCL/TA1.0 P1.6/UCB0SIMO/UCB0SDA/TA0.0 P2.2/UCB0CLK P2.1/UCA0RXD/UCA0SOMI/TB0.0 P2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK RST/NMI/SBWTDIO TEST/SBWTCK P2.6 P2.5/TB0.0 * Not available on MSP430FR5726, MSP430FR5722 Figure 4-4. 28-Pin PW Package (Top View) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 9 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 4.5 www.ti.com Signal Descriptions Table 4-1 describes the signals for all device variants and packages. Table 4-1. Signal Descriptions TERMINAL NAME I/O NO. RHA RGE DESCRIPTION (1) DA PW General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA0 CCR1 capture: CCI1A input, compare: Out1 External DMA trigger P1.0/TA0.1/DMAE0/ RTCCLK/A0/CD0/VeREF- 1 1 5 5 I/O RTC clock calibration output Analog input A0 – ADC (not available on devices without ADC) Comparator_D input CD0 External applied reference voltage (not available on devices without ADC) General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA0 CCR2 capture: CCI2A input, compare: Out2 TA1 input clock P1.1/TA0.2/TA1CLK/ CDOUT/A1/CD1/VeREF+ 2 2 6 6 I/O Comparator_D output Analog input A1 – ADC (not available on devices without ADC) Comparator_D input CD1 Input for an external reference voltage to the ADC (not available on devices without ADC) General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA1 CCR1 capture: CCI1A input, compare: Out1 P1.2/TA1.1/TA0CLK/ CDOUT/A2/CD2 3 3 7 7 I/O TA0 input clock Comparator_D output Analog input A2 – ADC (not available on devices without ADC) Comparator_D input CD2 General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) P3.0/A12/CD12 4 N/A 8 N/A I/O Analog input A12 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD12 (not available on package options PW, RGE) General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) P3.1/A13/CD13 5 N/A 9 N/A I/O Analog input A13 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD13 (not available on package options PW, RGE) General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) P3.2/A14/CD14 6 N/A 10 N/A I/O Analog input A14 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD14 (not available on package options PW, RGE) General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) P3.3/A15/CD15 7 N/A 11 N/A I/O Analog input A15 – ADC (not available on devices without ADC or package options PW, RGE) Comparator_D input CD15 (not available on package options PW, RGE) (1) I = input, O = output, N/A = not available 10 Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME I/O NO. RHA RGE DESCRIPTION (1) DA PW General-purpose digital I/O with port interrupt and wake up from LPMx.5 TA1 CCR2 capture: CCI2A input, compare: Out2 P1.3/TA1.2/UCB0STE/ A3/CD3 8 4 12 8 I/O Slave transmit enable – eUSCI_B0 SPI mode Analog input A3 – ADC (not available on devices without ADC) Comparator_D input CD3 General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR1 capture: CCI1A input, compare: Out1 P1.4/TB0.1/UCA0STE/ A4/CD4 9 5 13 9 I/O Slave transmit enable – eUSCI_A0 SPI mode Analog input A4 – ADC (not available on devices without ADC) Comparator_D input CD4 General-purpose digital I/O with port interrupt and wake up from LPMx.5 TB0 CCR2 capture: CCI2A input, compare: Out2 P1.5/TB0.2/UCA0CLK/ A5/CD5 10 6 14 10 I/O Clock signal input – eUSCI_A0 SPI slave mode, Clock signal output – eUSCI_A0 SPI master mode Analog input A5 – ADC (not available on devices without ADC) Comparator_D input CD5 General-purpose digital I/O Test data output port PJ.0/TDO/TB0OUTH/ SMCLK/CD6 (2) 11 7 15 11 I/O Switch all PWM outputs high impedance input – TB0 SMCLK output Comparator_D input CD6 General-purpose digital I/O Test data input or test clock input PJ.1/TDI/TCLK/TB1OUTH/ MCLK/CD7 (2) 12 8 16 12 I/O Switch all PWM outputs high impedance input – TB1 (not available on devices without TB1) MCLK output Comparator_D input CD7 General-purpose digital I/O Test mode select PJ.2/TMS/TB2OUTH/ ACLK/CD8 (2) 13 9 17 13 I/O Switch all PWM outputs high impedance input – TB2 (not available on devices without TB2) ACLK output Comparator_D input CD8 General-purpose digital I/O PJ.3/TCK/CD9 (2) 14 10 18 14 I/O Test clock Comparator_D input CD9 P4.0/TB2.0 15 N/A N/A N/A I/O P4.1 16 N/A N/A N/A I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) TB2 CCR0 capture: CCI0B input, compare: Out0 (not available on devices without TB2 or package options DA, PW, RGE) General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options DA, PW, RGE) General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.5/TB0.0/UCA1TXD/ UCA1SIMO (2) 17 N/A 19 15 I/O TB0 CCR0 capture: CCI0A input, compare: Out0 Transmit data – eUSCI_A1 UART mode, Slave in, master out – eUSCI_A1 SPI mode (not available on devices without UCSI_A1) See Section 6.7 for use with JTAG function. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 11 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Table 4-1. Signal Descriptions (continued) TERMINAL I/O NO. NAME RHA RGE DESCRIPTION (1) DA PW General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.6/TB1.0/UCA1RXD/ UCA1SOMI 18 N/A 20 16 I/O TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB1) Receive data – eUSCI_A1 UART mode, Slave out, master in – eUSCI_A1 SPI mode (not available on devices without UCSI_A1) TEST/SBWTCK (2) (3) 19 11 21 17 I 20 12 22 18 I/O Test mode pin – enable JTAG pins Spy-Bi-Wire input clock Reset input active low RST/NMI/SBWTDIO (2) (3) Non-maskable interrupt input Spy-Bi-Wire data input/output General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.0/TB2.0/UCA0TXD/ UCA0SIMO/TB0CLK/ACLK (3) TB2 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB2) 21 13 23 19 I/O Transmit data – eUSCI_A0 UART mode Slave in, master out – eUSCI_A0 SPI mode TB0 clock input ACLK output General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.1/TB2.1/UCA0RXD/ UCA0SOMI/TB0.0 (3) TB2 CCR1 capture: CCI1A input, compare: Out1 (not available on devices without TB2) 22 14 24 20 I/O Receive data – eUSCI_A0 UART mode Slave out, master in – eUSCI_A0 SPI mode TB0 CCR0 capture: CCI0A input, compare: Out0 General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.2/TB2.2/UCB0CLK/ TB1.0 TB2 CCR2 capture: CCI2A input, compare: Out2 (not available on devices without TB2) 23 15 25 21 I/O Clock signal input – eUSCI_B0 SPI slave mode, Clock signal output – eUSCI_B0 SPI master mode TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on devices without TB1) General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) P3.4/TB1.1/TB2CLK/ SMCLK 24 N/A 26 N/A I/O TB1 CCR1 capture: CCI1B input, compare: Out1 (not available on devices without TB1) TB2 clock input (not available on devices without TB2 or package options PW, RGE) SMCLK output (not available on package options PW, RGE) General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) P3.5/TB1.2/CDOUT 25 N/A 27 N/A I/O TB1 CCR2 capture: CCI2B input, compare: Out2 (not available on devices without TB1) Comparator_D output (not available on package options PW, RGE) General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) P3.6/TB2.1/TB1CLK 26 N/A 28 N/A I/O TB2 CCR1 capture: CCI1B input, compare: Out1 (not available on devices without TB2) TB1 clock input (not available on devices without TB1 or package options PW, RGE) (3) 12 See Section 6.6 and Section 6.7 for use with BSL and JTAG functions. Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 4-1. Signal Descriptions (continued) TERMINAL NAME P3.7/TB2.2 I/O NO. RHA 27 RGE N/A DESCRIPTION (1) DA 29 PW N/A I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) TB2 CCR2 capture: CCI2B input, compare: Out2 (not available on devices without TB2 or package options PW, RGE) General-purpose digital I/O with port interrupt and wake up from LPMx.5 P1.6/TB1.1/UCB0SIMO/ UCB0SDA/TA0.0 TB1 CCR1 capture: CCI1A input, compare: Out1 (not available on devices without TB1) 28 16 30 22 I/O Slave in, master out – eUSCI_B0 SPI mode I2C data – eUSCI_B0 I2C mode TA0 CCR0 capture: CCI0A input, compare: Out0 General-purpose digital I/O with port interrupt and wake up from LPMx.5 P1.7/TB1.2/UCB0SOMI/ UCB0SCL/TA1.0 TB1 CCR2 capture: CCI2A input, compare: Out2 (not available on devices without TB1) 29 17 31 23 I/O Slave out, master in – eUSCI_B0 SPI mode I2C clock – eUSCI_B0 I2C mode TA1 CCR0 capture: CCI0A input, compare: Out0 30 18 32 24 Regulated core power supply (internal use only, no external current loading) DVSS 31 19 33 25 Digital ground supply DVCC 32 20 34 26 Digital power supply P2.7 33 N/A 35 N/A VCORE (4) I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options PW, RGE) General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options RGE) P2.3/TA0.0/UCA1STE/ A6/CD10 TA0 CCR0 capture: CCI0B input, compare: Out0 (not available on package options RGE) 34 N/A 36 27 I/O Slave transmit enable – eUSCI_A1 SPI mode (not available on devices without eUSCI_A1) Analog input A6 – ADC (not available on devices without ADC) Comparator_D input CD10 (not available on package options RGE) General-purpose digital I/O with port interrupt and wake up from LPMx.5 (not available on package options RGE) TA1 CCR0 capture: CCI0B input, compare: Out0 (not available on package options RGE) P2.4/TA1.0/UCA1CLK/ A7/CD11 35 N/A 37 28 I/O Clock signal input – eUSCI_A1 SPI slave mode, Clock signal output – eUSCI_A1 SPI master mode (not available on devices without eUSCI_A1) Analog input A7 – ADC (not available on devices without ADC) Comparator_D input CD11 (not available on package options RGE) AVSS 36 N/A 38 N/A PJ.4/XIN 37 21 1 1 I/O PJ.5/XOUT 38 22 2 2 I/O AVSS 39 23 3 3 Analog ground supply AVCC 40 24 4 4 Analog power supply Pad Pad N/A N/A QFN Pad (4) Analog ground supply General-purpose digital I/O Input terminal for crystal oscillator XT1 General-purpose digital I/O Output terminal of crystal oscillator XT1 QFN package pad. Connection to VSS recommended. VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 13 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 5 Specifications Absolute Maximum Ratings (1) 5.1 over operating free-air temperature range (unless otherwise noted) Voltage applied at VCC to VSS Voltage applied to any pin (excluding VCORE) (2) MIN MAX –0.3 4.1 –0.3 VCC + 0.3 Diode current at any device pin (1) (2) (3) (4) (5) (4) (5) –55 95 °C 125 °C ESD Ratings VALUE V(ESD) (2) V mA Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied. Data retention on FRAM cannot be ensured when exceeding the specified maximum storage temperature, Tstg. For soldering during board manufacturing, it is required to follow the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. Programming of devices with user application code should only be performed after reflow or hand soldering. Factory programmed information, such as calibration values, are designed to withstand the temperatures reached in the current JEDEC J-STD-020 specification. 5.2 (1) V ±2 Maximum junction temperature, TJ Storage temperatureTstg (3) UNIT Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) UNIT ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) V ±250 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance. 5.3 Recommended Operating Conditions Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted) MIN (1) NOM Supply voltage during program execution and FRAM programming (AVCC = DVCC) VSS Supply voltage (AVSS = DVSS) TA Operating free-air temperature –40 85 TJ Operating junction temperature –40 85 CVCORE Required capacitor at VCORE (2) CVCC/ CVCORE Capacitor ratio of VCC to VCORE fSYSTEM (1) (2) (3) (4) 14 Processor frequency (maximum MCLK frequency) (3) 2.0 MAX VCC 3.6 0 UNIT V V 470 °C °C nF 10 No FRAM wait states 2 V ≤ VCC ≤ 3.6 V (4) , 0 8.0 MHz TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. A capacitor tolerance of ±20% or better is required. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. When using manual wait state control, see the MSP430FR57xx Family User's Guide for recommended settings for common system frequencies. Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com 5.4 SLASE35B – MAY 2014 – REVISED APRIL 2016 Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3) Frequency (fMCLK = fSMCLK) PARAMETER EXECUTION MEMORY VCC 1 MHz TYP IAM, FRAM_UNI IAM,0% (4) (5) 4 MHz MAX FRAM 3V 0.27 FRAM 0% cache hit ratio 3V 0.42 TYP 8 MHz MAX TYP 0.58 0.73 UNIT MAX 1.0 1.2 1.6 mA 2.2 2.8 mA IAM,50% (5) (6) FRAM 50% cache hit ratio 3V 0.31 0.73 1.3 mA IAM,66% (5) (6) FRAM 66% cache hit ratio 3V 0.27 0.58 1.0 mA IAM,75% (5) (6) FRAM 75% cache hit ratio 3V 0.25 0.5 0.82 mA FRAM 100% cache hit ratio 3V 0.2 0.43 0.3 0.55 0.42 0.8 mA RAM 3V 0.2 0.4 0.35 0.55 0.55 0.75 mA IAM,100% (5) IAM, (1) (2) (3) (4) (5) (6) (7) RAM (6) (6) (7) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF. Characterized with program executing typical data processing. Program and data reside entirely in FRAM. No wait states enabled. DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK. Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 25% ratio implies one of every four accesses is from cache, the remaining are FRAM accesses. For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK. No wait states enabled. See Figure 5-1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best linear fit using the typical data shown in . fACLK = 32786 Hz, fMCLK = fSMCLK at specified frequency. No peripherals active. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0. All execution is from RAM. For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK. 2.50 IAM,0% (mA) = 0.2541 * (f, MHz) + 0.1724 2.00 IAM,50% (mA) = 0.1415 * (f, MHz) + 0.1669 IAM,66%(mA) = 0.1043 * (f, MHz) + 0.1646 IA M, mA 1.50 IAM,75% (mA) = 0.0814 * (f, MHz) + 0.1708 1.00 0.50 IAM,RAM (mA) = 0.05 * (f, MHz) + 0.150 IAM,100% (mA) = 0.0314 * (f, MHz) + 0.1708 0.00 0 1 2 3 4 5 6 7 8 9 fMCLK = f SMCLK , MHz Figure 5-1. Typical Active Mode Supply Currents, No Wait States Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 15 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 5.5 www.ti.com Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC –40°C TYP MAX 25°C TYP ILPM0,1MHz Low-power mode 0 (3) (4) 2 V, 3V 166 175 LPM0,8MHz Low-power mode 0 (5) (4) 2 V, 3V 170 177 LPM0,24MHz Low-power mode 0 (6) (4) 2 V, 3V 274 ILPM2 Low-power mode 2 (7) (8) 2 V, 3V ILPM3,XT1LF Low-power mode 3, crystal mode (9) (8) ILPM3,VLO Low-power mode 3, VLO mode (10) (8) ILPM4 Low-power mode 4 ILPM3.5 ILPM4.5 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 16 (1) (2) 60°C MAX TYP MAX 85°C TYP MAX UNIT 190 225 µA 244 195 225 360 µA 285 340 315 340 455 µA 56 61 80 75 110 210 µA 2 V, 3V 3.4 6.4 15 18 48 150 µA 2 V, 3V 3.3 6.3 15 18 48 150 µA (11) (8) 2 V, 3V 2.9 5.9 15 18 48 150 µA Low-power mode 3.5 (12) 2 V, 3V 1.3 1.5 2.2 1.9 2.8 5.0 µA Low-power mode 4.5 (13) 2 V, 3V 0.3 0.32 0.66 0.38 0.57 2.55 µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF. Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 1 MHz. DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz) Current for brownout, high-side supervisor (SVSH), and low-side supervisor (SVSL) included. Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 8 MHz. DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 24 MHz. DCORSEL = 1, DCOFSELx = 3 (fDCO = 24 MHz) Current for watchdog timer (clocked by ACLK) and RTC (clocked by XT1 LF mode) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCORSEL = 0, DCOFSELx = 3, DCO bias generator enabled. Current for brownout and high-side supervisor (SVSH) included. Low-side supervisor (SVSL) disabled. Current for watchdog timer (clocked by ACLK) and RTC (clocked by XT1 LF mode) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz Current for watchdog timer (clocked by ACLK) included. ACLK = VLO. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz Internal regulator disabled. No data retention. RTC active clocked by XT1 LF mode. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM3.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz Internal regulator disabled. No data retention. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com 5.6 SLASE35B – MAY 2014 – REVISED APRIL 2016 Thermal Resistance Characteristics PARAMETER PACKAGE VALUE (1) UNIT θJA Junction-to-ambient thermal resistance, still air (2) 78.8 °C/W θJC(TOP) Junction-to-case (top) thermal resistance (3) 19.4 °C/W θJB Junction-to-board thermal resistance (4) 36.7 °C/W ΨJB Junction-to-board thermal characterization parameter 36.2 °C/W ΨJT Junction-to-top thermal characterization parameter 0.5 °C/W θJC(BOTTOM) Junction-to-case (bottom) thermal resistance (5) N/A °C/W θJA Junction-to-ambient thermal resistance, still air (2) 42.1 °C/W 38.8 °C/W 18.1 °C/W 18.0 °C/W 0.6 °C/W TSSOP-24 (PW) (3) θJC(TOP) Junction-to-case (top) thermal resistance θJB Junction-to-board thermal resistance (4) ΨJB Junction-to-board thermal characterization parameter ΨJT Junction-to-top thermal characterization parameter QFN-24 (RGE) (5) θJC(BOTTOM) Junction-to-case (bottom) thermal resistance 2.8 °C/W θJA Junction-to-ambient thermal resistance, still air (2) 74.5 °C/W θJC(TOP) Junction-to-case (top) thermal resistance (3) 22.0 °C/W 40.7 °C/W 40.3 °C/W 0.9 °C/W (4) θJB Junction-to-board thermal resistance ΨJB Junction-to-board thermal characterization parameter ΨJT Junction-to-top thermal characterization parameter SOIC-38 (DA) (5) θJC(BOTTOM) Junction-to-case (bottom) thermal resistance N/A °C/W θJA Junction-to-ambient thermal resistance, still air (2) 37.8 °C/W θJC(TOP) Junction-to-case (top) thermal resistance (3) 27.4 °C/W θJB Junction-to-board thermal resistance (4) 12.6 °C/W ΨJB Junction-to-board thermal characterization parameter 12.6 °C/W ΨJT Junction-to-top thermal characterization parameter 0.4 °C/W θJC(BOTTOM) Junction-to-case (bottom) thermal resistance (5) 3.6 °C/W (1) (2) (3) (4) (5) QFN-40 (RHA) N/A = Not applicable The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a. The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88. The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 17 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 5.7 www.ti.com Schmitt-Trigger Inputs – General-Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC VCC MIN 2V 0.80 TYP 1.40 3V 1.50 2.10 2V 0.45 1.10 3V 0.75 1.65 2V 0.25 0.8 3V 0.30 1.0 20 35 MAX 50 5 UNIT V V V kΩ pF Inputs – Ports P1 and P2 (1) (P1.0 to P1.7, P2.0 to P2.7) 5.8 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER t(int) (1) (2) External interrupt timing TEST CONDITIONS (2) VCC External trigger pulse duration to set interrupt flag MIN 2 V, 3 V MAX 20 UNIT ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int). 5.9 Leakage Current – General-Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.x) (1) (2) 18 High-impedance leakage current TEST CONDITIONS (1) (2) VCC MIN MAX 2 V, 3 V –50 50 UNIT nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 5.10 Outputs – General-Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VOH High-level output voltage VOL (1) (2) TEST CONDITIONS Low-level output voltage I(OHmax) = –1 mA (1) I(OHmax) = –3 mA (2) I(OHmax) = –2 mA (1) I(OHmax) = –6 mA (2) I(OLmax) = 1 mA (1) I(OLmax) = 3 mA (2) I(OLmax) = 2 mA (1) I(OLmax) = 6 mA (2) VCC 2V 3V 2V 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 UNIT V V The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. 5.11 Output Frequency – General-Purpose I/O (P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fPx.y Port output frequency (with load) Px.y fPort_CLK Clock output frequency ACLK, SMCLK, or MCLK at configured output port, CL = 20 pF, no DC loading (2) (1) (2) (1) (2) VCC MIN MAX 2V 16 3V 24 2V 16 3V 24 UNIT MHz MHz A resistive divider with 2 × 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. CL = 20 pF is connected from the output to VSS. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 19 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 5.12 Typical Characteristics – Outputs over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) 16 TA = -40 ° C IOL - Typical Low-Level Output Current - mA 14 TA = 25 ° C 12 TA = 85 ° C 10 8 6 4 2 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 V OL - Low-Level Output Voltage - V VCC = 2.0 V Measured at Px.y Figure 5-2. Typical Low-Level Output Current vs Low-Level Output Voltage 35 IOL - Typical Low-Level Output Current - mA TA = -40 ° C 30 TA = 25 ° C TA = 85 ° C 25 20 15 10 5 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 VOL - Low-Level Output Voltage - V VCC = 3.0 V Measured at Px.y Figure 5-3. Typical Low-Level Output Current vs Low-Level Output Voltage 20 Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 IOH - Typical High-Level Output Current - mA 0 -2 -4 -6 -8 -10 TA = 85 ° C -12 TA = 25 ° C -14 TA = -40 ° C -16 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 V OH - High-Level Output Voltage - V VCC = 2.0 V Measured at Px.y Figure 5-4. Typical High-Level Output Current vs High-Level Output Voltage 0 IOH - Typical High-Level Output Current - mA -5 -10 -15 -20 -25 TA = 85 ° C -30 TA = 25 ° C -35 TA = -40 ° C -40 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 V OH - High-Level Output Voltage - V VCC = 3.0 V Measured at Px.y Figure 5-5. Typical High-Level Output Current vs High-Level Output Voltage Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 21 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 5.13 Crystal Oscillator, XT1, Low-Frequency (LF) Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ΔIVCC.LF TEST CONDITIONS Additional current consumption XT1 LF mode from lowest drive setting 60 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {2}, TA = 25°C, CL,eff = 9 pF 3V 90 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {3}, TA = 25°C, CL,eff = 12 pF 3V 140 XTS = 0, XT1BYPASS = 0 fXT1,LF,SW XT1 oscillator logic-level squarewave input frequency, LF mode XTS = 0, XT1BYPASS = 1 Oscillator fault frequency, LF mode fFault,LF (5) tSTART,LF CL,eff (1) (2) (3) (4) (5) (6) (7) (8) (9) 22 Start-up time, LF mode (2) (3) 10 (7) Integrated effective load capacitance, LF mode (8) 210 XTS = 0, XT1BYPASS = 0, XT1DRIVE = {3}, fXT1,LF = 32768 Hz, CL,eff = 12 pF 300 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {0}, TA = 25°C, CL,eff = 6 pF XTS = 0 UNIT nA Hz 50 kHz kΩ (6) fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {3}, TA = 25°C, CL,eff = 12 pF (9) 32.768 XTS = 0, XT1BYPASS = 0, XT1DRIVE = {0}, fXT1,LF = 32768 Hz, CL,eff = 6 pF XTS = 0 MAX 32768 XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz Duty cycle, LF mode TYP 3V XT1 oscillator crystal frequency, LF mode OALF MIN fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVE = {1}, CL,eff = 9 pF, TA = 25°C, fXT1,LF0 Oscillation allowance for LF crystals (4) VCC 30% 70% 10 10000 Hz 1000 3V ms 1000 1 pF To improve EMI on the XT1 oscillator, the following guidelines should be observed. • Keep the trace between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins. When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: • For XT1DRIVE = {0}, CL,eff ≤ 6 pF. • For XT1DRIVE = {1}, 6 pF ≤ CL,eff ≤ 9 pF. • For XT1DRIVE = {2}, 6 pF ≤ CL,eff ≤ 10 pF. • For XT1DRIVE = {3}, 6 pF ≤ CL,eff ≤ 12 pF. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Includes start-up counter of 4096 clock cycles. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Include parasitic bond and package capacitance (approximately 2 pF per pin). Recommended values supported are 6 pF, 9 pF, and 12 pF. Maximum shunt capacitance of 1.6 pF. Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 5.14 Crystal Oscillator, XT1, High-Frequency (HF) Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IVCC,HF TEST CONDITIONS XT1 oscillator crystal current HF mode VCC MIN TYP fOSC = 4 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {0}, TA = 25°C, CL,eff = 16 pF 175 fOSC = 8 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {1}, TA = 25°C, CL,eff = 16 pF 300 MAX 3V fOSC = 16 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {2}, TA = 25°C, CL,eff = 16 pF UNIT µA 350 fOSC = 24 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVE = {3}, TA = 25°C, CL,eff = 16 pF 550 fXT1,HF0 XT1 oscillator crystal frequency, HF mode 0 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {0} (2) 4 6 MHz fXT1,HF1 XT1 oscillator crystal frequency, HF mode 1 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {1} (2) 6 10 MHz fXT1,HF2 XT1 oscillator crystal frequency, HF mode 2 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {2} (2) 10 16 MHz fXT1,HF3 XT1 oscillator crystal frequency, HF mode 3 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {3} (2) 16 24 MHz fXT1,HF,SW XT1 oscillator logic-level squarewave input frequency, HF mode XTS = 1, XT1BYPASS = 1 1 24 MHz OAHF tSTART,HF (1) (2) (3) (4) (5) Oscillation allowance for HF crystals (4) Start-up time, HF mode (5) (3) (2) XTS = 1, XT1BYPASS = 0, XT1DRIVE = {0}, fXT1,HF = 4 MHz, CL,eff = 16 pF 450 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {1}, fXT1,HF = 8 MHz, CL,eff = 16 pF 320 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {2}, fXT1,HF = 16 MHz, CL,eff = 16 pF 200 XTS = 1, XT1BYPASS = 0, XT1DRIVE = {3}, fXT1,HF = 24 MHz, CL,eff = 16 pF 200 fOSC = 4 MHz, XTS = 1, XT1BYPASS = 0, XT1DRIVE = {0}, TA = 25°C, CL,eff = 16 pF 8 fOSC = 24 MHz, XTS = 1, XT1BYPASS = 0, XT1DRIVE = {3}, TA = 25°C, CL,eff = 16 pF Ω 3V ms 2 To improve EMI on the XT1 oscillator the following guidelines should be observed. • Keep the traces between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins. Maximum frequency of operation of the entire device cannot be exceeded. When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Oscillation allowance is based on a safety factor of 5 for recommended crystals. Includes start-up counter of 4096 clock cycles. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 23 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Crystal Oscillator, XT1, High-Frequency (HF) Mode (1) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER CL,eff (6) (7) (8) (9) XTS = 1 Duty cycle, HF mode XTS = 1, Measured at ACLK, fXT1,HF2 = 24 MHz Oscillator fault frequency, HF mode fFault,HF TEST CONDITIONS Integrated effective load capacitance (6) (7) (8) XTS = 1 VCC MIN TYP MAX 1 40% (9) 50% 145 UNIT pF 60% 900 kHz Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. 5.15 Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC TYP MAX 5 8.3 13 UNIT VLO frequency Measured at ACLK dfVLO/dT VLO frequency temperature drift Measured at ACLK (1) 2 V to 3.6 V 0.5 %/°C dfVLO/dVCC VLO frequency supply voltage drift Measured at ACLK (2) 2 V to 3.6 V 4 %/V fVLO,DC Measured at ACLK (1) (2) 24 Duty cycle 2 V to 3.6 V MIN fVLO 2 V to 3.6 V 40% 50% kHz 60% Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(2.0 V to 3.6 V) – MIN(2.0 V to 3.6 V)) / MIN(2.0 V to 3.6 V) / (3.6 V – 2 V) Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 5.16 DCO Frequencies over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fDCO,LO DCO frequency low, trimmed fDCO,MID DCO frequency mid, trimmed fDCO,HI DCO frequency high, trimmed fDCO,DC 5.17 Duty cycle TEST CONDITIONS Measured at ACLK, DCORSEL = 0 Measured at ACLK, DCORSEL = 0 Measured at ACLK, DCORSEL = 0 Measured at ACLK, divide by 1, No external divide, all DCO settings VCC TA MIN TYP MAX 2 V to 3.6 V –40°C to 85°C 5.37 ±3.5% 2 V to 3.6 V 0°C to 50°C 5.37 ±2.0% 2 V to 3.6 V –40°C to 85°C 6.67 ±3.5% 2 V to 3.6 V 0°C to 50°C 6.67 ±2.0% 2 V to 3.6 V –40°C to 85°C 8 ±3.5% 2 V to 3.6 V 0°C to 50°C 8 ±2.0% UNIT MHz MHz MHz 2 V to 3.6 V –40°C to 85°C 40% 50% 60% VCC MIN TYP MAX 44 80 µA MHz MODOSC over operating free-air temperature range (unless otherwise noted) PARAMETER IMODOSC Current consumption fMODOSC MODOSC frequency fMODOSC,DC Duty cycle TEST CONDITIONS Enabled Measured at ACLK, divide by 1 2 V to 3.6 V 2 V to 3.6 V 4.5 5.0 5.5 2 V to 3.6 V 40% 50% 60% Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated UNIT 25 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 5.18 PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCORE(AM) Core voltage, active mode 2 V ≤ DVCC ≤ 3.6 V 1.5 V VCORE(LPM) Core voltage, low-current mode 2 V ≤ DVCC ≤ 3.6 V 1.5 V 5.19 PMM, SVS, BOR over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISVSH,AM SVSH current consumption, active mode VCC = 3.6 V 5 ISVSH,LPM SVSH current consumption, low power modes VCC = 3.6 V 0.8 1.5 µA VSVSH- SVSH on voltage level, falling supply voltage 1.83 1.88 1.93 V VSVSH+ SVSH off voltage level, rising supply voltage 1.88 1.93 1.98 tPD,SVSH, AM SVSH propagation delay, active mode dVCC/dt = 10 mV/µs 10 µs tPD,SVSH, LPM SVSH propagation delay, low power modes dVCC/dt = 1 mV/µs 30 µs ISVSL SVSL current consumption VSVSL– SVSL on voltage level 1.42 V VSVSL+ SVSL off voltage level 1.47 V 0.3 µA 0.5 V µA 5.20 Wake-up Times From Low-Power Modes over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC TA MIN TYP MAX UNIT tWAKE-UP LPM0 Wake-up time from LPM0 to active mode (1) 2 V, 3 V –40°C to 85°C 0.58 1 µs tWAKE-UP LPM12 Wake-up time from LPM1, LPM2 to active mode (1) 2 V, 3 V –40°C to 85°C 12 25 µs tWAKE-UP LPM34 Wake-up time from LPM3 or LPM4 to active mode (1) 2 V, 3 V –40°C to 85°C 78 120 µs 2 V, 3 V 0°C to 85°C 310 575 tWAKE-UP LPMx.5 Wake-up time from LPM3.5 or LPM4.5 to active mode (1) 2 V, 3 V –40°C to 85°C 310 1100 280 µs tWAKE-UP RESET Wake-up time from RST to active mode (2) VCC stable 2 V, 3 V –40°C to 85°C 230 tWAKE-UP BOR Wake-up time from BOR or power-up to active mode dVCC/dt = 2400 V/s 2 V, 3 V –40°C to 85°C 1.6 tRESET Pulse duration required at RST/NMI terminal to accept a reset event (3) (1) (2) (3) 26 2 V, 3 V –40°C to 85°C 4 µs ms ns The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed. The wake-up time is measured from the rising edge of the RST signal until the first instruction of the user program is executed. Meeting or exceeding this time makes sures a reset event occurs. Pulses shorter than this minimum time may or may not cause a reset event to occur. Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 5.21 Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTA Timer_A input clock frequency Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ±10% 2 V, 3 V tTA,cap Timer_A capture timing All capture inputs, Minimum pulse duration required for capture 2 V, 3 V MIN TYP MAX UNIT 8 MHz 20 ns 5.22 Timer_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTB Timer_B input clock frequency Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ±10% tTB,cap Timer_B capture timing All capture inputs, Minimum pulse duration required for capture VCC 2 V, 3 V 2 V, 3 V MIN TYP MAX UNIT 8 MHz 20 ns 5.23 eUSCI (UART Mode) Clock Frequency PARAMETER feUSCI eUSCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10% MAX UNIT fSYSTEM MHz 5 MHz UNIT 5.24 eUSCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC UCGLITx = 0 tt UART receive deglitch time (1) UCGLITx = 1 UCGLITx = 2 UCGLITx = 3 (1) 2 V, 3 V MIN TYP MAX 5 15 20 20 45 60 35 80 120 50 110 180 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 27 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 5.25 eUSCI (SPI Master Mode) Clock Frequency PARAMETER feUSCI CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK Duty cycle = 50% ±10% eUSCI input clock frequency MAX UNIT fSYSTEM MHz 5.26 eUSCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tSTE,LEAD tSTE,LAG tSTE,ACC TEST CONDITIONS STE lead time, STE active to clock STE lag time, Last clock to STE inactive STE access time, STE active to SIMO data out STE disable time, STE inactive to SIMO high impedance tSTE,DIS tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (2) tHD,MO SIMO output data hold time (3) (1) (2) (3) 28 VCC MIN (1) TYP MAX UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 1 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 1 UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 1 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 1 UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 55 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 35 UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 40 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 30 UCLK edge to SIMO valid, CL = 20 pF CL = 20 pF UNIT UCxCLK cycles UCxCLK cycles ns ns 2V 35 3V 35 2V 0 3V 0 ns ns 2V 30 3V 30 2V 0 3V 0 ns ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)). For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-6 and Figure 5-7. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 56 and Figure 5-7. Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 5-6. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 5-7. SPI Master Mode, CKPH = 1 Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 29 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 5.27 eUSCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, Last clock to STE inactive tSTE,ACC STE access time, STE active to SOMI data out tSTE,DIS STE disable time, STE inactive to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (2) tHD,SO SOMI output data hold time (3) (1) (2) (3) 30 UCLK edge to SOMI valid, CL = 20 pF CL = 20 pF VCC MIN 2V 7 3V 7 2V 0 3V 0 (1) TYP MAX ns ns 2V 65 3V 40 2V 40 3V 35 2V 2 3V 2 2V 5 3V 5 30 30 4 4 ns ns 3V 3V ns ns 2V 2V UNIT ns ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)). For the master parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-8 and Figure 5-9. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-8 and Figure 5-9. Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tSU,SIMO tLOW/HIGH tHD,SIMO SIMO tVALID,SOMI tACC tDIS SOMI Figure 5-8. SPI Slave Mode, CKPH = 0 tSTE,LAG tSTE,LEAD STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,SI tSU,SI SIMO tACC tVALID,SO tDIS SOMI Figure 5-9. SPI Slave Mode, CKPH = 1 Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 31 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 5.28 eUSCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-10) PARAMETER TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10% MAX UNIT fSYSTEM MHz 400 kHz feUSCI eUSCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2 V, 3 V 0 ns tSU,DAT Data setup time 2 V, 3 V 250 ns tSU,STO 2 V, 3 V fSCL = 100 kHz fSCL = 100 kHz 2 V, 3 V fSCL > 100 kHz fSCL = 100 kHz Setup time for STOP 2 V, 3 V fSCL > 100 kHz Pulse duration of spikes suppressed by input filter tSP 2 V, 3 V fSCL > 100 kHz 0 4.0 µs 0.6 4.7 µs 0.6 4.0 µs 0.6 UCGLITx = 0 50 600 UCGLITx = 1 25 300 12.5 150 2 V, 3 V UCGLITx = 2 UCGLITx = 3 6.25 75 UCCLTOx = 1 tTIMEOUT Clock low time-out 27 UCCLTOx = 2 2 V, 3 V 30 UCCLTOx = 3 tSU,STA tHD,STA ns ms 33 tHD,STA tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 5-10. I2C Mode Timing 32 Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com 5.29 SLASE35B – MAY 2014 – REVISED APRIL 2016 10-Bit ADC, Power Supply and Input Range Conditions over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(Ax) Analog input voltage range All ADC10 pins IADC10_A Operating supply current into AVCC terminal, reference current not included fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0 CI Input capacitance Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad RI Input MUX ON resistance AVCC ≥ 2 V, 0 V ≤ VAx ≤ AVCC 5.30 VCC MIN TYP MAX UNIT 2.0 3.6 V 0 AVCC V 2V 90 140 3V 100 160 6 8 pF 36 kΩ 2.2 V µA 10-Bit ADC, Timing Parameters over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS fADC10CLK fADC10OSC tCONVERT VCC MIN TYP MAX UNIT 2 V to 3.6 V 0.45 5 5.5 MHz 2 V to 3.6 V 4.5 4.5 5.5 MHz REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode, fADC10OSC = 4.5 MHz to 5.5 MHz 2 V to 3.6 V 2.18 External fADC10CLK from ACLK, MCLK, or SMCLK, ADC10SSEL ≠ 0 2 V to 3.6 V For specified performance of ADC10 linearity parameters Internal ADC10 oscillator ADC10DIV = 0, fADC10CLK = fADC10OSC (MODOSC) Conversion time tADC10ON Turnon settling time of the ADC The error in a conversion started after tADC10ON is less than ±0.5 LSB, Reference and input signal already settled tSample Sampling time RS = 1000 Ω, RI = 36000 Ω, CI = 3.5 pF, Approximately eight Tau (τ) are required to get an error of less than ±0.5 LSB (1) 2.67 µs (1) 100 2V 1.5 3V 2.0 VCC MIN 2 V to 3.6 V –1.4 1.4 1.6 V < (VeREF+ – VREF–/VeREF–)min ≤ VAVCC –1.1 1.1 ns µs 12 × ADC10DIV × 1/fADC10CLK 5.31 10-Bit ADC, Linearity Parameters over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS 1.4 V ≤ (VeREF+ – VREF–/VeREF–)min ≤ 1.6 V TYP MAX UNIT EI Integral linearity error ED Differential linearity error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–) 2 V to 3.6 V –1 1 LSB EO Offset error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–) 2 V to 3.6 V –6.5 6.5 mV Gain error, external reference (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–) 2 V to 3.6 V –1.2 1.2 LSB –4% 4% –2 2 –4% 4% EG ET (1) Gain error, internal reference (1) Total unadjusted error, external reference (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–) Total unadjusted error, internal reference (1) 2 V to 3.6 V LSB LSB Error is dominated by the internal reference. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 33 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 5.32 REF, External Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN (1) TYP MAX UNIT VeREF+ Positive external reference voltage input VeREF+ > VeREF– (2) 1.4 AVCC V VeREF– Negative external reference voltage input VeREF+ > VeREF– (3) 0 1.2 V VeREF+ > VeREF– (4) 1.4 AVCC V –6 6 (VeREF+ – Differential external reference voltage input VREF–/VeREF–) IVeREF+, IVeREF– CVREF+, CVREF(1) (2) (3) (4) (5) Static input current 1.4 V ≤ VeREF+ ≤ VAVCC, VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTx = 1h, Conversion rate 200 ksps 2.2 V, 3 V 1.4 V ≤ VeREF+ ≤ VAVCC, VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTx = 8h, Conversion rate 20 ksps 2.2 V, 3 V µA Capacitance at VREF+ or VREF- terminal (5) –1 1 10 µF The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_B. Also see the MSP430FR57xx Family User's Guide. 5.33 REF, Built-In Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Positive built-in reference voltage output VREF+ AVCC(min) AVCC minimum voltage, Positive built-in reference active TEST CONDITIONS 2.4 2.5 2.6 3V 1.92 2.0 2.08 REFVSEL = {0} for 1.5 V, REFON = 1 3V 1.44 1.5 1.56 REFVSEL = {0} for 1.5 V 2.0 REFVSEL = {1} for 2 V 2.2 REFVSEL = {2} for 2.5 V 2.7 TREF+ Temperature coefficient of built-in reference REFVSEL = (0, 1, 2}, REFON = 1 (1) (2) 34 Settling time of reference voltage (2) MAX 3V fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0 tSETTLE TYP REFVSEL = {1} for 2 V, REFON = 1 Operating supply current into AVCC terminal (1) Power supply rejection ratio (DC) MIN REFVSEL = {2} for 2.5 V, REFON = 1 IREF+ PSRR_DC VCC 3V V V 33 45 ±35 AVCC = AVCC (min) - AVCC(max), TA = 25°C, REFON = 1, REFVSEL = (0} for 1.5 V 1600 AVCC = AVCC (min) - AVCC(max), TA = 25°C, REFON = 1, REFVSEL = (1} for 2 V 1900 AVCC = AVCC (min) - AVCC(max), TA = 25°C, REFON = 1, REFVSEL = (2} for 2.5 V 3600 AVCC = AVCC (min) - AVCC(max), REFVSEL = (0, 1, 2}, REFON = 0 → 1 UNIT 30 µA ppm/ °C µV/V µs The internal reference current is supplied by terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 5.34 REF, Temperature Sensor and Built-In VMID over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VSENSOR See TEST CONDITIONS (1) TCSENSOR VCC ADC10ON = 1, INCH = 0Ah, TA = 0°C 2 V, 3 V ADC10ON = 1, INCH = 0Ah 2 V, 3 V MIN MAX mV 2.55 mV/°C tSENSOR(sample) Sample time required if channel 10 is selected (2) ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB 3V 30 VMID AVCC divider at channel 11 ADC10ON = 1, INCH = 0Bh, VMID is ~0.5 × VAVCC 2V 0.97 1.0 1.03 3V 1.46 1.5 1.54 tVMID(sample) Sample time required if channel 11 is selected (3) ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2 V, 3 V 1000 (2) (3) UNIT 790 2V (1) 30 TYP µs V ns The temperature sensor offset can vary significantly. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 1050 Typical Temperature Sensor Voltage (mA) 1000 950 900 850 800 750 700 650 600 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 Ambient Temperature (°C) Figure 5-11. Typical Temperature Sensor Voltage Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 35 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 5.35 Comparator_D over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS Overdrive = 10 mV, VIN- = (VIN+ – 400 mV) to (VIN+ + 10 mV) Propagation delay, AVCC = 2 V to 3.6 V tpd MIN TYP MAX 50 100 200 Overdrive = 100 mV, VIN- = (VIN+ – 400 mV) to (VIN+ + 100 mV) 80 Overdrive = 250 mV, (VIN+ – 400 mV) to (VIN+ + 250 mV) 50 UNIT ns CDF = 1, CDFDLY = 00 0.3 0.5 0.9 CDF = 1, CDFDLY = 01 0.5 0.9 1.5 CDF = 1, CDFDLY = 10 0.9 1.6 2.8 3.0 5.5 tfilter Filter timer added to the propagation delay of the comparator CDF = 1, CDFDLY = 11 1.6 Voffset Input offset AVCC = 2 V to 3.6 V –20 Vic Common mode input range AVCC = 2 V to 3.6 V 0 AVCC - 1 V Icomp(AVCC) Comparator only CDON = 1, AVCC = 2 V to 3.6 V 29 34 µA Iref(AVCC) Reference buffer and R‑ladder CDREFLx = 01, AVCC = 2 V to 3.6 V 20 24 µA tenable,comp Comparator enable time CDON = 0 to CDON = 1, AVCC = 2 V to 3.6 V 1.1 2.0 µs tenable,rladder Resistor ladder enable time CDON = 0 to CDON = 1, AVCC = 2 V to 3.6 V 1.1 2.0 µs VCB_REF Reference voltage for a tap VIN = voltage input to the R-ladder, n = 0 to 31 VIN × (n + 1) / 32 VIN × (n + 1.5) / 32 V VIN × (n + 0.5) / 32 20 µs mV 5.36 FRAM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER DVCC(WRITE) Write supply voltage tWRITE Word or byte write time tACCESS Read access time TEST CONDITIONS tCYCLE Cycle time, read or write operation (1) 120 15 Read and write endurance 36 MAX (1) Precharge time (1) TYP 2.0 (1) tPRECHARGE tRetention MIN Data retention duration 10 TJ = 25°C 100 TJ = 70°C 40 TJ = 85°C 10 UNIT 3.6 V 120 ns 60 ns 60 ns ns cycles years When using manual wait state control, see the MSP430FR57xx Family User's Guide for recommended settings for common system frequencies. Specifications Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 5.37 JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2 V, 3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse duration 2 V, 3 V 0.025 15 µs tSBW, En Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) 1 µs tSBW,Rst Spy-Bi-Wire return to normal operation time 35 µs fTCK TCK input frequency, 4-wire JTAG Rinternal Internal pulldown resistance on TEST (1) (2) (2) (1) 2 V, 3 V 19 2V 0 5 3V 0 10 2 V, 3 V 20 35 50 MHz kΩ Tools that access the Spy-Bi-Wire and BSL interfaces must wait for the tSBW,En time after the first transition of the TEST/SBWTCK pin (low to high), before the second transition of the pin (high to low) during the entry sequence. fTCK may be restricted to meet the timing requirements of the module selected. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 37 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6 Detailed Description 6.1 Functional Block Diagrams Figure 6-1 shows the functional block diagram for the MSP430FR5721, MSP430FR5725, and MSP430FR5729 in the RHA package. PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16KB Clock System ACLK 8KB SMCLK 4KB (FR5721) FRAM MCLK CPUXV2 and Working Registers 1KB Boot ROM Power Management SYS Watchdog P3.x I/O Ports P1/P2 2×8 I/Os (FR5729) (FR5725) PA P2.x REF Interrupt, Wake up PA 1×16 I/Os SVS RAM Memory Protection Unit PB P4.x I/O Ports P3/P4 1×8 I/Os 1x 2 I/Os Interrupt, Wake up PB 1×10 I/Os MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK TA0 TA1 JTAG, SBW Interface TB0 TB1 TB2 RTC_B MPY32 (2) Timer_A 3 CC Registers (3) Timer_B 3 CC Registers CRC eUSCI_A0: UART, IrDA, SPI eUSCI_B0: SPI, I2C eUSCI_A1: UART, IrDA, SPI ADC10_B 10 bit 200 ksps Comp_D 16 channels 14 channels (12 ext/2 int) Copyright © 2016, Texas Instruments Incorporated Figure 6-1. Functional Block Diagram – RHA Package – MSP430FR5721, MSP430FR5725, MSP430FR5729 Figure 6-2 shows the functional block diagram for the MSP430FR5723 and MSP430FR5727 devices in the RHA package. 38 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16KB Clock System ACLK 8KB SMCLK FRAM MCLK CPUXV2 and Working Registers 1KB Boot ROM Power Management P3.x I/O Ports P1/P2 2×8 I/Os (FR5727) (FR5723) PA P2.x SYS Watchdog Interrupt, Wake up PA 1×16 I/Os SVS RAM Memory Protection Unit PB P4.x I/O Ports P3/P4 1×8 I/Os 1x 2 I/Os Interrupt, Wake up PB 1×10 I/Os MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG, SBW Interface TA0 TA1 TB0 TB1 TB2 (2) Timer_A 3 CC Registers (3) Timer_B 3 CC Registers RTC_B MPY32 CRC eUSCI_A0: UART, IrDA, SPI eUSCI_B0: SPI, I2C eUSCI_A1: UART, IrDA, SPI Comp_D REF 16 channels Copyright © 2016, Texas Instruments Incorporated Figure 6-2. Functional Block Diagram – RHA Package – MSP430FR5723, MSP430FR5727 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 39 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Figure 6-3 shows the functional block diagram for the MSP430FR5721, MSP430FR5725, and MSP430FR5729 devices in the DA package. PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16KB Clock System ACLK (FR5729) 8KB (FR5725) SMCLK 4KB (FR5721) FRAM MCLK CPUXV2 and Working Registers 1KB Power Management Boot ROM SYS Watchdog PA P2.x PB P3.x I/O Ports P1/P2 2×8 I/Os I/O Ports P3 1×8 I/Os Interrupt, Wake up PA 1×16 I/Os Interrupt, Wake up PB 1×8 I/Os REF SVS RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG, SBW Interface TA0 TA1 TB0 TB1 TB2 (2) Timer_A 3 CC Registers (3) Timer_B 3 CC Registers RTC_B MPY32 CRC eUSCI_A0: UART, IrDA, SPI eUSCI_A1: UART, IrDA, SPI ADC10_B 10 bit 200 ksps Comp_D 16 channels eUSCI_B0: SPI, I2C 14 channels (12 ext/2 int) Copyright © 2016, Texas Instruments Incorporated Figure 6-3. Functional Block Diagram – DA Package – MSP430FR5721, MSP430FR5725, MSP430FR5729 Figure 6-4 shows the functional block diagram for the MSP430FR5723 and MSP430FR5727 devices in the DA package. PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16KB Clock System ACLK (FR5727) 8KB (FR5723) SMCLK FRAM MCLK CPUXV2 and Working Registers 1KB Boot ROM Power Management SYS PA P2.x PB P3.x I/O Ports P1/P2 2×8 I/Os I/O Ports P3 1×8 I/Os Interrupt, Wake up PA 1×16 I/Os Interrupt, Wake up PB 1×8 I/Os Watchdog SVS RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG, SBW Interface TA0 TA1 TB0 TB1 TB2 (2) Timer_A 3 CC Registers (3) Timer_B 3 CC Registers RTC_B MPY32 CRC eUSCI_A0: UART, IrDA, SPI eUSCI_B0: SPI, I2C eUSCI_A1: UART, IrDA, SPI Comp_D REF 16 channels Copyright © 2016, Texas Instruments Incorporated Figure 6-4. Functional Block Diagram – DA Package – MSP430FR5723, MSP430FR5727 40 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Figure 6-5 shows the functional block diagram for the MSP430FR5720, MSP430FR5724, and MSP430FR5728 devices in the RGE package. PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16KB Clock System ACLK (FR5728) 8KB (FR5724) SMCLK 4KB FRAM MCLK CPUXV2 and Working Registers 1KB (FR5720) Power Management Boot ROM SYS Watchdog REF SVS PA P2.x I/O Ports P1/P2 1×8 I/Os 1×3 I/Os Interrupt, Wake up PA 1×11 I/Os RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG, SBW Interface TA0 TA1 TB0 (2) Timer_A 3 CC Registers (1) Timer_B 3 CC Registers RTC_B MPY32 CRC ADC10_B eUSCI_A0: UART, IrDA, SPI 10 bit 200 ksps Comp_D 10 channels eUSCI_B0: SPI, I2C 8 channels (6 ext/2 int) Copyright © 2016, Texas Instruments Incorporated Figure 6-5. Functional Block Diagram – RGE Package – MSP430FR5720, MSP430FR5724, MSP430FR5728 Figure 6-6 shows the functional block diagram for the MSP430FR5722 and MSP430FR5726 devices in the RGE package. PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16KB Clock System ACLK (FR5722) SMCLK FRAM MCLK CPUXV2 and Working Registers I/O Ports P1/P2 1×8 I/Os 1×3 I/Os (FR5726) 8KB 1KB Boot ROM Power Management PA P2.x SYS Watchdog SVS Interrupt, Wake up PA 1×11 I/Os RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG, SBW Interface TA0 TA1 TB0 (2) Timer_A 3 CC Registers (1) Timer_B 3 CC Registers RTC_B MPY32 CRC eUSCI_A0: UART, IrDA, SPI eUSCI_B0: SPI, I2C Comp_D REF 10 channels Copyright © 2016, Texas Instruments Incorporated Figure 6-6. Functional Block Diagram – RGE Package – MSP430FR5722, MSP430FR5726 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 41 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Figure 6-7 shows the functional block diagram for the MSP430FR5720, MSP430FR5724, and MSP430FR5728 devices in the PW package. PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16KB Clock System ACLK (FR5728) 8KB (FR5724) SMCLK 4KB FRAM MCLK CPUXV2 and Working Registers 1KB (FR5720) Power Management Boot ROM SYS Watchdog REF SVS PA P2.x I/O Ports P1/P2 1×8 I/Os 1×7 I/Os Interrupt, Wake up PA 1×15 I/Os RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG, SBW Interface TA0 TA1 TB0 (2) Timer_A 3 CC Registers (1) Timer_B 3 CC Registers RTC_B MPY32 CRC ADC10_B eUSCI_A0: UART, IrDA, SPI 10 bit 200 ksps Comp_D 12 channels eUSCI_B0: SPI, I2C 10 channels (8 ext/2 int) Copyright © 2016, Texas Instruments Incorporated Figure 6-7. Functional Block Diagram – PW Package – MSP430FR5720, MSP430FR5724, MSP430FR5728 Figure 6-8 shows the functional block diagram for the MSP430FR5722 and MSP430FR5726 devices in the PW package. PJ.4/XIN DVCC DVSS VCORE PJ.5/XOUT AVCC AVSS P1.x 16KB Clock System ACLK (FR5722) SMCLK FRAM MCLK CPUXV2 and Working Registers I/O Ports P1/P2 1×8 I/Os 1×7 I/Os (FR5726) 8KB 1KB Boot ROM Power Management PA P2.x SYS Watchdog SVS Interrupt, Wake up PA 1×15 I/Os RAM Memory Protection Unit MAB DMA MDB 3 Channel EEM (S: 3+1) RST/NMI/SBWTDIO TEST/SBWTCK PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK JTAG, SBW Interface TA0 TA1 TB0 (2) Timer_A 3 CC Registers (1) Timer_B 3 CC Registers RTC_B MPY32 CRC eUSCI_A0: UART, IrDA, SPI eUSCI_B0: SPI, I2C Comp_D REF 12 channels Copyright © 2016, Texas Instruments Incorporated Figure 6-8. Functional Block Diagram – PW Package – MSP430FR5722, MSP430FR5726 42 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com 6.2 SLASE35B – MAY 2014 – REVISED APRIL 2016 CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. 6.3 Operating Modes The MSP430 has one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from low-power modes LPM0 through LPM4, service the request, and restore back to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption. The following eight operating modes can be configured by software: • Active mode (AM) • Low-power mode 3 (LPM3) – All clocks are active – CPU is disabled – ACLK active • Low-power mode 0 (LPM0) – MCLK and SMCLK disabled – CPU is disabled – DCO disabled – ACLK active – Complete data retention – MCLK disabled – SMCLK optionally active • Low-power mode 4 (LPM4) – Complete data retention – CPU is disabled – ACLK, MCLK, SMCLK disabled • Low-power mode 1 (LPM1) – Complete data retention – CPU is disabled – ACLK active • Low-power mode 3.5 (LPM3.5) – MCLK disabled – RTC operation – SMCLK optionally active – Internal regulator disabled – DCO disabled – No data retention – Complete data retention – I/O pad state retention – Wake-up input from RST, general• Low-power mode 2 (LPM2) purpose I/O, RTC events – CPU is disabled • Low-power mode 4.5 (LPM4.5) – ACLK active – Internal regulator disabled – MCLK disabled – No data retention – SMCLK optionally active – I/O pad state retention – DCO disabled – Wake-up input from RST and general– Complete data retention purpose I/O Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 43 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 6.4 www.ti.com Interrupt Vector Addresses The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table 6-1). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 6-1. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY System Reset Power-Up, Brownout, Supply Supervisors External Reset RST Watchdog Time-out (Watchdog mode) WDT, FRCTL MPU, CS, PMM Password Violation FRAM double bit error detection MPU segment violation Software POR, BOR SVSLIFG, SVSHIFG PMMRSTIFG WDTIFG WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW DBDIFG MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG, MPUSEG3IFG PMMPORIFG, PMMBORIFG (SYSRSTIV) (1) (2) Reset 0FFFEh 63, highest System NMI Vacant Memory Access JTAG Mailbox FRAM access time error FRAM single, double bit error detection VMAIFG JMBNIFG, JMBOUTIFG ACCTIMIFG SBDIFG, DBDIFG (SYSSNIV) (1) (Non)maskable 0FFFCh 62 User NMI External NMI Oscillator Fault NMIIFG, OFIFG (SYSUNIV) (1) (2) (Non)maskable 0FFFAh 61 Comparator_D Comparator_D interrupt flags (CBIV) (1) (3) Maskable 0FFF8h 60 TB0 Maskable 0FFF6h 59 TB0 TB0CCR1 CCIFG1 to TB0CCR2 CCIFG2, TB0IFG (TB0IV) (1) (3) Maskable 0FFF4h 58 Watchdog Timer (Interval Timer Mode) WDTIFG Maskable 0FFF2h 57 eUSCI_A0 Receive and Transmit UCA0RXIFG, UCA0TXIFG (SPI mode) UCA0STTIFG, UCA0TXCPTIFG, UCA0RXIFG, UXA0TXIFG (UART mode) (UCA0IV) (1) (3) Maskable 0FFF0h 56 eUSCI_B0 Receive and Transmit UCB0STTIFG, UCB0TXCPTIFG, UCB0RXIFG, UCB0TXIFG (SPI mode) UCB0ALIFG, UCB0NACKIFG, UCB0STTIFG, UCB0STPIFG, UCB0RXIFG0, UCB0TXIFG0, UCB0RXIFG1, UCB0TXIFG1, UCB0RXIFG2, UCB0TXIFG2, UCB0RXIFG3, UCB0TXIFG3, UCB0CNTIFG, UCB0BIT9IFG (I2C mode) (UCB0IV) (1) (3) Maskable 0FFEEh 55 ADC10_B ADC10OVIFG, ADC10TOVIFG, ADC10HIIFG, ADC10LOIFG ADC10INIFG, ADC10IFG0 (ADC10IV) (1) (3) (4) Maskable 0FFECh 54 Maskable 0FFEAh 53 Maskable 0FFE8h 52 TA0 TA0 (1) (2) (3) (4) 44 TB0CCR0 CCIFG0 (3) TA0CCR0 CCIFG0 (3) TA0CCR1 CCIFG1 to TA0CCR2 CCIFG2, TA0IFG (TA0IV) (1) (3) Multiple source flags A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. Interrupt flags are located in the module. Only on devices with ADC, otherwise reserved. Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-1. Interrupt Sources, Flags, and Vectors (continued) INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY eUSCI_A1 Receive and Transmit UCA1RXIFG, UCA1TXIFG (SPI mode) UCA1STTIFG, UCA1TXCPTIFG, UCA1RXIFG, UXA1TXIFG (UART mode) (UCA1IV) (1) (3) Maskable 0FFE6h 51 DMA DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) (3) Maskable 0FFE4h 50 Maskable 0FFE2h 49 TA1 TA1CCR0 CCIFG0 TA1 TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV) (1) (3) Maskable 0FFE0h 48 I/O Port P1 P1IFG.0 to P1IFG.7 (P1IV) (1) (3) Maskable 0FFDEh 47 TB1 TB1CCR0 CCIFG0 (3) Maskable 0FFDCh 46 TB1 TB1CCR1 CCIFG1 to TB1CCR2 CCIFG2, TB1IFG (TB1IV) (1) (3) Maskable 0FFDAh 45 I/O Port P2 P2IFG.0 to P2IFG.7 (P2IV) (1) (3) Maskable 0FFD8h 44 TB2 TB2CCR0 CCIFG0 (3) Maskable 0FFD6h 43 TB2 TB2CCR1 CCIFG1 to TB2CCR2 CCIFG2, TB2IFG (TB2IV) (1) (3) Maskable 0FFD4h 42 I/O Port P3 P3IFG.0 to P3IFG.7 (P3IV) (1) (3) Maskable 0FFD2h 41 I/O Port P4 P4IFG.0 to P4IFG.2 (P4IV) (1) (3) Maskable 0FFD0h 40 RTC_B RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) (1) (3) Maskable 0FFCEh 39 0FFCCh 38 Reserved (5) (3) Reserved (5) ⋮ ⋮ 0FF80h 0, lowest Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 45 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 6.5 www.ti.com Memory Organization Table 6-2 describes the memory organization for all device variants. Table 6-2. Memory Organization (1) (2) MSP430FR5726 MSP430FR5727 MSP430FR5728 MSP430FR5729 MSP430FR5722 MSP430FR5723 MSP430FR5724 MSP430FR5725 MSP430FR5720 MSP430FR5721 15.5KB 00FFFFh–00FF80h 00FF7Fh–00C200h 8.0KB 00FFFFh–00FF80h 00FF7Fh–00E000h 4KB 00FFFFh–00FF80h 00FF7Fh–00F000h RAM 1KB 001FFFh–001C00h 1KB 001FFFh–001C00h 1KB 001FFFh–001C00h Device Descriptor Info (TLV) (FRAM) 128 B 001A7Fh–001A00h 128 B 001A7Fh–001A00h 128 B 001A7Fh–001A00h N/A 0019FFh–001980h Address space mirrored to Info A 0019FFh–001980h Address space mirrored to Info A 0019FFh–001980h Address space mirrored to Info A N/A 00197Fh–001900h Address space mirrored to Info B 00197Fh–001900h Address space mirrored to Info B 00197Fh–001900h Address space mirrored to Info B Info A 128 B 0018FFh–001880h 128 B 0018FFh–001880h 128 B 0018FFh–001880h Info B 128 B 00187Fh–001800h 128 B 00187Fh–001800h 128 B 00187Fh–001800h BSL 3 512 B 0017FFh–001600h 512 B 0017FFh–001600h 512 B 0017FFh–001600h BSL 2 512 B 0015FFh–001400h 512 B 0015FFh–001400h 512 B 0015FFh–001400h BSL 1 512 B 0013FFh–001200h 512 B 0013FFh–001200h 512 B 0013FFh–001200h BSL 0 512 B 0011FFh–001000h 512 B 0011FFh–001000h 512 B 0011FFh–001000h 4KB 000FFFh–0h 4KB 000FFFh–0h 4KB 000FFFh–0h Memory (FRAM) Main: interrupt vectors Main: code memory Total Size Information memory (FRAM) Bootloader (BSL) memory (ROM) Peripherals (1) (2) 46 Size N/A = Not available All address space not listed in this table is considered vacant memory. Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com 6.6 SLASE35B – MAY 2014 – REVISED APRIL 2016 Bootloader (BSL) The BSL enables users to program the FRAM or RAM using a UART serial interface. Access to the device memory by the BSL is protected by an user-defined password. Use of the BSL requires four pins (see Table 6-3). BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see the MSP430 Programming With the Bootloader User's Guide. Table 6-3. BSL Pin Requirements and Functions 6.7 6.7.1 DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P2.0 Data transmit P2.1 Data receive VCC Power supply VSS Ground supply JTAG Operation JTAG Standard Interface The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 6-4 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface. Table 6-4. JTAG Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input, TCLK input PJ.0/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 47 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 6.7.2 www.ti.com Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the 2-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 6-5 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface. Table 6-5. Spy-Bi-Wire Pin Requirements and Functions 6.8 DEVICE SIGNAL DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input and output VCC Power supply VSS Ground supply FRAM The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. Features of the FRAM include: • Low-power ultra-fast write nonvolatile memory • Byte and word access capability • Programmable and automated wait state generation • Error correction coding (ECC) with single bit detection and correction, double bit detection For important software design information regarding FRAM including but not limited to partitioning the memory layout according to application-specific code, constant, and data space requirements, the use of FRAM to optimize application energy consumption, and the use of the memory protection unit (MPU) to maximize application robustness by protecting the program code against unintended write accesses, see MSP430™ FRAM Technology – How To and Best Practices. 6.9 Memory Protection Unit (MPU) The FRAM can be protected from inadvertent CPU execution or write access by the MPU. Features of the MPU include: • Main memory partitioning programmable up to three segments • Access rights for each segment (main and information memory) can be individually selected • Access violation flags with interrupt capability for easy servicing of access violations 6.10 Peripherals Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed using all instructions. For complete module descriptions, see the MSP430FR57xx Family User's Guide. 6.10.1 Digital I/O Up to four 8-bit I/O ports are implemented: • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt conditions is possible. • Programmable pullup or pulldown on all ports. • Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all ports. • Read and write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise or word-wise in pairs. 48 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 6.10.2 Oscillator and Clock System (CS) The clock system includes support for a 32-kHz watch crystal oscillator XT1 (LF mode), an internal verylow-power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT1 (HF mode). The clock system module is designed to meet the requirements of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock system module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1 LF mode), a high-frequency crystal (XT1 HF mode), the internal VLO, or the internal DCO. • Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by the same sources made available to ACLK. • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by the same sources made available to ACLK. 6.10.3 Power-Management Module (PMM) The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the primary and core supplies. 6.10.4 Hardware Multiplier (MPY) The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations. 6.10.5 Real-Time Clock (RTC_B) The RTC_B module contains an integrated real-time clock (RTC) (calendar mode). Calendar mode integrates an internal calendar which compensates for months with fewer than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in LPM3.5 mode to minimize power consumption. 6.10.6 Watchdog Timer (WDT_A) The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. 6.10.7 System Module (SYS) The SYS module handles many of the system functions within the device. These include power-on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators (see Table 6-6), bootloader entry mechanisms, and configuration management (device descriptors). It also includes a data exchange mechanism using JTAG called a JTAG mailbox that can be used in the application. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 49 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Table 6-6. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER SYSRSTIV, System Reset ADDRESS 019Eh SYSSNIV, System NMI 019Ch INTERRUPT EVENT No interrupt pending 00h Brownout (BOR) 02h RSTIFG RST/NMI (BOR) 04h PMMSWBOR software BOR (BOR) 06h LPMx.5 wake up (BOR) 08h Security violation (BOR) 0Ah SVSLIFG SVSL event (BOR) 0Ch SVSHIFG SVSH event (BOR) 0Eh Reserved 10h Reserved 12h PMMSWPOR software POR (POR) 14h WDTIFG watchdog time-out (PUC) 16h WDTPW password violation (PUC) 18h FRCTLPW password violation (PUC) 1Ah DBDIFG FRAM double bit error (PUC) 1Ch Peripheral area fetch (PUC) 1Eh PMMPW PMM password violation (PUC) 20h MPUPW MPU password violation (PUC) 22h CSPW CS password violation (PUC) 24h MPUSEGIIFG information memory segment violation (PUC) 26h MPUSEG1IFG segment 1 memory violation (PUC) 28h MPUSEG2IFG segment 2 memory violation (PUC) 2Ah MPUSEG3IFG segment 3 memory violation (PUC) 2Ch Reserved 2Eh Reserved 30h to 3Eh No interrupt pending 00h DBDIFG FRAM double bit error 02h ACCTIMIFG access time error 04h Reserved 0Eh VMAIFG Vacant memory access 10h JMBINIFG JTAG mailbox input 12h JMBOUTIFG JTAG mailbox output 14h SBDIFG FRAM single bit error Reserved SYSUNIV, User NMI 50 Detailed Description 019Ah VALUE PRIORITY Highest Lowest Highest 16h 18h to 1Eh No interrupt pending 00h NMIIFG NMI pin 02h OFIFG oscillator fault 04h Reserved 06h Reserved 08h Reserved 0Ah to 1Eh Lowest Highest Lowest Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 6.10.8 DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_B conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 6-7 lists all triggers to start DMA transfers. Table 6-7. DMA Trigger Assignments (1) TRIGGER CHANNEL 0 CHANNEL 1 0 DMAREQ DMAREQ DMAREQ 1 TA0CCR0 CCIFG TA0CCR0 CCIFG TA0CCR0 CCIFG 2 TA0CCR2 CCIFG TA0CCR2 CCIFG TA0CCR2 CCIFG 3 TA1CCR0 CCIFG TA1CCR0 CCIFG TA1CCR0 CCIFG 4 TA1CCR2 CCIFG TA1CCR2 CCIFG TA1CCR2 CCIFG 5 Reserved Reserved Reserved 6 Reserved Reserved Reserved 7 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 8 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG TB1CCR0 CCIFG (2) TB1CCR0 CCIFG (2) TB1CCR0 CCIFG (2) 10 TB1CCR2 CCIFG (2) TB1CCR2 CCIFG (2) TB1CCR2 CCIFG (2) 11 TB2CCR0 CCIFG (3) TB2CCR0 CCIFG (3) TB2CCR0 CCIFG (3) TB2CCR2 CCIFG (3) TB2CCR2 CCIFG (3) TB2CCR2 CCIFG (3) 9 12 13 Reserved Reserved Reserved 14 UCA0RXIFG UCA0RXIFG UCA0RXIFG 15 16 17 18 (1) (2) (3) (4) (5) CHANNEL 2 UCA0TXIFG UCA1RXIFG (4) UCA1TXIFG (4) UCB0RXIFG0 UCA0TXIFG UCA1RXIFG (4) UCA1TXIFG (4) UCB0RXIFG0 UCA0TXIFG UCA1RXIFG (4) UCA1TXIFG (4) UCB0RXIFG0 19 UCB0TXIFG0 UCB0TXIFG0 UCB0TXIFG0 20 UCB0RXIFG1 UCB0RXIFG1 UCB0RXIFG1 21 UCB0TXIFG1 UCB0TXIFG1 UCB0TXIFG1 22 UCB0RXIFG2 UCB0RXIFG2 UCB0RXIFG2 23 UCB0TXIFG2 UCB0TXIFG2 UCB0TXIFG2 24 UCB0RXIFG3 UCB0RXIFG3 UCB0RXIFG3 25 UCB0TXIFG3 26 ADC10IFGx 27 Reserved Reserved Reserved 28 Reserved Reserved Reserved 29 MPY ready MPY ready MPY ready 30 DMA2IFG DMA0IFG DMA1IFG 31 DMAE0 DMAE0 DMAE0 (5) UCB0TXIFG3 ADC10IFGx (5) UCB0TXIFG3 ADC10IFGx (5) If a reserved trigger source is selected, no trigger is generated. Only on devices with TB1, otherwise reserved Only on devices with TB2, otherwise reserved Only on devices with eUSCI_A1, otherwise reserved Only on devices with ADC, otherwise reserved Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 51 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.10.9 Enhanced Universal Serial Communication Interface (eUSCI) The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous communication protocols such as SPI (3-pin or 4-pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each eUSCI module contains two portions, A and B. The eUSCI_An module provides support for SPI (3-pin or 4-pin), UART, enhanced UART, or IrDA. The eUSCI_Bn module provides support for SPI (3-pin or 4-pin) or I2C. The MSP430FR572x series include one or two eUSCI_An modules (eUSCI_A0, eUSCI_A1) and one eUSCI_Bn module (eUSCI_B). 6.10.10 TA0, TA1 TA0 and TA1 are 16-bit timers/counters (Timer_A type) with three capture/compare registers each. TA0 and TA1 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-8 and Table 6-9). TA0 and TA1 have extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-8. TA0 Signal Connections RHA INPUT PIN NUMBER RGE DA PW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 3-P1.2 3-P1.2 7-P1.2 7-P1.2 TA0CLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer N/A N/A OUTPUT PIN NUMBER RHA RGE DA PW 3-P1.2 3-P1.2 7-P1.2 7-P1.2 TA0CLK TACLK 28-P1.6 16-P1.6 30-P1.6 22-P1.6 TA0.0 CCI0A 28-P1.6 16-P1.6 30-P1.6 22-P1.6 34-P2.3 N/A 36-P2.3 27-P2.3 TA0.0 CCI0B 34-P2.3 N/A 36-P2.3 27-P2.3 DVSS GND 1-P1.0 1-P1.0 5-P1.0 5-P1.0 CCR0 1-P1.0 2-P1.1 1-P1.0 2-P1.1 5-P1.0 6-P1.1 (1) Only on devices with ADC 52 Detailed Description 5-P1.0 6-P1.1 DVCC VCC TA0.1 CCI1A CDOUT (internal) CCI1B DVSS GND CCR1 DVCC VCC TA0.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC TA0 TA1 TA0.0 TA0.1 ADC10 ADC10 ADC10 ADC10 (internal) (1) (internal) (1) (internal) (1) (internal) (1) ADC10SHSx = ADC10SHSx = ADC10SHSx = ADC10SHSx = {1} {1} {1} {1} 2-P1.1 CCR2 TA2 2-P1.1 6-P1.1 6-P1.1 TA0.2 Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-9. TA1 Signal Connections RHA INPUT PIN NUMBER RGE DA PW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 2-P1.1 2-P1.1 6-P1.1 6-P1.1 TA1CLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer N/A N/A OUTPUT PIN NUMBER RHA RGE DA PW 2-P1.1 2-P1.1 6-P1.1 6-P1.1 TA1CLK TACLK 29-P1.7 17-P1.7 31-P1.7 23-P1.7 TA1.0 CCI0A 29-P1.7 17-P1.7 31-P1.7 23-P1.7 35-P2.4 N/A 37-P2.4 28-P2.4 TA1.0 CCI0B 35-P2.4 N/A 37-P2.4 28-P2.4 DVSS GND 3-P1.2 3-P1.2 7-P1.2 7-P1.2 8-P1.3 4-P1.3 12-P1.3 8-P1.3 CCR0 3-P1.2 8-P1.3 3-P1.2 4-P1.3 7-P1.2 12-P1.3 7-P1.2 8-P1.3 DVCC VCC TA1.1 CCI1A CDOUT (internal) CCI1B DVSS GND CCR1 DVCC VCC TA1.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC CCR2 TA0 TA1 TA2 TA1.0 TA1.1 TA1.2 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 53 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.10.11 TB0, TB1, TB2 TB0, TB1, and TB2 are 16-bit timers/counters (Timer_B type) with three capture/compare registers each. TB0, TB1, and TB2 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-10 through Table 6-12). TB0, TB1, and TB2 have extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-10. TB0 Signal Connections RHA INPUT PIN NUMBER RGE DA PW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 21-P2.0 13-P2.0 23-P2.0 19-P2.0 TB0CLK TBCLK ACLK (internal) ACLK SMCLK (internal) SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer N/A N/A OUTPUT PIN NUMBER RHA RGE DA PW 21-P2.0 13-P2.0 23-P2.0 19-P2.0 TB0CLK TBCLK 22-P2.1 14-P2.1 24-P2.1 20-P2.1 TB0.0 CCI0A 22-P2.1 14-P2.1 24-P2.1 20-P2.1 17-P2.5 N/A 19-P2.5 15-P2.5 TB0.0 CCI0B 17-P2.5 N/A 19-P2.5 15-P2.5 CCR0 DVSS 9-P1.4 10-P1.5 5-P1.4 6‑P1.5 13-P1.4 14-P1.5 (1) Only on devices with ADC 54 Detailed Description 9-P1.4 19-P1.5 TB0 TB0.0 GND DVCC VCC TB0.1 CCI1A CDOUT (internal) CCI1B DVSS GND 9-P1.4 CCR1 DVCC VCC TB0.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC ADC10 ADC10 ADC10 ADC10 (internal) (1) (internal) (1) (internal) (1) (internal) (1) ADC10SHSx = ADC10SHSx = ADC10SHSx = ADC10SHSx = {2} {2} {2} {2} TB1 TB0.1 10-P1.5 CCR2 TB2 5-P1.4 13-P1.4 9-P1.4 ADC10 ADC10 ADC10 ADC10 (internal) (1) (internal) (1) (internal) (1) (internal) (1) ADC10SHSx = ADC10SHSx = ADC10SHSx = ADC10SHSx = {3} {3} {3} {3} 6-P1.5 14-P1.5 19-P1.5 TB0.2 Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-11. TB1 Signal Connections RHA INPUT PIN NUMBER RGE DA PW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 26-P3.6 N/A (DVSS) 28-P3.6 N/A (DVSS) TB1CLK TBCLK ACLK (internal) ACLK SMCLK (internal) SMCLK (1) MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer N/A N/A OUTPUT PIN NUMBER RHA RGE DA PW 26-P3.6 N/A (DVSS) 28-P3.6 N/A (DVSS) TB1CLK TBCLK 23-P2.2 N/A (DVSS) 25-P2.2 N/A (DVSS) TB1.0 CCI0A 23-P2.2 N/A 25-P2.2 N/A 18-P2.6 N/A (DVSS) 20-P2.6 N/A (DVSS) TB1.0 CCI0B 18-P2.6 N/A 20-P2.6 N/A DVSS GND CCR0 TB0 TB1.0 DVCC VCC 28-P1.6 N/A (DVSS) 30-P1.6 N/A (DVSS) TB1.1 CCI1A 28-P1.6 N/A 30-P1.6 N/A 24-P3.4 N/A (DVSS) 26-P3.4 N/A (DVSS) TB1.1 CCI1B 24-P3.4 N/A 26-P3.4 N/A DVSS GND CCR1 TB1 TB1.1 DVCC VCC 29-P1.7 N/A (DVSS) 31-P1.7 N/A (DVSS) TB1.2 CCI2A 29-P1.7 N/A 31-P1.7 N/A 25-P3.5 N/A (DVSS) 27-P3.5 N/A (DVSS) TB1.2 CCI2B 25-P3.5 N/A 27-P3.5 N/A DVSS GND DVCC VCC (1) CCR2 TB2 TB1.2 TB1 is not present on all device types. Table 6-12. TB2 Signal Connections RHA INPUT PIN NUMBER RGE DA PW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 24-P3.4 N/A (DVSS) 26-P3.4 N/A (DVSS) TB2CLK TBCLK ACLK (internal) ACLK SMCLK (internal) SMCLK (1) MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer N/A N/A OUTPUT PIN NUMBER RHA RGE DA PW 24-P3.4 N/A (DVSS) 26-P3.4 N/A (DVSS) TB2CLK TBCLK 21-P2.0 N/A (DVSS) 23-P2.0 N/A (DVSS) TB2.0 CCI0A 21-P2.0 N/A 23-P2.0 N/A 15-P4.0 N/A (DVSS) N/A (DVSS) N/A (DVSS) TB2.0 CCI0B 15-P4.0 N/A 36-P4.0 N/A DVSS GND CCR0 TB0 TB2.0 DVCC VCC 22-P2.1 N/A (DVSS) 24-P2.1 N/A (DVSS) TB2.1 CCI1A 22-P2.1 N/A 24-P2.1 N/A 26-P3.6 N/A (DVSS) 28-P3.6 N/A (DVSS) TB2.1 CCI1B 26-P3.6 N/A 28-P3.6 N/A DVSS GND CCR1 TB1 TB2.1 DVCC VCC 23-P2.2 N/A (DVSS) 25-P2.2 N/A (DVSS) TB2.2 CCI2A 23-P2.2 N/A 25-P2.2 N/A 27-P3.7 N/A (DVSS) 29-P3.7 N/A (DVSS) TB2.2 CCI2B 27-P3.7 N/A 29-P3.7 N/A DVSS GND DVCC VCC (1) CCR2 TB2 TB2.2 TB2 is not present on all device types. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 55 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.10.12 ADC10_B The ADC10_B module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and a conversion result buffer. A window comparator with lower and an upper limits allows CPU-independent result monitoring with three window comparator interrupt flags. 6.10.13 Comparator_D The primary function of the Comparator_D module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals. 6.10.14 CRC16 The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. 6.10.15 Shared Reference (REF) The REF module generates all of the critical reference voltages that can be used by the various analog peripherals in the device. 6.10.16 Embedded Emulation Module (EEM) The EEM supports real-time in-system debugging. The S version of the EEM has the following features: • Three hardware triggers or breakpoints on memory access • One hardware trigger or breakpoint on CPU register write access • Up to four hardware triggers can be combined to form complex triggers or breakpoints • One cycle counter • Clock control on module level 56 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 6.10.17 Peripheral File Map Table 6-13 lists the base address and offset range of all available peripherals. Table 6-13. Peripherals BASE ADDRESS OFFSET ADDRESS RANGE Special Functions (see Table 6-14) 0100h 000h–01Fh PMM (see Table 6-15) 0120h 000h–010h FRAM Control (see Table 6-16) 0140h 000h–00Fh CRC16 (see Table 6-17) 0150h 000h–007h Watchdog (see Table 6-18) 015Ch 000h–001h CS (see Table 6-19) 0160h 000h–00Fh SYS (see Table 6-20) 0180h 000h–01Fh Shared Reference (see Table 6-21) 01B0h 000h–001h Port P1, P2 (see Table 6-22) 0200h 000h–01Fh Port P3, P4 (see Table 6-23) 0220h 000h–01Fh Port PJ (see Table 6-24) 0320h 000h–01Fh TA0 (see Table 6-25) 0340h 000h–02Fh TA1 (see Table 6-26) 0380h 000h–02Fh TB0 (see Table 6-27) 03C0h 000h–02Fh TB1 (see Table 6-28) 0400h 000h–02Fh TB2 (see Table 6-29) 0440h 000h–02Fh Real-Time Clock (RTC_B) (see Table 6-30) 04A0h 000h–01Fh 32-Bit Hardware Multiplier (see Table 6-31) 04C0h 000h–02Fh DMA General Control (see Table 6-32) 0500h 000h–00Fh DMA Channel 0 (see Table 6-32) 0510h 000h–00Ah DMA Channel 1 (see Table 6-32) 0520h 000h–00Ah DMA Channel 2 (see Table 6-32) 0530h 000h–00Ah MPU Control (see Table 6-33) 05A0h 000h–00Fh eUSCI_A0 (see Table 6-34) 05C0h 000h–01Fh eUSCI_A1 (see Table 6-35) 05E0h 000h–01Fh eUSCI_B0 (see Table 6-36) 0640h 000h–02Fh ADC10_B (see Table 6-37) 0700h 000h–03Fh Comparator_D (see Table 6-38) 08C0h 000h–00Fh MODULE NAME Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 57 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Table 6-14. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION REGISTER OFFSET SFR interrupt enable SFRIE1 00h SFR interrupt flag SFRIFG1 02h SFR reset pin control SFRRPCR 04h Table 6-15. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION REGISTER OFFSET PMM Control 0 PMMCTL0 00h PMM interrupt flags PMMIFG 0Ah PM5 control 0 PM5CTL0 10h Table 6-16. FRAM Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET FRAM control 0 FRCTLCTL0 00h General control 0 GCCTL0 04h General control 1 GCCTL1 06h Table 6-17. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION REGISTER OFFSET CRC data input CRC16DI 00h CRC data input reverse byte CRCDIRB 02h CRC initialization and result CRCINIRES 04h CRC result reverse byte CRCRESR 06h Table 6-18. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control REGISTER WDTCTL OFFSET 00h Table 6-19. CS Registers (Base Address: 0160h) REGISTER DESCRIPTION REGISTER OFFSET CS control 0 CSCTL0 00h CS control 1 CSCTL1 02h CS control 2 CSCTL2 04h CS control 3 CSCTL3 06h CS control 4 CSCTL4 08h CS control 5 CSCTL5 0Ah CS control 6 CSCTL6 0Ch 58 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-20. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION REGISTER OFFSET System control SYSCTL 00h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus Error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System NMI vector generator SYSSNIV 1Ch Reset vector generator SYSRSTIV 1Eh Table 6-21. Shared Reference Registers (Base Address: 01B0h) REGISTER DESCRIPTION Shared reference control REGISTER REFCTL OFFSET 00h Table 6-22. Port P1, P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION REGISTER OFFSET Port P1 input P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 pullup/pulldown enable P1REN 06h Port P1 selection 0 P1SEL0 0Ah Port P1 selection 1 P1SEL1 0Ch Port P1 interrupt vector word P1IV 0Eh Port P1 complement selection P1SELC 16h Port P1 interrupt edge select P1IES 18h Port P1 interrupt enable P1IE 1Ah Port P1 interrupt flag P1IFG 1Ch Port P2 input P2IN 01h Port P2 output P2OUT 03h Port P2 direction P2DIR 05h Port P2 pullup/pulldown enable P2REN 07h Port P2 selection 0 P2SEL0 0Bh Port P2 selection 1 P2SEL1 0Dh Port P2 complement selection P2SELC 17h Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h Port P2 interrupt enable P2IE 1Bh Port P2 interrupt flag P2IFG 1Dh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 59 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Table 6-23. Port P3, P4 Registers (Base Address: 0220h) REGISTER DESCRIPTION REGISTER OFFSET Port P3 input P3IN 00h Port P3 output P3OUT 02h Port P3 direction P3DIR 04h Port P3 pullup/pulldown enable P3REN 06h Port P3 selection 0 P3SEL0 0Ah Port P3 selection 1 P3SEL1 0Ch Port P3 interrupt vector word P3IV 0Eh Port P3 complement selection P3SELC 16h Port P3 interrupt edge select P3IES 18h Port P3 interrupt enable P3IE 1Ah Port P3 interrupt flag P3IFG 1Ch Port P4 input P4IN 01h Port P4 output P4OUT 03h Port P4 direction P4DIR 05h Port P4 pullup/pulldown enable P4REN 07h Port P4 selection 0 P4SEL0 0Bh Port P4 selection 1 P4SEL1 0Dh Port P4 complement selection P4SELC 17h Port P4 interrupt vector word P4IV 1Eh Port P4 interrupt edge select P4IES 19h Port P4 interrupt enable P4IE 1Bh Port P4 interrupt flag P4IFG 1Dh Table 6-24. Port J Registers (Base Address: 0320h) REGISTER DESCRIPTION REGISTER OFFSET Port PJ input PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ pullup/pulldown enable PJREN 06h Port PJ selection 0 PJSEL0 0Ah Port PJ selection 1 PJSEL1 0Ch Port PJ complement selection PJSELC 16h 60 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-25. TA0 Registers (Base Address: 0340h) REGISTER DESCRIPTION REGISTER OFFSET TA0 control TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h TA0 counter TA0R 10h Capture/compare 0 TA0CCR0 12h Capture/compare 1 TA0CCR1 14h Capture/compare 2 TA0CCR2 16h TA0 expansion 0 TA0EX0 20h TA0 interrupt vector TA0IV 2Eh Table 6-26. TA1 Registers (Base Address: 0380h) REGISTER DESCRIPTION REGISTER OFFSET TA1 control TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h Capture/compare control 2 TA1CCTL2 06h TA1 counter TA1R 10h Capture/compare 0 TA1CCR0 12h Capture/compare 1 TA1CCR1 14h Capture/compare 2 TA1CCR2 16h TA1 expansion 0 TA1EX0 20h TA1 interrupt vector TA1IV 2Eh Table 6-27. TB0 Registers (Base Address: 03C0h) REGISTER DESCRIPTION REGISTER OFFSET TB0 control TB0CTL 00h Capture/compare control 0 TB0CCTL0 02h Capture/compare control 1 TB0CCTL1 04h Capture/compare control 2 TB0CCTL2 06h TB0 counter TB0R 10h Capture/compare 0 TB0CCR0 12h Capture/compare 1 TB0CCR1 14h Capture/compare 2 TB0CCR2 16h TB0 expansion 0 TB0EX0 20h TB0 interrupt vector TB0IV 2Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 61 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Table 6-28. TB1 Registers (Base Address: 0400h) REGISTER DESCRIPTION REGISTER OFFSET TB1 control TB1CTL 00h Capture/compare control 0 TB1CCTL0 02h Capture/compare control 1 TB1CCTL1 04h Capture/compare control 2 TB1CCTL2 06h TB1 counter TB1R 10h Capture/compare 0 TB1CCR0 12h Capture/compare 1 TB1CCR1 14h Capture/compare 2 TB1CCR2 16h TB1 expansion 0 TB1EX0 20h TB1 interrupt vector TB1IV 2Eh Table 6-29. TB2 Registers (Base Address: 0440h) REGISTER DESCRIPTION REGISTER OFFSET TB2 control TB2CTL 00h Capture/compare control 0 TB2CCTL0 02h Capture/compare control 1 TB2CCTL1 04h Capture/compare control 2 TB2CCTL2 06h TB2 counter TB2R 10h Capture/compare 0 TB2CCR0 12h Capture/compare 1 TB2CCR1 14h Capture/compare 2 TB2CCR2 16h TB2 expansion 0 TB2EX0 20h TB2 interrupt vector TB2IV 2Eh 62 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-30. Real-Time Clock Registers (Base Address: 04A0h) REGISTER DESCRIPTION REGISTER OFFSET RTC control 0 RTCCTL0 00h RTC control 1 RTCCTL1 01h RTC control 2 RTCCTL2 02h RTC control 3 RTCCTL3 03h RTC prescaler 0 control RTCPS0CTL 08h RTC prescaler 1 control RTCPS1CTL 0Ah RTC prescaler 0 RTCPS0 0Ch RTC prescaler 1 RTCPS1 0Dh RTC interrupt vector word RTCIV 0Eh RTC seconds, RTC counter 1 RTCSEC, RTCNT1 10h RTC minutes, RTC counter 2 RTCMIN, RTCNT2 11h RTC hours, RTC counter 3 RTCHOUR, RTCNT3 12h RTC day of week, RTC counter 4 RTCDOW, RTCNT4 13h RTC days RTCDAY 14h RTC month RTCMON 15h RTC year low RTCYEARL 16h RTC year high RTCYEARH 17h RTC alarm minutes RTCAMIN 18h RTC alarm hours RTCAHOUR 19h RTC alarm day of week RTCADOW 1Ah RTC alarm days RTCADAY 1Bh Binary-to-BCD conversion register BIN2BCD 1Ch BCD-to-binary conversion register BCD2BIN 1Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 63 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Table 6-31. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION REGISTER OFFSET 16-bit operand 1 – multiply MPY 00h 16-bit operand 1 – signed multiply MPYS 02h 16-bit operand 1 – multiply accumulate MAC 04h 16-bit operand 1 – signed multiply accumulate MACS 06h 16-bit operand 2 OP2 08h 16 × 16 result low word RESLO 0Ah 16 × 16 result high word RESHI 0Ch 16 × 16 sum extension register SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32 control register 0 MPY32CTL0 2Ch 64 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-32. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 0 control DMA0CTL 00h DMA channel 0 source address low DMA0SAL 02h DMA channel 0 source address high DMA0SAH 04h DMA channel 0 destination address low DMA0DAL 06h DMA channel 0 destination address high DMA0DAH 08h DMA channel 0 transfer size DMA0SZ 0Ah DMA channel 1 control DMA1CTL 00h DMA channel 1 source address low DMA1SAL 02h DMA channel 1 source address high DMA1SAH 04h DMA channel 1 destination address low DMA1DAL 06h DMA channel 1 destination address high DMA1DAH 08h DMA channel 1 transfer size DMA1SZ 0Ah DMA channel 2 control DMA2CTL 00h DMA channel 2 source address low DMA2SAL 02h DMA channel 2 source address high DMA2SAH 04h DMA channel 2 destination address low DMA2DAL 06h DMA channel 2 destination address high DMA2DAH 08h DMA channel 2 transfer size DMA2SZ 0Ah DMA module control 0 DMACTL0 00h DMA module control 1 DMACTL1 02h DMA module control 2 DMACTL2 04h DMA module control 3 DMACTL3 06h DMA module control 4 DMACTL4 08h DMA interrupt vector DMAIV 0Ah Table 6-33. MPU Control Registers (Base Address: 05A0h) REGISTER DESCRIPTION REGISTER OFFSET MPU control 0 MPUCTL0 00h MPU control 1 MPUCTL1 02h MPU segmentation MPUSEG 04h MPU access management MPUSAM 06h Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 65 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Table 6-34. eUSCI_A0 Registers (Base Address: 05C0h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA0CTLW0 00h eUSCI _A control word 1 UCA0CTLW1 02h eUSCI_A baud rate 0 UCA0BR0 06h eUSCI_A baud rate 1 UCA0BR1 07h eUSCI_A modulation control UCA0MCTLW 08h eUSCI_A status UCA0STAT 0Ah eUSCI_A receive buffer UCA0RXBUF 0Ch eUSCI_A transmit buffer UCA0TXBUF 0Eh eUSCI_A LIN control UCA0ABCTL 10h eUSCI_A IrDA transmit control UCA0IRTCTL 12h eUSCI_A IrDA receive control UCA0IRRCTL 13h eUSCI_A interrupt enable UCA0IE 1Ah eUSCI_A interrupt flags UCA0IFG 1Ch eUSCI_A interrupt vector word UCA0IV 1Eh Table 6-35. eUSCI_A1 Registers (Base Address: 05E0h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA1CTLW0 00h eUSCI _A control word 1 UCA1CTLW1 02h eUSCI_A baud rate 0 UCA1BR0 06h eUSCI_A baud rate 1 UCA1BR1 07h eUSCI_A modulation control UCA1MCTLW 08h eUSCI_A status UCA1STAT 0Ah eUSCI_A receive buffer UCA1RXBUF 0Ch eUSCI_A transmit buffer UCA1TXBUF 0Eh eUSCI_A LIN control UCA1ABCTL 10h eUSCI_A IrDA transmit control UCA1IRTCTL 12h eUSCI_A IrDA receive control UCA1IRRCTL 13h eUSCI_A interrupt enable UCA1IE 1Ah eUSCI_A interrupt flags UCA1IFG 1Ch eUSCI_A interrupt vector word UCA1IV 1Eh 66 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-36. eUSCI_B0 Registers (Base Address: 0640h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_B control word 0 UCB0CTLW0 00h eUSCI_B control word 1 UCB0CTLW1 02h eUSCI_B bit rate 0 UCB0BR0 06h eUSCI_B bit rate 1 UCB0BR1 07h eUSCI_B status word UCB0STATW 08h eUSCI_B byte counter threshold UCB0TBCNT 0Ah eUSCI_B receive buffer UCB0RXBUF 0Ch eUSCI_B transmit buffer UCB0TXBUF 0Eh eUSCI_B I2C own address 0 UCB0I2COA0 14h eUSCI_B I2C own address 1 UCB0I2COA1 16h eUSCI_B I2C own address 2 UCB0I2COA2 18h eUSCI_B I2C own address 3 UCB0I2COA3 1Ah eUSCI_B received address UCB0ADDRX 1Ch eUSCI_B address mask UCB0ADDMASK 1Eh eUSCI I2C slave address UCB0I2CSA 20h eUSCI interrupt enable UCB0IE 2Ah eUSCI interrupt flags UCB0IFG 2Ch eUSCI interrupt vector word UCB0IV 2Eh Table 6-37. ADC10_B Registers (Base Address: 0700h) REGISTER DESCRIPTION REGISTER OFFSET ADC10_B control 0 ADC10CTL0 00h ADC10_B control 1 ADC10CTL1 02h ADC10_B control 2 ADC10CTL2 04h ADC10_B window comparator low threshold ADC10LO 06h ADC10_B window comparator high threshold ADC10HI 08h ADC10_B memory control 0 ADC10MCTL0 0Ah ADC10_B conversion memory ADC10MEM0 12h ADC10_B Interrupt enable ADC10IE 1Ah ADC10_B interrupt flags ADC10IGH 1Ch ADC10_B interrupt vector word ADC10IV 1Eh Table 6-38. Comparator_D Registers (Base Address: 08C0h) REGISTER DESCRIPTION REGISTER OFFSET Comparator_D control 0 CDCTL0 00h Comparator_D control 1 CDCTL1 02h Comparator_D control 2 CDCTL2 04h Comparator_D control 3 CDCTL3 06h Comparator_D interrupt CDINT 0Ch Comparator_D interrupt vector word CDIV 0Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 67 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.11 Input/Output Diagrams 6.11.1 Port P1 (P1.0 to P1.2) Input/Output With Schmitt Trigger Figure 6-9 shows the port diagram. Table 6-39 summarizes the selection of the pin functions. Pad Logic External ADC reference (P1.0, P1.1) To ADC From ADC To Comparator From Comparator CDPD.x P1REN.x P1DIR.x 00 01 10 Direction 0: Input 1: Output 11 P1OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 From module 2 10 DVSS 11 P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREFP1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+ P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2 P1SEL1.x P1SEL0.x P1IN.x EN To modules Bus Keeper D Figure 6-9. Port P1 (P1.0 to P1.2) Diagram 68 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-39. Port P1 (P1.0 to P1.2) Pin Functions PIN NAME (P1.x) x FUNCTION P1.0 (I/O) P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF- 0 (1) (2) (3) 0 1 1 0 X 1 1 I: 0; O: 1 0 0 0 1 1 0 X 1 1 I: 0; O: 1 0 0 0 1 1 0 1 1 1 DMAE0 0 RTCCLK 1 (2) TA0.CCI2A 0 TA0.2 1 TA1CLK 0 CDOUT 1 P1.2 (I/O) 2 0 TA0.1 A1 (1) (2) CD1 (1) (3) VeREF+ (1) P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2 P1SEL0.x 0 0 P1.1 (I/O) 1 P1SEL1.x I: 0; O: 1 TA0.CCI1A A0 (1) (2) CD0 (1) (3) VeREF- (1) P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+ CONTROL BITS OR SIGNALS P1DIR.x (2) TA1.CCI1A 0 TA1.1 1 TA0CLK 0 CDOUT 1 A2 (1) (2) CD2 (1) (3) X Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Not available on all devices and package types. Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 69 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.11.2 Port P1 (P1.3 to P1.5) Input/Output With Schmitt Trigger Figure 6-10 shows the port diagram. Table 6-40 summarizes the selection of the pin functions. Pad Logic To ADC From ADC To Comparator From Comparator CDPD.x P1REN.x P1DIR.x 00 From module 2 10 01 Direction 0: Input 1: Output 11 P1OUT.x 00 From module 1 01 From module 2 10 DVSS 11 DVSS 0 DVCC 1 1 P1.3/TA1.2/UCB0STE/A3/CD3 P1.4/TB0.1/UCA0STE/A4/CD4 P1.5/TB0.2/UCA0CLK/A5/CD5 P1SEL1.x P1SEL0.x P1IN.x EN To modules Bus Keeper D Figure 6-10. Port P1 (P1.3 to P1.5) Diagram 70 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-40. Port P1 (P1.3 to P1.5) Pin Functions PIN NAME (P1.x) x FUNCTION P1.3 (I/O) P1.3/TA1.2/UCB0STE/A3/CD3 3 4 1 0 X (1) X 1 1 P1.4 (I/O) I: 0; O: 1 0 0 0 1 1 0 X 1 1 I: 0; O: 1 0 0 0 1 1 0 1 1 TB0.CCI1A 0 TB0.1 1 X (5) TB0.CCI2A 0 TB0.2 1 UCA0CLK (2) (3) (2) (4) A5 CD5 (5) 1 A3 (2) (3) CD3 (2) (4) P1.5(I/O) (3) (4) 0 1 A4 CD4 (1) (2) 0 TA1.2 (2) (3) (2) (4) 5 P1SEL0.x 0 0 UCA0STE P1.5/TB0.2/UCA0CLK/A5/CD5 P1SEL1.x I: 0; O: 1 TA1.CCI2A UCB0STE P1.4/TB0.1/UCA0STE/A4/CD4 CONTROL BITS OR SIGNALS P1DIR.x X (5) X Direction controlled by eUSCI_B0 module. Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Not available on all devices and package types. Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit Direction controlled by eUSCI_A0 module. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 71 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.11.3 Port P1 (P1.6 and P1.7) Input/Output With Schmitt Trigger Figure 6-11 shows the port diagram. Table 6-41 summarizes the selection of the pin functions. Pad Logic DVSS P1REN.x P1DIR.x 00 From module 2 10 01 Direction 0: Input 1: Output 11 P1OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 From module 2 10 From module 3 11 P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0 P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0 P1SEL1.x P1SEL0.x P1IN.x Bus Keeper EN To modules D Figure 6-11. Port P1 (P1.6 and P1.7) Diagram Table 6-41. Port P1 (P1.6 and P1.7) Pin Functions PIN NAME (P1.x) x FUNCTION P1.6 (I/O) TB1.CCI1A P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0 6 TB1.1 (1) (2) 72 P1SEL1.x P1SEL0.x 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 (1) 1 UCB0SIMO/UCB0SDA X (2) TA0.CCI0A 0 TA0.0 1 TB1.CCI2A 7 P1DIR.x I: 0; O: 1 (1) P1.7 (I/O) P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0 CONTROL BITS OR SIGNALS TB1.2 I: 0; O: 1 (1) (1) UCB0SOMI/UCB0SCL 0 1 X (2) TA1.CCI0A 0 TA1.0 1 Not available on all devices and package types. Direction controlled by eUSCI_B0 module. Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 6.11.4 Port P2 (P2.0 to P2.2) Input/Output With Schmitt Trigger Figure 6-12 shows the port diagram. Table 6-42 summarizes the selection of the pin functions. Pad Logic DVSS P2REN.x P2DIR.x 00 From module 2 10 01 Direction 0: Input 1: Output 11 P2OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 From module 2 10 From module 3 11 P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0 P2.2/TB2.2/UCB0CLK/TB1.0 P2SEL1.x P2SEL0.x P2IN.x Bus Keeper EN D To modules Figure 6-12. Port P2 (P2.0 to P2.2) Diagram Table 6-42. Port P2 (P2.0 to P2.2) Pin Functions PIN NAME (P2.x) x FUNCTION P2.0 (I/O) TB2.CCI0A P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK 0 TB2.0 UCA0TXD/UCA0SIMO 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 X (2) 0 ACLK 1 TB2.1 I: 0; O: 1 (1) 0 (1) 1 UCA0RXD/UCA0SOMI X (2) TB0.CCI0A 0 TB0.0 1 TB2.2 I: 0; O: 1 (1) 1 UCB0CLK TB1.0 0 (1) TB1.CCI0A (1) (2) (3) 0 0 TB0CLK TB2.CCI2A 2 0 1 P2.2 (I/O) P2.2/TB2.2/UCB0CLK/TB1.0 P2SEL0.x 0 (1) TB2.CCI1A 1 P2SEL1.x I: 0; O: 1 (1) P2.1 (I/O) P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0 CONTROL BITS OR SIGNALS P2DIR.x (1) X (1) (3) 0 1 Not available on all devices and package types. Direction controlled by eUSCI_A0 module. Direction controlled by eUSCI_B0 module. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 73 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.11.5 Port P2 (P2.3 and P2.4) Input/Output With Schmitt Trigger Figure 6-13 shows the port diagram. Table 6-43 summarizes the selection of the pin functions. Pad Logic To ADC From ADC To Comparator From Comparator CDPD.x P2REN.x P2DIR.x 00 From module 2 10 01 Direction 0: Input 1: Output 11 P2OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 From module 2 10 DVSS 11 P2.3/TA0.0/UCA1STE/A6/CD10 P2.4/TA1.0/UCA1CLK/A7/CD11 P2SEL1.x P2SEL0.x P2IN.x EN To modules Bus Keeper D Figure 6-13. Port P2 (P2.3 and P2.4) Diagram 74 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-43. Port P2 (P2.3 and P2.4) Pin Functions PIN NAME (P2.x) x FUNCTION P2.3 (I/O) P2.3/TA0.0/UCA1STE/A6/CD10 3 0 1 1 0 X 1 1 I: 0; O: 1 0 0 0 1 1 0 1 1 1 (3) (2) (4) X (1) TA1.CCI0B 0 TA1.0 1 UCA1CLK (2) (3) (2) (4) A7 CD11 (3) (4) 0 TA0.0 P2.4 (I/O) (1) (2) P2SEL0.x 0 0 A6 (2) CD10 4 P2SEL1.x I: 0; O: 1 TA0.CCI0B UCA1STE P2.4/TA1.0/UCA1CLK/A7/CD11 CONTROL BITS OR SIGNALS P2DIR.x X (1) X Direction controlled by eUSCI_A1 module. Setting P2SEL1.x and P2SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Not available on all devices and package types. Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 75 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.11.6 Port P2 (P2.5 and P2.6) Input/Output With Schmitt Trigger Figure 6-14 shows the port diagram. Table 6-44 summarizes the selection of the pin functions. Pad Logic P2REN.x P2DIR.x 00 From module 2 10 01 Direction 0: Input 1: Output 11 P2OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 From module 2 10 DVSS 11 P2.5/TB0.0/UCA1TXD/UCA1SIMO P2.6/TB1.0/UCA1RXD/UCA1SOMI P2SEL1.x P2SEL0.x P2IN.x Bus Keeper EN To modules D Figure 6-14. Port P2 (P2.5 and P2.6) Diagram Table 6-44. Port P2 (P2.5 and P2.6) Pin Functions PIN NAME (P2.x) x FUNCTION P2.5(I/O) P2.5/TB0.0/UCA1TXD/UCA1SIMO 5 (1) TB0.CCI0B TB0.0 76 0 0 0 1 1 0 0 0 0 1 1 0 0 (1) (1) X (2) I: 0; O: 1 (1) 0 (1) UCA1RXD/UCA1SOMI (1) (2) I: 0; O: 1 1 TB1.CCI0B TB1.0 P2SEL0.x (1) P2.6(I/O) 6 P2SEL1.x (1) UCA1TXD/UCA1SIMO P2.6/TB1.0/UCA1RXD/UCA1SOMI CONTROL BITS OR SIGNALS P2DIR.x 1 (1) X (2) Not available on all devices and package types. Direction controlled by eUSCI_A1 module. Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 6.11.7 Port P2 (P2.7) Input/Output With Schmitt Trigger Figure 6-15 shows the port diagram. Table 6-45 summarizes the selection of the pin functions. Pad Logic P2REN.x P2DIR.x 00 01 10 Direction 0: Input 1: Output 11 P2OUT.x DVSS 0 DVCC 1 1 00 DVSS 01 DVSS 10 DVSS 11 P2.7 P2SEL1.x P2SEL0.x P2IN.x Bus Keeper EN D To modules Figure 6-15. Port P2 (P2.7) Diagram Table 6-45. Port P2 (P2.7) Pin Functions PIN NAME (P2.x) P2.7 (1) x 7 FUNCTION P2.7(I/O) (1) CONTROL BITS OR SIGNALS P2DIR.x P2SEL1.x P2SEL0.x I: 0; O: 1 0 0 Not available on all devices and package types. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 77 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.11.8 Port P3 (P3.0 to P3.3) Input/Output With Schmitt Trigger Figure 6-16 shows the port diagram. Table 6-46 summarizes the selection of the pin functions. Pad Logic To ADC From ADC To Comparator From Comparator CDPD.x P3REN.x P3DIR.x 00 01 10 Direction 0: Input 1: Output 11 P3OUT.x 00 DVSS 01 DVSS 10 DVSS 11 DVSS 0 DVCC 1 1 P3.0/A12/CD12 P3.1/A13/CD13 P3.2/A14/CD14 P3.3/A15/CD15 P3SEL1.x P3SEL0.x P3IN.x EN To modules Bus Keeper D Figure 6-16. Port P3 (P3.0 to P3.3) Diagram 78 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-46. Port P3 (P3.0 to P3.3) Pin Functions PIN NAME (P3.x) x FUNCTION P3.0 (I/O) P3.0/A12/CD12 0 P3.1/A13/CD13 1 P3.2/A14/CD14 2 P3.3/A15/CD15 3 A12 (1) (2) CD12 (1) (3) P3.1 (I/O) A13 (1) (2) CD13 (1) (3) P3.2 (I/O) A14 (1) (2) CD14 (1) (3) P3.3 (I/O) (1) (2) (3) A15 (1) (2) CD15 (1) (3) CONTROL BITS OR SIGNALS P3DIR.x P3SEL1.x P3SEL0.x I: 0; O: 1 0 0 X 1 1 I: 0; O: 1 0 0 X 1 1 I: 0; O: 1 0 0 X 1 1 I: 0; O: 1 0 0 X 1 1 Setting P1SEL1.x and P1SEL0.x disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Not available on all devices and package types. Setting the CDPD.x bit of the comparator disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 79 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.11.9 Port P3 (P3.4 to P3.6) Input/Output With Schmitt Trigger Figure 6-17 shows the port diagram. Table 6-47 summarizes the selection of the pin functions. Pad Logic DVSS P3REN.x P3DIR.x 00 01 10 Direction 0: Input 1: Output 11 P3OUT.x DVSS 0 DVCC 1 1 00 From module 1 01 DVSS 10 From module 2 11 P3.4/TB1.1/TB2CLK/SMCLK P3.5/TB1.2/CDOUT P3.6/TB2.1/TB1CLK P3SEL1.x P3SEL0.x P3IN.x Bus Keeper EN To modules D Figure 6-17. Port P3 (P3.4 to P3.6) Diagram Table 6-47. Port P3 (P3.4 to P3.6) Pin Functions PIN NAME (P3.x) x FUNCTION P3.4 (I/O) (1) TB1.CCI1B P3.4/TB1.1/TB2CLK/SMCLK 4 TB1.1 (1) SMCLK 6 (1) (1) TB1CLK (1) 80 (1) TB2.CCI1B TB2.1 0 1 1 1 0 0 0 1 1 1 1 I: 0; O: 1 0 0 0 1 1 1 0 I: 0; O: 1 0 1 P3.6 (I/O) P3.6/TB2.1/TB1CLK (1) (1) CDOUT 0 1 (1) TB1.CCI2B TB1.2 P3SEL0.x 0 0 (1) P3.5 (I/O) 5 P3SEL1.x I: 0; O: 1 1 (1) TB2CLK P3.5/TB1.2/CDOUT (1) CONTROL BITS OR SIGNALS P3DIR.x (1) 0 1 (1) 0 Not available on all devices and package types. Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 6.11.10 Port Port P3 (P3.7) Input/Output With Schmitt Trigger Figure 6-18 shows the port diagram. Table 6-48 summarizes the selection of the pin functions. Pad Logic P3REN.x P3DIR.x 00 01 10 Direction 0: Input 1: Output 11 P3OUT.x 00 From module 1 01 DVSS 10 DVSS 11 DVSS 0 DVCC 1 1 P3.7/TB2.2 P3SEL1.x P3SEL0.x P3IN.x Bus Keeper EN To modules D Figure 6-18. Port P3 (P3.7) Diagram Table 6-48. Port P3 (P3.7) Pin Functions PIN NAME (P3.x) x FUNCTION P3.7 (I/O) P3.7/TB2.2 7 TB2.CCI2B TB2.2 (1) (1) (1) (1) CONTROL BITS OR SIGNALS P3DIR.x P3SEL1.x P3SEL0.x I: 0; O: 1 0 0 0 1 0 1 Not available on all devices and package types. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 81 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.11.11 Port Port P4 (P4.0) Input/Output With Schmitt Trigger Figure 6-19 shows the port diagram. Table 6-49 summarizes the selection of the pin functions. Pad Logic P4REN.x P4DIR.x 00 01 10 Direction 0: Input 1: Output 11 P4OUT.x 00 From module 1 01 DVSS 10 DVSS 11 DVSS 0 DVCC 1 1 P4.0/TB2.0 P4SEL1.x P4SEL0.x P4IN.x Bus Keeper EN To modules D Figure 6-19. Port P4 (P4.0) Diagram Table 6-49. Port P4 (P4.0) Pin Functions PIN NAME (P4.x) x FUNCTION P4.0 (I/O) P4.0/TB2.0 0 TB2.CCI0B TB2.0 (1) 82 (1) (1) (1) CONTROL BITS OR SIGNALS P4DIR.x P4SEL1.x P4SEL0.x I: 0; O: 1 0 0 0 1 0 1 Not available on all devices and package types. Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 6.11.12 Port Port P4 (P4.1) Input/Output With Schmitt Trigger Figure 6-20 shows the port diagram. Table 6-50 summarizes the selection of the pin functions. Pad Logic P4REN.x P4DIR.x 00 01 10 Direction 0: Input 1: Output 11 P4OUT.x DVSS 0 DVCC 1 1 00 DVSS 01 DVSS 10 DVSS 11 P4.1 P4SEL1.x P4SEL0.x P4IN.x Bus Keeper EN To modules D Figure 6-20. Port P4 (P4.1) Diagram Table 6-50. Port P4 (P4.1) Pin Functions PIN NAME (P4.x) P4.1 (1) x 1 FUNCTION P4.1 (I/O) (1) CONTROL BITS OR SIGNALS P4DIR.x P4SEL1.x P4SEL0.x I: 0; O: 1 0 0 Not available on all devices and package types. 6.11.13 Port Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output Figure 6-21 and Figure 6-22 show the port diagrams. Table 6-51 summarizes the selection of the pin functions. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 83 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com To Comparator From Comparator CDPD.x From JTAG From JTAG From JTAG Pad Logic 1 PJREN.x 0 00 PJDIR.x 1 01 10 DVSS 0 DVCC 1 0 Direction 0: Input 1: Output 11 1 JTAG enable 00 PJOUT.x From module 1 01 1 DVSS 10 0 DVSS 11 PJ.0/TDO/TB0OUTH/SMCLK/CD6 PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7 PJ.2/TMS/TB2OUTH/ACLK/CD8 PJSEL1.x PJSEL0.x PJIN.x Bus Keeper EN D To modules and JTAG Figure 6-21. Port PJ (PJ.0 to PJ.2) Diagram To Comparator From Comparator CDPD.x Pad Logic From JTAG From JTAG From JTAG 1 PJREN.x PJDIR.x 0 00 1 01 10 DVSS 0 DVCC 1 0 Direction 0: Input 1: Output 11 1 JTAG enable PJOUT.x 00 DVSS 01 1 DVSS 10 0 DVSS 11 PJ.3/TCK/CD9 PJSEL1.x PJSEL0.x PJIN.x EN To modules and JTAG Bus Keeper D Figure 6-22. Port PJ (PJ.3) Diagram 84 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-51. Port PJ (PJ.0 to PJ.3) Pin Functions PIN NAME (PJ.x) x FUNCTION PJ.0 (I/O) TDO PJ.0/TDO/TB0OUTH/SMCLK/CD6 0 (2) (3) 1 PJ.1 (I/O) TDI/TCLK (3) (4) 0 1 1 1 PJSEL0.x I: 0; O: 1 0 0 X X X 0 1 1 0 MCLK 1 X 1 I: 0; O: 1 0 0 (3) (4) X X X TB2OUTH 0 ACLK 1 0 1 1 1 TCK CD9 (4) X TB1OUTH (2) X PJ.3 (I/O) (1) (2) (3) X X (2) CD8 3 0 X 1 TMS PJ.3/TCK/CD9 0 0 PJ.2 (I/O) 2 PJSEL1.x SMCLK CD7 PJ.2/TMS/TB2OUTH/ACLK/CD8 PJDIR.x I: 0; O: 1 TB0OUTH CD6 PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7 CONTROL BITS OR SIGNALS (1) (3) (4) (2) I: 0; O: 1 0 0 X X X X 1 1 X = Don't care Default condition The pin direction is controlled by the JTAG module. JTAG mode selection is made by the SYS module or by the Spy-Bi-Wire four-wire entry sequence. PJSEL1.x and PJSEL0.x have no effect in these cases. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 85 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.11.14 Port Port PJ (PJ.4 and PJ.5) Input/Output With Schmitt Trigger Figure 6-23 and Figure 6-24 show the port diagrams. Table 6-52 summarizes the selection of the pin functions. Pad Logic To XT1 XIN PJREN.4 PJDIR.4 00 01 10 Direction 0: Input 1: Output 11 PJOUT.4 DVSS 0 DVCC 1 1 00 DVSS 01 DVSS 10 DVSS 11 PJ.4/XIN PJSEL1.4 PJSEL0.4 PJIN.4 EN To modules Bus Keeper D Figure 6-23. Port PJ (PJ.4) Diagram 86 Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Pad Logic To XT1 XOUT PJSEL0.4 XT1BYPASS PJREN.5 PJDIR.5 00 01 10 Direction 0: Input 1: Output 11 PJOUT.5 00 DVSS 01 DVSS 10 DVSS 11 DVSS 0 DVCC 1 1 PJ.5/XOUT PJSEL1.5 PJSEL0.5 PJIN.5 Bus Keeper EN To modules D Figure 6-24. Port PJ (PJ.5) Diagram Table 6-52. Port PJ (PJ.4 and PJ.5) Pin Functions CONTROL BITS OR SIGNALS PIN NAME (P7.x) x FUNCTION PJ.4 (I/O) PJ.4/XIN 4 XIN crystal mode XIN bypass mode (2) (2) PJ.5 (I/O) PJ.5/XOUT 5 XOUT crystal mode (2) PJ.5 (I/O) (1) (2) (3) (3) (1) PJSEL0.4 XT1 BYPASS 0 0 X 0 1 0 X 0 1 1 0 0 0 0 X X X X 0 1 0 I: 0; O: 1 X X 0 1 1 PJDIR.x PJSEL1.5 PJSEL0.5 PJSEL1.4 I: 0; O: 1 X X X X X X X I: 0; O: 1 X = Don't care Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are configured for crystal operation and PJSEL1.5 and PJSEL0.5 are don't care. When XT1BYPASS = 1, PJ.4 is configured for bypass operation and PJ.5 is configured as general-purpose I/O. When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 87 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 6.12 Device Descriptors (TLV) Table 6-53 and Table 6-54 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type. Table 6-53. Device Descriptor Table DESCRIPTION FR5726 FR5725 05h 05h 05h 05h 05h 01A01h 05h 05h 05h 05h 05h 01A02h per unit per unit per unit per unit per unit 01A03h per unit per unit per unit per unit per unit Device ID 01A04h 7Bh 7Ah 79h 74h 78h Device ID 01A05h 80h 80h 80h 81h 80h Hardware revision 01A06h per unit per unit per unit per unit per unit Firmware revision 01A07h per unit per unit per unit per unit per unit Die Record Tag 01A08h 08h 08h 08h 08h 08h Die record length 01A09h 0Ah 0Ah 0Ah 0Ah 0Ah 01A0Ah per unit per unit per unit per unit per unit 01A0Bh per unit per unit per unit per unit per unit 01A0Ch per unit per unit per unit per unit per unit 01A0Dh per unit per unit per unit per unit per unit 01A0Eh per unit per unit per unit per unit per unit 01A0Fh per unit per unit per unit per unit per unit 01A10h per unit per unit per unit per unit per unit 01A11h per unit per unit per unit per unit per unit 01A12h per unit per unit per unit per unit per unit 01A13h per unit per unit per unit per unit per unit ADC10 calibration tag 01A14h 13h 13h 13h 05h 13h ADC10 calibration length 01A15h 10h 10h 10h 10h 10h 01A16h per unit per unit NA NA per unit 01A17h per unit per unit NA NA per unit 01A18h per unit per unit NA NA per unit 01A19h per unit per unit NA NA per unit ADC 1.5-V reference Temp. sensor 30°C 01A1Ah per unit per unit NA NA per unit 01A1Bh per unit per unit NA NA per unit ADC 1.5-V reference Temp. sensor 85°C 01A1Ch per unit per unit NA NA per unit 01A1Dh per unit per unit NA NA per unit ADC 2.0-V reference Temp. sensor 30°C 01A1Eh per unit per unit NA NA per unit 01A1Fh per unit per unit NA NA per unit ADC 2.0-V reference Temp. sensor 85°C 01A20h per unit per unit NA NA per unit 01A21h per unit per unit NA NA per unit ADC 2.5-V reference Temp. sensor 30°C 01A22h per unit per unit NA NA per unit 01A23h per unit per unit NA NA per unit ADC 2.5-V reference Temp. sensor 85°C 01A24h per unit per unit NA NA per unit 01A25h per unit per unit NA NA per unit Die X position Die Y position Test results ADC gain factor ADC offset 88 FR5727 CRC length Die Record (1) FR5728 01A00h Lot/wafer ID ADC10 Calibration VALUE FR5729 Info length CRC value Info Block ADDRESS (1) NA = Not applicable Detailed Description Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 Table 6-53. Device Descriptor Table (1) (continued) DESCRIPTION REF Calibration ADDRESS VALUE FR5729 FR5728 FR5727 FR5726 FR5725 REF calibration tag 01A26h 12h 12h 12h 12h 12h REF calibration length 01A27h 06h 06h 06h 06h 06h 01A28h per unit per unit per unit per unit per unit 01A29h per unit per unit per unit per unit per unit 01A2Ah per unit per unit per unit per unit per unit 01A2Bh per unit per unit per unit per unit per unit 01A2Ch per unit per unit per unit per unit per unit 01A2Dh per unit per unit per unit per unit per unit REF 1.5-V Reference REF 2.0-V reference REF 2.5-V reference Table 6-54. Device Descriptor Table DESCRIPTION FR5723 FR5722 FR5721 FR5720 05h Info length 01A00h 05h 05h 05h 05h 01A01h 05h 05h 05h 05h 05h 01A02h per unit per unit per unit per unit per unit 01A03h per unit per unit per unit per unit per unit Device ID 01A04h 73h 72h 71h 77h 70h Device ID 01A05h 81h 81h 81h 80h 81h Hardware revision 01A06h per unit per unit per unit per unit per unit Firmware revision 01A07h per unit per unit per unit per unit per unit Die record tag 01A08h 08h 08h 08h 08h 08h Die record length 01A09h 0Ah 0Ah 0Ah 0Ah 0Ah 01A0Ah per unit per unit per unit per unit per unit 01A0Bh per unit per unit per unit per unit per unit 01A0Ch per unit per unit per unit per unit per unit 01A0Dh per unit per unit per unit per unit per unit 01A0Eh per unit per unit per unit per unit per unit 01A0Fh per unit per unit per unit per unit per unit 01A10h per unit per unit per unit per unit per unit 01A11h per unit per unit per unit per unit per unit 01A12h per unit per unit per unit per unit per unit 01A13h per unit per unit per unit per unit per unit Lot/wafer ID Die Record Die X position Die Y position Test results (1) VALUE FR5724 CRC length CRC value Info Block ADDRESS (1) NA = Not applicable Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 89 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com Table 6-54. Device Descriptor Table (1) (continued) DESCRIPTION FR5722 FR5721 FR5720 13h 13h 13h 05h 13h ADC10 calibration length 01A15h 10h 10h 10h 10h 10h 01A16h per unit NA NA per unit per unit 01A17h per unit NA NA per unit per unit 01A18h per unit NA NA per unit per unit 01A19h per unit NA NA per unit per unit ADC 1.5-V reference Temp. sensor 30°C 01A1Ah per unit NA NA per unit per unit 01A1Bh per unit NA NA per unit per unit ADC 1.5-V reference Temp. sensor 85°C 01A1Ch per unit NA NA per unit per unit 01A1Dh per unit NA NA per unit per unit ADC 2.0-V reference Temp. sensor 30°C 01A1Eh per unit NA NA per unit per unit 01A1Fh per unit NA NA per unit per unit ADC 2.0-V reference Temp. sensor 85°C 01A20h per unit NA NA per unit per unit 01A21h per unit NA NA per unit per unit ADC 2.5-V reference Temp. sensor 30°C 01A22h per unit NA NA per unit per unit 01A23h per unit NA NA per unit per unit ADC 2.5-V reference Temp. sensor 85°C 01A24h per unit NA NA per unit per unit 01A25h per unit NA NA per unit per unit REF calibration tag 01A26h 12h 12h 12h 12h 12h REF calibration length 01A27h 06h 06h 06h 06h 06h 01A28h per unit per unit per unit per unit per unit REF 1.5-V reference REF 2.0-V reference REF 2.5-V reference 90 FR5723 01A14h ADC offset REF Calibration VALUE FR5724 ADC10 calibration tag ADC gain factor ADC10 Calibration ADDRESS Detailed Description 01A29h per unit per unit per unit per unit per unit 01A2Ah per unit per unit per unit per unit per unit 01A2Bh per unit per unit per unit per unit per unit 01A2Ch per unit per unit per unit per unit per unit 01A2Dh per unit per unit per unit per unit per unit Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 7 Device and Documentation Support 7.1 Getting Started TI provides all of the hardware platforms and software components and tooling you need to get started today! Not only that, TI has many complementary components to meet your needs. For an overview of the MSP430™ MCU product line, the available development tools and evaluation kits, and advanced development resources, visit the MSP430 Getting Started page. 7.2 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430F5438A). TI recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools). Device development evolutionary flow: XMS – Experimental device that is not necessarily representative of the electrical specifications for the final device PMS – Final silicon die that conforms to the electrical specifications for the device but has not completed quality and reliability verification MSP – Fully qualified production device Support tool development evolutionary flow: MSPX – Development-support product that has not yet completed TI's internal qualification testing. MSP – Fully-qualified development-support product XMS and PMS devices and MSPX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 7-1 provides a legend for reading the complete device name for any family member. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 91 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com MSP 430 F 5 438 A I ZQW T -EP Processor Family Optional: Additional Features MCU Platform Optional: Tape and Reel Device Type Packaging Series Feature Set Processor Family MCU Platform Optional: Temperature Range Optional: A = Revision CC = Embedded RF Radio MSP = Mixed-Signal Processor XMS = Experimental Silicon PMS = Prototype Device 430 = MSP430 low-power microcontroller platform Device Type Memory Type C = ROM F = Flash FR = FRAM G = Flash or FRAM (Value Line) L = No Nonvolatile Memory Series 1 Series = Up to 8 MHz 2 Series = Up to 16 MHz 3 Series = Legacy 4 Series = Up to 16 MHz with LCD Feature Set Various Levels of Integration Within a Series Optional: A = Revision N/A Specialized Application AFE = Analog Front End BT = Preprogrammed with Bluetooth BQ = Contactless Power CG = ROM Medical FE = Flash Energy Meter FG = Flash Medical FW = Flash Electronic Flow Meter 5 Series = Up to 25 MHz 6 Series = Up to 25 MHz with LCD 0 = Low-Voltage Series Optional: Temperature Range S = 0°C to 50°C C = 0°C to 70°C I = –40°C to 85°C T = –40°C to 105°C Packaging http://www.ti.com/packaging Optional: Tape and Reel T = Small Reel R = Large Reel No Markings = Tube or Tray Optional: Additional Features -EP = Enhanced Product (–40°C to 105°C) -HT = Extreme Temperature Parts (–55°C to 150°C) -Q1 = Automotive Q100 Qualified Figure 7-1. Device Nomenclature 92 Device and Documentation Support Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com 7.3 SLASE35B – MAY 2014 – REVISED APRIL 2016 Tools and Software Table 7-1 lists the debug features supported by these microcontrollers. See the Code Composer Studio for MSP430 User's Guide for details on the available features. Table 7-1. Hardware Features MSP430 ARCHITECTURE 4-WIRE JTAG 2-WIRE JTAG BREAKPOINTS (N) RANGE BREAKPOINTS CLOCK CONTROL STATE SEQUENCER TRACE BUFFER LPMx.5 DEBUGGING SUPPORT MSP430Xv2 Yes Yes 3 Yes Yes No No Yes Design Kits and Evaluation Modules EEPROM Emulation and Sensing With MSP430 FRAM Microcontrollers This TI Design reference design describes an implementation of emulating EEPROM using Ferroelectric Random Access Memory (FRAM) technology on MSP430™ ultra-low-power microcontrollers (MCUs) combined with the additional sensing capabilities that can be enabled when using an MCU. The reference design supports both I2C and SPI interface to a host processor with multiple slave addressing. MSP-EXP430FR5739 Experimenter Board The MSP-EXP430FR5739 Experimenter Board is a development platform for the MSP430FR57xx devices. It supports this new generation of MSP430 microcontroller devices with integrated Ferroelectric Random Access Memory (FRAM). The board is compatible with many TI low-power RF wireless evaluation modules such as the CC2520EMK. The Experimenter Board helps designers quickly learn and develop using the new MSP430FR57xx MCUs, which provide the industry's lowest overall power consumption, fast data read /write and unbeatable memory endurance. The MSPEXP430FR5739 Experimenter Board can help evaluate and drive development for data logging applications, energy harvesting, wireless sensing, automatic metering infrastructure (AMI) and many others. MSP-TS430RHA40A - 40-pin Target Development Board for MSP430FRxx FRAM MCUs The MSPTS430RHA40A is a stand-alone 40-pin ZIF socket target board used to program and debug the MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. Software MSP430FR573x, MSP430FR572x C Code Examples C Code examples are available for every MSP device that configures each of the integrated peripherals for various application needs. MSPWare™ Software MSPWare software is a collection of code examples, data sheets, and other design resources for all MSP devices delivered in a convenient package. In addition to providing a complete collection of existing MSP design resources, MSPWare software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP hardware. MSPWare software is available as a component of CCS or as a stand-alone package. MSP Driver Library Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easy-to-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details on each function call and the recognized parameters. Developers can use Driver Library functions to write complete projects with minimal overhead. MSP EnergyTrace™ Technology EnergyTrace technology for MSP430 microcontrollers is an energybased code analysis tool that measures and displays the application’s energy profile and helps to optimize it for ultra-low-power consumption. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 93 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com ULP (Ultra-Low Power) Advisor ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully utilize the unique ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to highlight areas of your code that can be further optimized for lower power. IEC60730 Software Package The IEC60730 MSP430 software package was developed to be useful in assisting customers in complying with IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer applications running on MSP430s to help simplify the customer’s certification efforts of functional safety-compliant consumer devices to IEC 60730-1:2010 Class B. Fixed-Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math. Floating-Point Math Library for MSP430 Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB. Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated in both Code Composer Studio and IAR IDEs. Read the user’s guide for an in depth look at the math library and relevant benchmarks. Development Tools Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers Code Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller devices. Code Composer Studio comprises a suite of embedded software utilities used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step of the application development flow. Familiar utilities and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers. When using CCS with an MSP MCU, a unique and powerful set of plugins and embedded software utilities are made available to fully leverage the MSP microcontroller. Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) files directly to the MSP microcontroller without an IDE. 94 Device and Documentation Support Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com SLASE35B – MAY 2014 – REVISED APRIL 2016 MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool – often called a debug probe – which allows users to quickly begin application development on MSP low-power microcontrollers (MCU). Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging. The MSP-FET provides a debug communication pathway between a host computer and the target MSP. Furthermore, the MSP-FET also provides a Backchannel UART connection between the computer's USB interface and the MSP UART. This affords the MSP programmer a convenient method for communicating serially between the MSP and a terminal running on the computer. It also supports loading programs (often called firmware) to the MSP target using the BSL (bootloader) through the UART and I2C communication protocols. MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 Flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow the user to fully customize the process. The MSP Gang Programmer is provided with an expansion board, called the Gang Splitter, that implements the interconnections between the MSP Gang Programmer and multiple target devices. Eight cables are provided that connect the expansion board to eight target devices (through JTAG or Spy-Bi-Wire connectors). The programming can be done with a PC or as a stand-alone device. A PC-side graphical user interface is also available and is DLL-based. 7.4 Documentation Support The following documents describe the MSP430FR572x MCUs. Copies of these documents are available on the Internet at www.ti.com. To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for example, MSP430FR5729). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. Errata MSP430FR5729 Device Erratasheet Describes the known exceptions to the functional specifications for each silicon revision of this device. MSP430FR5728 Device Erratasheet Describes the known exceptions to the functional specifications for each silicon revision of this device. MSP430FR5727 Device Erratasheet Describes the known exceptions to the functional specifications for each silicon revision of this device. MSP430FR5726 Device Erratasheet Describes the known exceptions to the functional specifications for each silicon revision of this device. MSP430FR5725 Device Erratasheet Describes the known exceptions to the functional specifications for each silicon revision of this device. MSP430FR5724 Device Erratasheet Describes the known exceptions to the functional specifications for each silicon revision of this device. MSP430FR5723 Device Erratasheet Describes the known exceptions to the functional specifications for each silicon revision of this device. MSP430FR5722 Device Erratasheet Describes the known exceptions to the functional specifications for each silicon revision of this device. MSP430FR5721 Device Erratasheet Describes the known exceptions to the functional specifications for each silicon revision of this device. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 95 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com MSP430FR5720 Device Erratasheet Describes the known exceptions to the functional specifications for each silicon revision of this device. User's Guides MSP430FR57xx Family User's Guide Detailed description of all modules and peripherals available in this device family. Code Composer Studio v6.1 for MSP430 User's Guide This manual describes the use of TI Code Composer Studio IDE v6.1 (CCS v6.1) with the MSP430 ultra-low-power microcontrollers. This document applies only for the Windows version of the Code Composer Studio IDE. The Linux version is similar and, therefore, is not described separately. IAR Embedded Workbench Version 3+ for MSP430 User's Guide This manual describes the use of IAR Embedded Workbench (EW430) with the MSP430 ultra-low-power microcontrollers. MSP430 Programming With the Bootloader (BSL) The MSP430 bootloader (BSL, formerly known as the bootstrap loader) allows users to communicate with embedded memory in the MSP430 microcontroller during the prototyping phase, final production, and in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap loader programs found in some digital signal processors (DSPs) that automatically load program code (and data) from external memory to the internal memory of the DSP. MSP430 Programming Via the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAMbased microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW). MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultralow-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described. Application Reports MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultralow-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production. MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing costeffective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs: (1) Component-level ESD testing and system-level ESD testing, their differences and why component-level ESD rating does not ensure system-level robustness. (2) General design guidelines for system-level ESD protection at different levels including enclosures, cables, PCB layout, and on-board ESD protection devices. (3) Introduction to System Efficient ESD Design (SEED), a co-design methodology of on-board and on-chip ESD protection to achieve system-level ESD robustness, with example simulations and test results. A few real-world system-level ESD protection design examples and their results are also discussed. 96 Device and Documentation Support Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 www.ti.com 7.5 SLASE35B – MAY 2014 – REVISED APRIL 2016 Related Links Table 7-2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 7-2. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY MSP430FR5729 Click here Click here Click here Click here Click here MSP430FR5728 Click here Click here Click here Click here Click here MSP430FR5727 Click here Click here Click here Click here Click here MSP430FR5726 Click here Click here Click here Click here Click here MSP430FR5725 Click here Click here Click here Click here Click here MSP430FR5724 Click here Click here Click here Click here Click here MSP430FR5723 Click here Click here Click here Click here Click here MSP430FR5722 Click here Click here Click here Click here Click here MSP430FR5721 Click here Click here Click here Click here Click here MSP430FR5720 Click here Click here Click here Click here Click here 7.6 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 7.7 Trademarks MSP430, MSPWare, EnergyTrace, ULP Advisor, Code Composer Studio, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 7.8 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 7.9 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 Copyright © 2014–2016, Texas Instruments Incorporated 97 MSP430FR5729, MSP430FR5728, MSP430FR5727, MSP430FR5726, MSP430FR5725 MSP430FR5724, MSP430FR5723, MSP430FR5722, MSP430FR5721, MSP430FR5720 SLASE35B – MAY 2014 – REVISED APRIL 2016 www.ti.com 7.10 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 8 Mechanical, Packaging, and Orderable Information 8.1 Packaging Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 98 Mechanical, Packaging, and Orderable Information Copyright © 2014–2016, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR5729 MSP430FR5728 MSP430FR5727 MSP430FR5726 MSP430FR5725 MSP430FR5724 MSP430FR5723 MSP430FR5722 MSP430FR5721 MSP430FR5720 PACKAGE OPTION ADDENDUM www.ti.com 31-Jan-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430FR5720IPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 430FR5720 MSP430FR5720IPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 430FR5720 MSP430FR5720IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 430FR 5720 MSP430FR5720IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 430FR 5720 MSP430FR5721IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430FR5721 MSP430FR5721IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430FR5721 MSP430FR5721IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430 FR5721 MSP430FR5721IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430 FR5721 MSP430FR5722IPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 430FR5722 MSP430FR5722IPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 430FR5722 MSP430FR5722IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 430FR 5722 MSP430FR5722IRGET NRND VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 430FR 5722 MSP430FR5723IDA ACTIVE TSSOP DA 38 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430FR5723 MSP430FR5723IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430FR5723 MSP430FR5723IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430 FR5723 MSP430FR5723IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430 FR5723 MSP430FR5724IPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 430FR5724 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 31-Jan-2016 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430FR5724IPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 430FR5724 MSP430FR5724IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 430FR 5724 MSP430FR5724IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 430FR 5724 MSP430FR5725IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430FR5725 MSP430FR5725IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430FR5725 MSP430FR5725IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430 FR5725 MSP430FR5725IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430 FR5725 MSP430FR5726IPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 430FR5726 MSP430FR5726IPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 430FR5726 MSP430FR5726IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 430FR 5726 MSP430FR5727IDA ACTIVE TSSOP DA 38 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430FR5727 MSP430FR5727IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430FR5727 MSP430FR5727IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430 FR5727 MSP430FR5727IRHAT NRND VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430 FR5727 MSP430FR5728IPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 430FR5728 MSP430FR5728IPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 430FR5728 MSP430FR5728IRGER ACTIVE VQFN RGE 24 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 430FR 5728 MSP430FR5728IRGET ACTIVE VQFN RGE 24 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 430FR 5728 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 31-Jan-2016 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430FR5729IDA ACTIVE TSSOP DA 38 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430FR5729 MSP430FR5729IDAR ACTIVE TSSOP DA 38 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 M430FR5729 MSP430FR5729IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430 FR5729 MSP430FR5729IRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430 FR5729 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 31-Jan-2016 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 18-Feb-2016 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant MSP430FR5720IPWR TSSOP PW 28 2000 330.0 16.4 6.9 10.2 1.8 12.0 16.0 Q1 MSP430FR5720IRGER VQFN RGE 24 3000 330.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 MSP430FR5720IRGET VQFN RGE 24 250 180.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 MSP430FR5721IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430FR5721IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430FR5721IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430FR5722IPWR TSSOP PW 28 2000 330.0 16.4 6.9 10.2 1.8 12.0 16.0 Q1 MSP430FR5722IRGER VQFN RGE 24 3000 330.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 MSP430FR5722IRGET VQFN RGE 24 250 180.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 MSP430FR5723IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430FR5723IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430FR5723IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430FR5724IPWR TSSOP PW 28 2000 330.0 16.4 6.9 10.2 1.8 12.0 16.0 Q1 MSP430FR5724IRGER VQFN RGE 24 3000 330.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 MSP430FR5724IRGET VQFN RGE 24 250 180.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 MSP430FR5725IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430FR5725IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430FR5725IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 18-Feb-2016 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant MSP430FR5726IPWR TSSOP PW 28 2000 330.0 16.4 6.9 10.2 1.8 12.0 16.0 Q1 MSP430FR5726IRGER VQFN RGE 24 3000 330.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 MSP430FR5727IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430FR5727IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430FR5727IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430FR5728IPWR TSSOP PW 28 2000 330.0 16.4 6.9 10.2 1.8 12.0 16.0 Q1 MSP430FR5728IRGER VQFN RGE 24 3000 330.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 MSP430FR5728IRGET VQFN RGE 24 250 180.0 12.4 4.25 4.25 1.15 8.0 12.0 Q2 MSP430FR5729IDAR TSSOP DA 38 2000 330.0 24.4 8.6 13.0 1.8 12.0 24.0 Q1 MSP430FR5729IRHAR VQFN RHA 40 2500 330.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 MSP430FR5729IRHAT VQFN RHA 40 250 180.0 16.4 6.3 6.3 1.1 12.0 16.0 Q2 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430FR5720IPWR TSSOP PW 28 2000 367.0 367.0 38.0 MSP430FR5720IRGER VQFN RGE 24 3000 367.0 367.0 35.0 MSP430FR5720IRGET VQFN RGE 24 250 210.0 185.0 35.0 MSP430FR5721IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430FR5721IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430FR5721IRHAT VQFN RHA 40 250 210.0 185.0 35.0 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 18-Feb-2016 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430FR5722IPWR TSSOP PW 28 2000 367.0 367.0 38.0 MSP430FR5722IRGER VQFN RGE 24 3000 367.0 367.0 35.0 MSP430FR5722IRGET VQFN RGE 24 250 210.0 185.0 35.0 MSP430FR5723IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430FR5723IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430FR5723IRHAT VQFN RHA 40 250 210.0 185.0 35.0 MSP430FR5724IPWR TSSOP PW 28 2000 367.0 367.0 38.0 MSP430FR5724IRGER VQFN RGE 24 3000 367.0 367.0 35.0 MSP430FR5724IRGET VQFN RGE 24 250 210.0 185.0 35.0 MSP430FR5725IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430FR5725IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430FR5725IRHAT VQFN RHA 40 250 210.0 185.0 35.0 MSP430FR5726IPWR TSSOP PW 28 2000 367.0 367.0 38.0 MSP430FR5726IRGER VQFN RGE 24 3000 367.0 367.0 35.0 MSP430FR5727IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430FR5727IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430FR5727IRHAT VQFN RHA 40 250 210.0 185.0 35.0 MSP430FR5728IPWR TSSOP PW 28 2000 367.0 367.0 38.0 MSP430FR5728IRGER VQFN RGE 24 3000 367.0 367.0 35.0 MSP430FR5728IRGET VQFN RGE 24 250 210.0 185.0 35.0 MSP430FR5729IDAR TSSOP DA 38 2000 367.0 367.0 45.0 MSP430FR5729IRHAR VQFN RHA 40 2500 367.0 367.0 38.0 MSP430FR5729IRHAT VQFN RHA 40 250 210.0 185.0 35.0 Pack Materials-Page 3 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated