D a t a S h e e t , Rev. 1.04, J a n . 2 0 0 4 HYS72D16000GR-[7/8]-A HYS72D32001GR-[7/8]-A Registered DDR SDRAM-Modules DDR SDRAM Memory Products N e v e r s t o p t h i n k i n g . Edition 2004-01 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2004. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. D a t a S h e e t , Rev. 1.04, J a n . 2 0 0 4 HYS72D16000GR-[7/8]-A HYS72D32001GR-[7/8]-A Registered DDR SDRAM-Modules DDR SDRAM Memory Products N e v e r s t o p t h i n k i n g . HYS72D16000GR-[7/8]-A HYS72D32001GR-[7/8]-A Revision History: Rev. 1.04 2004-01 Previous Version: Rev. 1.03 2003-10 Page Subjects (major changes since last revision) Rev. 1.04 16 Editorial and table-layout changes We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Template: mp_a4_v2.2_2003-10-07.fm HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Table of Contents Page 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 3.1 3.2 3.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Specification and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 SPD Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 Application Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Data Sheet 5 13 13 17 17 Rev. 1.04, 2004-01 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Overview 1 Overview 1.1 Features • • • • • • • • • • • • 184-pin Registered 8 Byte Dual-In-Line DDR SDRAM Module for PC and Server main memory applications One bank 16M × 72 and 32M × 72 organization JEDEC standard Double Data Rate Synchronous DRAMs (DDR SDRAM) with a single +2.5 V (± 0.2 V) power supply Built with 128 Mbit DDR SDRAMs in 66-Lead TSOPII package Programmable CAS Latency, Burst Length, and Wrap Sequence (Sequential & Interleave) Auto Refresh (CBR) and Self Refresh All inputs and outputs SSTL_2 compatible Re-drive for all input signals using register and PLL devices. Serial Presence Detect with E2PROM JEDEC standard MO-206 form factor: 133.35 mm (nom.) × 43.18 mm (nom.) × 4.00 mm (max.) (6,80 mm max. with stacked components) JEDEC standard reference layout: Raw Cards A, B and C Gold plated contacts Table 1 Performance -8/-7 Part Number Speed Code Speed Grade max. Clock Frequency –7 Unit Component DDR266A DDR200 — Module PC2100-2033 PC1600-2022 — 143 125 MHz 133 100 MHz @CL2.5 @CL2 1.2 –8 fCK2.5 fCK2 Description The HYS 72D××0×0GR are industry standard 184-pin 8 byte Dual in-line Memory Modules (DIMMs) organized as 16M × 72 (128 MB) and 32M × 72 (256 MB). The memory array is designed with Double Data Rate Synchronous DRAMs for ECC applications. All control and address signals are re-driven on the DIMM using register devices and a PLL for the clock distribution. This reduces capacitive loading to the system bus, but adds one cycle to the SDRAM timing. A variety of decoupling capacitors are mounted on the PC board. The DIMMs feature serial presence detect based on a serial E2PROM device using the 2-pin I2C protocol. The first 128 bytes are programmed with configuration data and the second 128 bytes are available to the customer. Data Sheet 6 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Overview Table 2 Ordering Information Type Compliance Code Description SDRAM Technology HYS72D16000GR-7-A PC2100R-20330-A1 one bank 128 MB Reg. DIMM 128 Mbit (×8) HYS72D32001GR-7-A PC2100R-20330-B1 one bank 256 MB Reg. DIMM 128 Mbit (×4) HYS72D16000GR-8-A PC1600R-20220-A1 one bank 128 MB Reg. DIMM 128 Mbit (×8) HYS72D32001GR-8-A PC1600R-20220-B1 one bank 256 MB Reg. DIMM 128 Mbit (×4) PC2100 (CL=2) PC1600 (CL=2) Note: All part numbers end with a place code (not shown), designating the silicon-die revision. Reference information available on request. Example: HYS72D16000GR-8-A, indicating Rev. A die are used for SDRAM components The Compliance Code is printed on the module labels and describes the speed sort for example “PC2100R”, the latencies (for example “20330” means CAS latency = 2, tRCD latency = 3 and tRP latency = 3 ) and the Raw Card used for this module. Data Sheet 7 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Pin Configuration 2 Pin Configuration Table 3 Pin Definitions and Functions Symbol Type Function A0 – A11 Input Address Inputs BA0, BA1 Input Rank Selects DQ0 – DQ63 Input/Output Data Input/Output CB0 – CB7 Input/Output Check Bits (×72 organization only) RAS Input Row Address Strobe CAS Input Column Address Strobe WE Input Read/Write Input CKE0, CKE1 Input Clock Enable DQS0 – DQS8 Input/Output SDRAM low data strobes CK0, CK0 Input Differential Clock Input DM0 – DM8 Input SDRAM low data mask DQS9 – DQS17 Input/Output high data strobes CS0, CS1 Input Chip Selects VDD VSS VDDQ VDDID VDDSPD VREF Supply Power (+2.5 V) Supply Ground Supply I/O Driver power supply Output VDD Indentification flag Supply EEPROM power supply Supply I/O reference supply SCL Input Serial bus clock SDA Output Serial bus data line SA0 – SA2 Input slave address select NC Input no connect DU Input don’t use RESET Input Reset pin (forces register inputs low) *) *) for detailed description of the Power Up and Power Management on DDR Registered DIMMs see the Application Note at the end of this datasheet Table 4 Address Format Organization Memory Ranks SDRAMs # of SDRAMs # of row/rank/ columns bits Refresh Period Interval 128 MB 16M × 72 1 16M × 8 9 12/2/10 4K 64 ms 15.6 µs 256 MB 32M × 72 1 32M × 4 18 12/2/11 4K 64 ms 15.6 µs Density Data Sheet 8 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Pin Configuration Table 5 PIN# Pin Configuration Symbol PIN# Symbol PIN# Symbol PIN# Symbol 1 VREF 48 A0 94 DQ4 141 A10 2 DQ0 49 CB2 95 DQ5 142 CB6 3 VSS 50 VSS 96 VDDQ 143 VDDQ 4 DQ1 51 CB3 97 DM0/DQS9 144 CB7 5 DQS0 52 BA1 98 DQ6 6 DQ2 99 DQ7 145 VSS 7 VDD 53 DQ32 100 VSS 146 DQ36 8 DQ3 54 VDDQ 101 NC 147 DQ37 9 NC 55 DQ33 102 NC 148 VDD 10 RESET 56 DQS4 103 NC 149 DM4/DQS13 11 VSS 57 DQ34 104 VDDQ 150 DQ38 12 DQ8 58 VSS 105 DQ12 151 DQ39 13 DQ9 59 BA0 106 DQ13 152 VSS 14 DQS1 60 DQ35 107 DM1/DQS10 153 DQ44 15 VDDQ 61 DQ40 108 VDD 154 RAS 16 DU 62 VDDQ 109 DQ14 155 DQ45 17 DU 63 WE 110 DQ15 156 VDDQ 18 VSS 64 DQ41 111 CKE1 157 CS0 19 DQ10 65 CAS 112 VDDQ 158 CS1 20 DQ11 66 VSS 113 NC 159 DM5/DQS14 21 CKE0 67 DQS5 114 DQ20 160 VSS 22 VDDQ 68 DQ42 115 NC/A12 161 DQ46 KEY KEY A12 is used for 256 Mbit and 512 Mbit based modules only 23 DQ16 69 DQ43 116 VSS 162 DQ47 24 DQ17 70 VDD 117 DQ21 163 NC 25 DQS2 71 NC 118 A11 164 VDDQ 26 VSS 72 DQ48 119 DM2/DQS11 165 DQ52 27 A9 73 DQ49 120 VDD 166 DQ53 28 DQ18 74 VSS 121 DQ22 167 NC 29 A7 75 DU 122 A8 168 VDD 30 VDDQ 76 DU 123 DQ23 169 DM6/DQS15 31 DQ19 77 VDDQ 124 VSS 170 DQ54 32 A5 78 DQS6 125 A6 171 DQ55 33 DQ24 79 DQ50 126 DQ28 172 VDDQ 34 VSS 80 DQ51 127 DQ29 173 NC 35 DQ25 81 128 VDDQ 174 DQ60 36 DQS3 82 VSS VDDID 129 DM3/DQS12 175 DQ61 37 A4 83 DQ56 130 A3 176 VSS 38 VDD 84 DQ57 131 DQ30 177 DM7/DQS16 Data Sheet 9 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Pin Configuration Table 5 PIN# Pin Configuration (cont’d) Symbol PIN# Symbol PIN# Symbol PIN# Symbol 39 DQ26 85 VDD 132 VSS 178 DQ62 40 DQ27 86 DQS7 133 DQ31 179 DQ63 41 A2 87 DQ58 134 CB4 180 VDDQ 42 VSS 88 DQ59 135 CB5 181 SA0 43 A1 89 VSS 136 VDDQ 182 SA1 44 CB0 90 NC 137 CK0 183 SA2 45 CB1 91 SDA 138 CK0 184 46 VDD 92 SCL 139 VSS 185 VDDSPD VSS 47 DQS8 93 VSS 140 DM8/DQS17 – – Data Sheet 10 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Pin Configuration RS0 DQS0 DM0/DQS9 DQS4 DM4/DQS13 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D0 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D1 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D2 DQS8 DM8/DQS17 CS0 RAS CAS CKE0 WE PCK PCK Figure 1 Data Sheet DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D5 CS DQS D6 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS D3 CS DQS D7 VDDSPD R E G I S T E R A0-A12 DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 D4 Serial PD CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7 BA0-BA1 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQS DQS7 DM7/DQS16 DQS3 DM3/DQS12 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 CS DQS6 DM6/DQS15 DQS2 DM2/DQS11 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQS5 DM5/DQS14 DQS1 DM1/DQS10 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DM I/O 7 I/O 6 I/O 1 I/O 0 I/O 5 I/O 4 I/O 3 I/O 2 CS D0 - D8 DQS SDA D8 SCL A0 A1 A2 RS0 -> CS : SDRAMs D0-D8 VDD, V DDQ D0 - D8 VREF D0 - D8 V SS SA0 SA1 SA2 V DDID D0 - D8 Strap: see Note 4 Notes: RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D8 1. DQ-to-I/O wiring may be changed within a byte. 2. DQ/DQS/DM/CKE/S relationships must be maintained as shown. 3. DQ, DQS, Adress and control resistors: 22 Ohms. 4. VDDID strap connections STRAP OUT (OPEN): VDD = VDDQ RA0-RA12 -> A0-A12: SDRAMs D0 - D8 RRAS -> RAS : SDRAMs D0 - D8 RCAS -> CAS : SDRAMs D0 - D8 RCKE0 -> CKE: SDRAMs D0 - D8 RWE -> WE : SDRAMs D0 - D8 RESET EEPROM CK0, CK 0 --------- PLL* * Wire per Clock Loading Table/Wiring Diagrams 5. SDRAM placement alternates between the back and front of the DIMM. Block Diagram One Rank 16 MB × 72 DDR SDRAM DIMM Modules HYS72D16000GR-[7/8]-A using ×8 organized SDRAMs on RAW Card Version A 11 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Pin Configuration VSS RS0B RS0A DQS0 DM0/DQS9 DQS CS DQ0 DQ1 DQ2 DQ3 I/O 0 I/O 1 I/O 2 I/O 3 DQ8 DQ9 DQ10 DQ11 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ16 DQ17 DQ18 DQ19 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ24 DQ25 DQ26 DQ27 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ32 DQ33 DQ34 DQ35 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ40 DQ41 DQ42 DQ43 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DQ48 DQ49 DQ50 DQ51 DQS I/O 0 I/O 1 I/O 2 I/O 3 DQS CS DM DQ4 DQ5 DQ6 DQ7 D0 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM D9 DM1/DQS10 DQS1 CS DM DQ12 DQ13 DQ14 DQ15 D1 DQS2 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM D10 DM2/DQS11 DQS3 DM DQ20 DQ21 DQ22 DQ23 D2 DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM D11 DM3/DQS12 DM DQ28 DQ29 DQ30 DQ31 D3 DQS4 DM DQ36 DQ37 DQ38 DQ39 D4 DQS5 DQS6 DM DM5/DQS14 DQ44 DQ45 DQ46 DQ47 D5 DM DM6/DQS15 DQ52 DQ53 DQ54 DQ55 D6 DQS7 D12 DQS CS I/O 0 I/O 1 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 I/O 0 I/O 1 I/O 2 I/O 3 I/O 0 I/O 1 I/O 2 I/O 3 CS0 BA0-BA1 A0-A11,A12 RAS CAS CKE0 WE PCK PCK Figure 2 Data Sheet R E G I S T E R DQ60 DQ61 DQ62 DQ63 D7 DQS CB0 CB1 CB2 CB3 DM CS DM DM8/DQS17 D8 CB4 CB5 CB6 CB7 DQS I/O 0 I/O 1 I/O 2 I/O 3 DM V DDSPD EEPROM VDD, VDDQ D0 - D17 VREF D0 - D17 V SS CS DM D0 - D17 V DDID Strap: see Note 4 D14 Serial PD CS DQS I/O 0 I/O 1 D15 I/O 2 I/O 3 DQS I/O 0 I/O 1 I/O 2 I/O 3 DM D13 DM7/DQS16 DQ56 DQ57 DQ58 DQ59 DQS8 DM4/DQS13 CS DQS I/O 0 I/O 1 I/O 2 I/O 3 CS DM D17 A0 A1 A2 SA0 SA1 SA2 DM Notes: D16 CS SDA SCL DM 1. DQ-to-I/O wiring may be changed within a byte. 2. DQ/DQS/DM/CKE/S relationships must be maintained as shown. 3. DQ, DQS, Adress and control resistors: 22 Ohms. 4. VDDID strap connections STRAP OUT (OPEN): VDD = VDDQ 5. SDRAM placement alternates between the back and front of the DIMM. RS 0 -> CS : SDRAMs D0-D17 RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D17 RA0-RA11,RA12 -> A0-A11,A12: SDRAMs D0 - D17 RRAS -> RAS : SDRAMs D0 - D17 RCAS -> CAS : SDRAMs D0 - D17 RCKE0A -> CKE: SDRAMs D0 - D8 RCKEB -> CKE: SDRAMs D9 - D17 CK0, CK 0 --------- PLL* RWE -> WE : SDRAMs D0 - D17 * Wire per Clock Loading Table/Wiring Diagrams RESET Block Diagram One Rank 32 MB × 72 DDR SDRAM DIMM Modules HYS72D32001GR-[7/8]-A using ×4 organized SDRAMs on RAW Card Version B 12 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Electrical Characteristics 3 Electrical Characteristics 3.1 Operating Conditions Table 6 Absolute Maximum Ratings Parameter Symbol Voltage on I/O pins relative to VSS VIN, VOUT Values min. typ. max. Unit Note/ Test Condition –0.5 – VDDQ + V – 0.5 Voltage on inputs relative to VSS Voltage on VDD supply relative to VSS Voltage on VDDQ supply relative to VSS Operating temperature (ambient) Storage temperature (plastic) Power dissipation (per SDRAM component) Short circuit output current VIN VDD VDDQ TA TSTG PD IOUT –1 – +3.6 V – –1 – +3.6 V – –1 – +3.6 V – 0 – +70 °C – -55 – +150 °C – – 1 – W – – 50 – mA – Attention: Permanent damage to the device may occur if “Absolute Maximum Ratings” are exceeded. This is a stress rating only, and functional operation should be restricted to recommended operation conditions. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability and exceeding only one of the values may cause irreversible damage to the integrated circuit. Data Sheet 13 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Electrical Characteristics Table 7 Electrical Characteristics and DC Operating Conditions Parameter Symbol VDD Output Supply Voltage VDDQ Supply Voltage, I/O Supply VSS, Voltage VSSQ Input Reference Voltage VREF I/O Termination Voltage VTT Device Supply Voltage Unit Note/Test Condition 1) Values Min. Typ. Max. 2.3 2.5 2.7 V 2.3 2.5 2.7 V 2) 0 V — 0 0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ V 3) VREF – 0.04 VREF + 0.04 V 4) Input High (Logic1) Voltage VIH(DC) VREF + 0.15 7) Input Low (Logic0) Voltage VIL(DC) –0.3 Input Voltage Level, CK and CK Inputs VIN(DC) –0.3 VDDQ + 0.3 V VREF – 0.15 V VDDQ + 0.3 V Input Differential Voltage, CK and CK Inputs VID(DC) 0.36 VDDQ + 0.6 V 7)5) VI-Matching Pull-up Current to Pull-down Current VIRatio 0.71 1.4 — 6) Input Leakage Current II –2 2 µA Any input 0 V ≤ VIN ≤ VDD; All other pins not under test = 0 V 7)8) Output Leakage Current IOZ –5 5 µA DQs are disabled; 0 V ≤ VOUT ≤ VDDQ 7) Output High Current, Normal Strength Driver IOH — –16.2 mA VOUT = 1.95 V 7) Output Low Current, Normal Strength Driver IOL 16.2 — mA VOUT = 0.35 V 7) (System) 7) 7) 1) 0 °C ≤ TA ≤ 70 °C 2) Under all conditions, VDDQ must be less than or equal to VDD. 3) Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC). VREF is also expected to track noise variations in VDDQ. 4) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in the DC level of VREF. 5) VID is the magnitude of the difference between the input level on CK and the input level on CK. 6) The ratio of the pull-up current to the pull-down current is specified for the same temperature and voltage, over the entire temperature and voltage range, for device drain to source voltage from 0.25 to 1.0 V. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation. 7) Inputs are not recognized as valid until VREF stabilizes. 8) Values are shown per component Data Sheet 14 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Electrical Characteristics Table 8 IDD Conditions Parameter Symbol Operating Current 0 one bank; active/ precharge; DQ, DM, and DQS inputs changing once per clock cycle; address and control inputs changing once every two clock cycles. IDD0 Operating Current 1 one bank; active/read/precharge; Burst Length = 4; see component data sheet. IDD1 Precharge Power-Down Standby Current all banks idle; power-down mode; CKE ≤ VIL,MAX IDD2P Precharge Floating Standby Current CS ≥ VIH,,MIN, all banks idle; CKE ≥ VIH,MIN; address and other control inputs changing once per clock cycle; VIN = VREF for DQ, DQS and DM. IDD2F Precharge Quiet Standby Current CS ≥ VIHMIN, all banks idle; CKE ≥ VIH,MIN; VIN = VREF for DQ, DQS and DM; address and other control inputs stable at ≥ VIH,MIN or ≤ VIL,MAX. IDD2Q Active Power-Down Standby Current one bank active; power-down mode; CKE ≤ VILMAX; VIN = VREF for DQ, DQS and DM. IDD3P Active Standby Current one bank active; CS ≥ VIH,MIN; CKE ≥ VIH,MIN; tRC = tRAS,MAX; DQ, DM and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle. IDD3N Operating Current Read one bank active; Burst Length = 2; reads; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR266(A), CL = 3 for DDR333 and DDR400B; IOUT = 0 mA IDD4R Operating Current Write one bank active; Burst Length = 2; writes; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR266(A), CL = 3 for DDR333 and DDR400B IDD4W Auto-Refresh Current tRC = tRFCMIN, burst refresh IDD5 Self-Refresh Current CKE ≤ 0.2 V; external clock on IDD6 Operating Current 7 four bank interleaving with Burst Length = 4; see component data sheet. IDD7 Data Sheet 15 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Electrical Characteristics HYS72D16000GR-8-A Note 1)2) HYS72D16000GR-8-A IDD0 IDD1 IDD2P IDD2F IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5 IDD6 IDD7 Unit HYS72D32001GR-7-A Symbol IDD Specification and Conditions HYS72D16000GR-7-A Part Number & Organization Table 9 128MB 256MB 128MB 256MB x72 x72 x72 x72 1 Rank 1 Rank 1 Rank 1 Rank –7 –7 –8 –8 max. max. max. max. 810 1620 765 1530 mA 3) 990 1980 900 1800 mA 3)4) 45 90 40.5 81 mA 5) 405 810 315 630 mA 5) 405 810 315 630 mA 5) 135 270 135 270 mA 5) 405 810 315 630 mA 5) 990 1980 810 1620 mA 3)4) 990 1980 855 1710 mA 3) 1710 3420 1620 3240 mA 3) 22.5 45 22.5 45 mA 5) 2520 5040 2430 4860 mA 3)4) 1) Module IDD values are calculated on the basis of component IDD and can be measured differently according to DQ loading capacity. 2) Test condition for maximum values: VDD = 2.7 V, TA = 10 °C 3) The module IDDx values are calculated from the IDDx values of the component data sheet as follows: m × IDDx[component] + n × IDD3N[component] with m and n number of components of rank 1 and 2; n=0 for 1 rank modules 4) DQ I/O (IDDQ) currents are not included in the calculations (see note 1) 5) The module IDDx values are calculated from the corrponent IDDx data sheet values as: (m + n) × IDDx[component] Data Sheet 16 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Electrical Characteristics 3.2 Current Specification and Conditions 3.3 AC Characteristics Table 10 AC Timing - Absolute Specifications –8/–7 Parameter Symbol –8 –7 DDR200 DDR266A Unit Note/ Test Condition 1) Min. Max. Min. Max. tAC tDQSCK tCH tCL tHP tCK2.5 tCK2 tCK1.5 tDH tDS tIPW –0.8 +0.8 –0.75 +0.75 ns 2)3)4)5) –0.8 +0.8 –0.75 +0.75 ns 2)3)4)5) 0.45 0.55 0.45 0.55 2)3)4)5) 0.45 0.55 0.45 0.55 tCK tCK ns 2)3)4)5) DQ and DM input pulse width (each input) DQ output access time from CK/CK DQS output access time from CK/CK CK high-level width CK low-level width Clock Half Period min. (tCL, tCH) min. (tCL, tCH) 2)3)4)5) 8 12 7 12 ns CL = 2.5 2)3)4)5) 10 12 7.5 12 ns CL = 2.0 2)3)4)5) 10 12 — — ns CL = 1.5 2)3)4)5) 0.6 — 0.5 — ns 2)3)4)5) 0.6 — 0.5 — ns 2)3)4)5) 2.5 — 2.2 — ns 2)3)4)5)6) tDIPW 2.0 — 1.75 — ns 2)3)4)5)6) Data-out high-impedance time from CK/CK tHZ –0.8 +0.8 –0.75 +0.75 ns 2)3)4)5)7) Data-out low-impedance time from CK/CK tLZ –0.8 +0.8 –0.75 +0.75 ns 2)3)4)5)7) Write command to 1st DQS latching transition tDQSS 0.75 1.25 0.75 1.25 tCK 2)3)4)5) DQS-DQ skew (DQS and associated DQ signals) tDQSQ — +0.6 — +0.5 ns 2)3)4)5) Data hold skew factor tQHS tQH — 1.0 — 0.75 ns 2)3)4)5) tHP – tQHS — tHP – tQHS — ns 2)3)4)5) 0.35 — 0.35 — tCK 2)3)4)5) Clock cycle time DQ and DM input hold time DQ and DM input setup time Control and Addr. input pulse width (each input) DQ/DQS output hold time DQS input low (high) pulse width (write tDQSL,H cycle) DQS falling edge to CK setup time (write cycle) tDSS 0.2 — 0.2 — tCK 2)3)4)5) DQS falling edge hold time from CK (write cycle) tDSH 0.2 — 0.2 — tCK 2)3)4)5) 2 — 2 — tCK 2)3)4)5) 0 — 0 — ns 2)3)4)5)8) 0.40 0.60 0.40 0.60 2)3)4)5)9) 0.25 — 0.25 — tCK tCK Mode register set command cycle time tMRD Write preamble setup time Write postamble Write preamble Data Sheet tWPRES tWPST tWPRE 17 2)3)4)5) Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Electrical Characteristics Table 10 AC Timing - Absolute Specifications –8/–7 Parameter Address and control input setup time Symbol tIS –8 –7 DDR200 DDR266A Min. Max. Min. Max. 1.1 — 0.9 — Unit Note/ Test Condition 1) ns fast slew rate 3)4)5)6)10) 1.1 — 1.0 — ns slow slew rate 3)4)5)6)10) Address and control input hold time tIH 1.1 — 0.9 — ns fast slew rate 3)4)5)6)10) 1.1 — 1.0 — ns slow slew rate 3)4)5)6)10) tRPRE tRPRE1.5 Read preamble setup time tRPRES Read postamble tRPST Active to Precharge command tRAS Active to Active/Auto-refresh command tRC Read preamble CL > 1.5 2)3)4)5) NA tCK tCK — NA ns 2)3)4)5)12) 0.40 0.60 0.40 0.60 tCK 2)3)4)5) 50 120E+3 45 120E+3 ns 2)3)4)5) 70 — 65 — ns 2)3)4)5) 0.9 1.1 0.9 0.9 1.1 1.5 1.1 CL = 1.5 2)3)4)5)11) period Auto-refresh to Active/Auto-refresh command period tRFC 80 — 75 — ns 2)3)4)5) Active to Read or Write delay tRCD tRP tRAP tRRD 20 — 20 — ns 2)3)4)5) 20 — 20 — ns 2)3)4)5) 20 — 20 — ns 2)3)4)5) 15 — 15 — ns 2)3)4)5) tWR tDAL 15 — 15 — ns 2)3)4)5) tCK 2)3)4)5)13) CL > 1.5 2)3)4)5) Precharge command period Active to Autoprecharge delay Active bank A to Active bank B command Write recovery time Auto precharge write recovery + precharge time tWTR tWTR1.5 Exit self-refresh to non-read command tXSNR Exit self-refresh to read command tXSRD Average Periodic Refresh Interval tREFI Internal write to read command delay (twr/tCK) + (trp/tCK) 1 — 1 — 2 — — — tCK tCK 80 — 75 — ns 2)3)4)5) 200 — 200 — tCK 2)3)4)5) — 7.8 — 7.8 µs 2)3)4)5)14) CL = 1.5 2)3)4)5) 1) 0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V 2) Input slew rate ≥ 1 V/ns for DDR266, and = 1 V/ns for DDR200 3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals other than CK/CK, is VREF. CK/CK slew rate are ≥ 1.0 V/ns. 4) Inputs are not recognized as valid until VREF stabilizes. 5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT. 6) These parameters guarantee device timing, but they are not necessarily tested on each device. 7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ). 8) The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS. Data Sheet 18 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Electrical Characteristics 9) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 10) Fast slew rate ≥ 1.0 V/ns , slow slew rate ≥ 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns, measured between VOH(ac) and VOL(ac). 11) CAS Latency 1.5 operation is supported on DDR200 devices only 12) tRPRES is defined for CL = 1.5 operation only 13) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock cycle time. 14) A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device. Data Sheet 19 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules SPD Contents 4 SPD Contents Table 11 SPD Codes Byte# Description 128MB x72 1rank –7 128MB x72 1rank –8 256MB x72 1rank –7 256MB x72 1rank –8 HEX. HEX. HEX. HEX. 0 Number of SPD Bytes 128 80 80 80 80 1 Total Bytes in Serial PD 256 08 08 08 08 2 Memory Type DDR-SDRAM 07 07 07 07 3 Number of Row Addresses 12 0C 0C 0C 0C 4 Number of Column Addresses 10/11 0A 0A 0B 0B 5 Number of DIMM Banks 1 01 01 01 01 6 Module Data Width ×72 48 48 48 48 7 Module Data Width (cont’d) 0 00 00 00 00 8 Module Interface Levels SSTL_2.5 04 04 04 04 9 SDRAM Cycle Time at CL = 2.5 7 ns/8 ns 70 80 70 80 10 Access Time from Clock at CL = 2.5 0.75 ns/0.8 ns 75 80 75 80 11 DIMM config ECC 02 02 02 02 12 Refresh Rate/Type Self-Refresh 15.6 ms 80 80 80 80 13 SDRAM Width, Primary ×8/×4 08 08 04 04 14 Error Checking SDRAM Data Witdh na 08 08 04 04 15 Minimum Clock Delay for Back- tCCD = 1 CLK to-Back Random Column Address 01 01 01 01 16 Burst Length Supported 2, 4 & 8 0E 0E 0E 0E 17 Number of SDRAM Banks 4 04 04 04 04 18 Supported CAS Latencies CAS latency = 2 & 2.5 0C 0C 0C 0C 19 CS Latencies CS latency = 0 01 01 01 01 20 WE Latencies Write latency = 1 02 02 02 02 21 SDRAM DIMM Module Attributes registered 26 26 26 26 22 SDRAM Device Attributes: General Concurrent Auto Precharge C0 C0 C0 C0 23 Min. Clock Cycle Time at CAS Latency = 2 7.5 ns/10 ns 75 A0 75 A0 24 Access Time from Clock for CL = 2 0.75 ns/0.8 ns 75 80 75 80 25 Minimum Clock Cycle Time for CL = 1.5 not supported 00 00 00 00 26 Access Time from Clock at CL = 1.5 not supported 00 00 00 00 Data Sheet 20 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules SPD Contents Table 11 Byte# SPD Codes (cont’d) Description 128MB x72 1rank –7 128MB x72 1rank –8 256MB x72 1rank –7 256MB x72 1rank –8 HEX. HEX. HEX. HEX. 27 Minimum Row Precharge Time 20 ns 50 50 50 50 28 Minimum Row Act. to Row Act. Delay tRRD 15 ns 3C 3C 3C 3C 29 Minimum RAS to CAS Delay tRCD 20 ns 50 50 50 50 30 Minimum RAS Pulse Width tRAS 45 ns/50 ns 2D 32 2D 32 31 Module Bank Density (per Bank) 128 MByte/256 Mbyte 20 20 40 40 32 Addr. and Command Setup Time 0.9 ns/1.1 ns 90 B0 90 B0 33 Addr. and Command Hold Time 0.9 ns/1.1 ns 90 B0 90 B0 34 Data Input Setup Time 0.5 ns/0.6 ns 50 60 50 60 35 Data Input Hold Time 0.5 ns/0.6 ns 50 60 50 60 36 to 40 Superset Information – 00 00 00 00 41 Minimum Core Cycle Time tRC 65 ns/70 ns 41 46 41 46 42 Min. Auto Refresh Cmd Cycle 75 ns/80 ns Time tFRC 4B 50 4B 50 43 Maximum Clock Cycle Time tCK 12 ns 0C 0C 0C 0C 44 Max. DQS-DQ Skew tDQSQ 0.5 ns/0.6 ns 32 3C 32 3C 45 X-Factor tQHS 0.75 ns/1.0 ns 75 A0 75 A0 46 to 61 Superset Information – 00 00 00 00 62 SPD Revision Revision 0.0 00 00 00 00 63 Checksum for Bytes 0 - 62 – A7 9C C0 B5 64 Manufactures JEDEC ID Codes – C1 C1 C1 C1 65 to 71 Manufactures – Infineon Infineon Infineon Infineon 72 Module Assembly Location – – – – – 73 to 90 Module Part Number – – – – – 91 to 92 Module Revision Code – – – – – 93 to 94 Module Manufacturing Date – – – – – 95 to 98 Module Serial Number – – – – – 99 to 127 – – – – – – – – – – – 128 to 255 open for Customer use Data Sheet 21 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Package Outlines 5 Package Outlines Module Package DDR Registered DIMM Modules Raw Card A, 128 MB Module (one physical bank, 9 components) Front View 4.0 max. 43.18 +- 0.13 133.35 +- 0.15 4.0 2.3 typ. Register Register PLL 52 pin 1 92 53 64.77 1.27 +- 0.1 49.53 2.3 typ. 6.62 Backside View 144 145 184 2.5D 10.0 17.80 pin 93 3 3 Detail of Contacts B 6.35 2.5 +- 0.20 0.20 +- 0.15 Detail of Contacts A 3.8 typ. 0.9R 1+- 0.05 1.27 1.8 2.175 L-DIM-184-10, Raw Card A, one bank Figure 3 Data Sheet Package Outlines Raw Card A 22 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Package Outlines Module Package DDR Registered DIMM Modules Raw Card B, 256 MB Module (one physical bank, 18 components) Front View 4.0 max. 43.43 +- 0.13 133.35 +- 0.15 4.0 2.3 typ. Register Register PLL 52 pin 1 92 53 64.77 1.27 +- 0.1 49.53 2.3 typ. 6.62 Backside View 144 145 184 2.5D 10.0 17.80 pin 93 3 3 Detail of Contacts B 6.35 2.5 +- 0.20 0.20 +- 0.15 Detail of Contacts A 3.8 typ. 0.9R 1 +- 0.05 1.27 1.8 2.175 L-DIM-184-8, Raw Card B Figure 4 Data Sheet Package Outlines Raw Card B 23 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Application Note 6 Application Note Power Up and Power Management on DDR Registered DIMMs (according to JEDEC ballot JC-42.5 Item 1173) 184-pin Double Data Rate (DDR) Registered DIMMs include two new features to facilitate controlled power-up and to minimize power consumption during low power mode. One feature is externally controlled via a systemgenerated RESET signal; the second is based on module detection of the input clocks. These enhancements permit the modules to power up with SDRAM outputs in a High-Z state (eliminating risk of high current dissipations and/or dotted I/Os), and result in the powering-down of module support devices (registers and Phase-Locked Loop) when the memory is in Self-Refresh mode. The new RESET pin controls power dissipation on the module’s registers and ensures that CKE and other SDRAM inputs are maintained at a valid ‘low’ level during power-up and self refresh. When RESET is at a low level, all the register outputs are forced to a low level, and all differential register input receivers are powered down, resulting in very low register power consumption. The RESET pin, located on DIMM tab #10, is driven from the system as an asynchronous signal according to the attached details. Using this function also permits the system and DIMM clocks to be stopped during memory Self Refresh operation, while ensuring that the SDRAMs stay in Self Refresh mode. Table 12 RESET Truth Table Register Inputs Register Outputs RESET CK CK Data in (D) Data out (Q) H Rising Falling H H H Rising Falling L L H L or H L or H X Qo H High Z High Z X Illegal input conditions L X or Hi-Z X or Hi-Z X or Hi-Z L X: Don’t care, Hi-Z: High Impedance, Qo: Data latched at the previous of CK rising and CK falling As described in the table above, a low on the RESET input ensures that the Clock Enable (CKE) signal(s) are maintained low at the SDRAM pins (CKE being one of the 'Q' signals at the register output). Holding CKE low maintains a high impedance state on the SDRAM DQ, DQS and DM outputs — where they will remain until activated by a valid ‘read’ cycle. CKE low also maintains SDRAMs in Self Refresh mode when applicable. The DDR PLL devices automatically detect clock activity above 20 MHz. When an input clock frequency of 20 MHz or greater is detected, the PLL begins operation and initiates clock frequency lock (the minimum operating frequency at which all specifications will be met is 95 MHz). If the clock input frequency drops below 20 MHz (actual detect frequency will vary by vendor), the PLL VCO (Voltage Controlled Oscillator) is stopped, outputs are made High-Z, and the differential inputs are powered down — resulting in a total PLL current consumption of less than 1 mA. Use of this low power PLL function makes the use of the PLL RESET (or G pin) unnecessary, and it is tied inactive on the DIMM. This application note describes the required and optional system sequences associated with the DDR Registered DIMM 'RESET' function. It is important to note that all references to CKE refer to both CKE0 and CKE1 for a 2-bank DIMM. Because RESET applies to all DIMM register devices, it is therefore not possible to uniquely control CKE to one physical DIMM bank through the use of the RESET pin. Power-Up Sequence with RESET — Required 1. The system sets RESET at a valid low level. This is the preferred default state during power-up. This input condition forces all register outputs to a low state independent of the condition on the register inputs (data and clock), ensuring that CKE is at a stable low-level at the DDR SDRAMs. Data Sheet 24 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Application Note 2. The power supplies should be initialized according to the JEDEC-approved initialization sequence for DDR SDRAMs. 3. Stabilization of Clocks to the SDRAM The system must drive clocks to the application frequency (PLL operation is not assured until the input clock reaches 20 MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices, and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds. When a stable clock is present at the SDRAM input (driven from the PLL), the DDR SDRAM requires 200 µsec prior to SDRAM operation. 4. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE must be maintained low and all other inputs should be driven to a known state. In general these commands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with CKE low), as this is the first command defined by the JEDEC initialization sequence (ideally this would be a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs to be consistent with the state of the register outputs. 5. The system switches RESET to a logic ‘high’ level. The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous, setting the RESET timing in relation to a specific clock edge is not required (during this period, register inputs must remain stable). 6. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation time that allows their clock receivers, data input receivers, and output drivers sufficient time to be turned on and become stable. During this time the system must maintain the valid logic levels described in step 5. It is also a functional requirement that the registers maintain a low state at the CKE outputs to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time (t (ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to accept an input signal, is specified in the register and DIMM do-umentation. 7. The system can begin the JEDEC-defined DDR SDRAM power-up sequence (according to the JEDECpproved initialization sequence). Self Refresh Entry (RESET low, clocks powered off) — Optional Self Refresh can be used to retain data in DDR SDRAM DIMMs even if the rest of the system is powered down and the clocks are off. This mode allows the DDR SDRAMs on the DIMM to retain data without external clocking. Self Refresh mode is an ideal time to utilize the RESET pin, as this can reduce register power consumption (RESET low deactivates register CK and CK, data input receivers, and data output drivers). 1. The system applies Self Refresh entry command. (CKE→Low, CS→Low, RAS → Low, CAS→ Low, WE→ High) Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input conditions to the SDRAM are Don’t Cares— with the exception of CKE.The system sets RESET at a valid low level. This input condition forces all register outputs to a low state, independent of the condition on the registerm inputs (data and clock), and ensures that CKE, and all other control and address signals, are a stable lowlevel at the DDR SDRAMs. Since the RESET signal is asynchronous, setting the RESET timing in relation to a specific clock edge is not required. 2. The system turns off clock inputs to the DIMM. (Optional) a. In order to reduce DIMM PLL current, the clock inputs to the DIMM are turned off, resulting in High-Z clock inputs to both the SDRAMs and the registers. This must be done after the RESET deactivate time of the register (t (INACT) ). The deactivate time defines the time in which the clocks and the control and address signals must maintain valid levels after RESET low has been applied and is specified in the register and DIMM documentation. b. The system may release DIMM address and control inputs to High-Z. This can be done after the RESET deactivate time of the register. The deactivate time defines the time in which Data Sheet 25 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Application Note the clocks and the control and the address signals must maintain valid levels after RESET low has been applied. It is highly recommended that CKE continue to remain low during this operation. 3. The DIMM is in lowest power Self Refresh mode. Self Refresh Exit (RESET low, clocks powered off) — Optional 1. Stabilization of Clocks to the SDRAM. The system must drive clocks to the application frequency (PLL operation is not assured until the input clock reaches ~ 20 MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices, and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds. 2. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE must be maintained low and all other inputs should be driven to a known state. In general these commands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with CKE low), as this is the first command defined by the JEDEC Self Refresh Exit sequence (ideally this would be a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs, to be consistent with the state of the register outputs. 3. The system switches RESET to a logic ‘high’ level. The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous, RESET timing relationship to a specific clock edge is not required (during this period, register inputs must remain stable). 4. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation time that allows the clock receivers, input receivers, and output drivers sufficient time to be turned on and become stable. During this time the system must maintain the valid logic levels described in Step 2. It is also a functional requirement that the registers maintain a low state at the CKE outputs to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time (t (ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to accept an input signal, is specified in the register and DIMM do-umentation. 5. System can begin the JEDEC-defined DDR SDRAM Self Refresh Exit Procedure. Self Refresh Entry (RESET low, clocks running) — Optional Although keeping the clocks running increases power consumption from the on-DIMM PLL during self refresh, this is an alternate operating mode for these DIMMs. 1. System enters Self Refresh entry command. (CKE→ Low, CS→ Low, RAS→ Low, CAS→ Low, WE→ High) Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input conditions to the SDRAM are Don’t Cares — with the exception of CKE. 2. The system sets RESET at a valid low level. This input condition forces all register outputs to a low state, independent of the condition on the data and clock register inputs, and ensures that CKE is a stable low-level at the DDR SDRAMs. 3. The system may release DIMM address and control inputs to High-Z. This can be done after the RESET deactivate time of the register (t (INACT) ). The deactivate time describes the time in which the clocks and the control and the address signals must maintain valid levels after RESET low has been applied. It is highly recommended that CKE continue to remain low during the operation. 4. The DIMM is in a low power, Self Refresh mode. Self Refresh Exit (RESET low, clocks running) — Optional 1. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM connector). CKE must be maintained low and all other inputs should be driven to a known state. In general these commands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with CKE low), as this is the first command defined by the Self Refresh Exit sequence (ideally this would be Data Sheet 26 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 HYS72D[16000/32001]GR-[7/8]-A Registered DDR SDRAM Modules Application Note a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs to be consistent with the state of the register outputs. 2. The system switches RESET to a logic 'high' level. The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous, it does not need to be tied to a particular clock edge (during this period, register inputs must continue to remain stable). 3. The system must maintain stable register inputs until normal register operation is attained. The registers have an activation time that allows the clock receivers, input receivers, and output drivers sufficient time to be turned on and become stable. During this time the system must maintain the valid logic levels described in Step 1. It is also a functional requirement that the registers maintain a low state at the CKE outputs in order to guarantee that the DDR SDRAMs continue to receive a low level on CKE. This activation time, from asynchronous switching of RESET from low to high, until the registers are stable and ready to accept an input signal, is t (ACT ) as specified in the register and DIMM documentation. 4. The system can begin JEDEC defined DDR SDRAM Self Refresh Exit Procedure. Self Refresh Entry/Exit (RESET high, clocks running) — Optional As this sequence does not involve the use of the RESET function, the JEDEC standard SDRAM specification explains in detail the method for entering and exiting Self Refresh for this case. Self Refresh Entry (RESET high, clocks powered off) — Not Permissible In order to maintain a valid low level on the register output, it is required that either the clocks be running and the system drive a low level on CKE, or the clocks are powered off and RESET is asserted low according to the sequence defined in this application note. In the case where RESET remains high and the clocks are powered off, the PLL drives a High-Z clock input into the register clock input. Without the low level on RESET an unknown DIMM state will result. Data Sheet 27 Rev. 1.04, 2004-01 10282003-ROLI-0GQ8 http://www.infineon.com Published by Infineon Technologies AG