TI1 DRV8839DSSR Low-voltage dual h-bridge driver ic Datasheet

Sample &
Buy
Product
Folder
Support &
Community
Tools &
Software
Technical
Documents
DRV8839
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
DRV8839 Low-Voltage Dual ½-H-Bridge Driver IC
1 Features
3 Description
•
The DRV8839 provides a versatile power driver
solution for cameras, consumer products, toys, and
other low-voltage or battery-powered applications.
The device has two independent ½-H-bridge drivers
and can drive one DC motor or one winding of a
stepper motor, as well as other devices like
solenoids. The output stages use N-channel power
MOSFETs configured as ½-H-bridges. An internal
charge pump generates needed gate-drive voltages.
1
•
•
•
•
•
•
Dual ½-H-Bridge Motor Driver
– Drives a DC Motor or One Winding of a
Stepper Motor, or Other Loads
– Low MOSFET ON-Resistance:
HS + LS 280 mΩ
1.8-A Maximum Drive Current
Separate Motor and Logic Supply Pins:
– 0-V to 11-V Motor-Operating Supply-Voltage
– 1.8-V to 7-V Logic Supply-Voltage
Separate Motor and Logic Supply Pins
Individual ½-H-Bridge Control Input Interface
Low-Power Sleep Mode With 120-nA Maximum
Combined Supply Current
2.00-mm × 3.00-mm 12-Pin WSON Package
The DRV8839 has independent input and enable pins
for each ½-H-bridge which allow independent control
of each output.
Internal shutdown functions are provided for
overcurrent protection, short-circuit protection,
undervoltage lockout, and overtemperature.
2 Applications
•
The DRV8839 can supply up to 1.8-A of output
current. It operates on a motor power supply voltage
from 0 V to 11 V and a device power supply voltage
of 1.8 V to 7 V.
Battery-Powered:
– DSLR Lenses
– Consumer Products
– Toys
– Robotics
– Cameras
– Medical Devices
The DRV8839 is packaged in a 12-pin,
2.00-mm × 3.00-mm WSON package (Eco-friendly:
RoHS and no Sb/Br).
Device Information(1)
PART NUMBER
DRV8839
PACKAGE
WSON (12)
BODY SIZE (NOM)
2.00 mm × 3.00 mm
(1) For all available packages, see the Orderable Addendum at
the end of the datasheet.
Simplified Schematic
VCC = 1.8 V to 7 V
VM = 0 V to 11 V
Controller
PWM
nSLEEP
nFAULT
DRV8839
Brushed
DC Motor
or ½
Stepper
Motor
Driver
1.8A
BDC
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
DRV8839
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
www.ti.com
Table of Contents
1
2
3
4
5
6
7
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
4
6.1
6.2
6.3
6.4
6.5
6.6
6.7
4
4
4
4
5
5
7
Absolute Maximum Ratings .....................................
ESD Ratings..............................................................
Recommended Operating Conditions.......................
Thermal Information ..................................................
Electrical Characteristics...........................................
Timing Requirements ...............................................
Typical Characteristics ..............................................
Detailed Description .............................................. 8
7.1 Overview ................................................................... 8
7.2 Functional Block Diagram ......................................... 8
7.3 Feature Description................................................... 9
7.4 Device Functional Modes.......................................... 9
8
Application and Implementation ........................ 12
8.1 Application Information............................................ 12
8.2 Typical Application .................................................. 12
9
Power Supply Recommendations...................... 14
9.1 Bulk Capacitance .................................................... 14
10 Layout................................................................... 15
10.1 Layout Guidelines ................................................. 15
10.2 Layout Example .................................................... 15
10.3 Thermal Considerations ........................................ 15
11 Device and Documentation Support ................. 17
11.1
11.2
11.3
11.4
11.5
Documentation Support ........................................
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
17
17
17
17
17
12 Mechanical, Packaging, and Orderable
Information ........................................................... 17
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision A (January 2014) to Revision B
•
Page
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
Mechanical, Packaging, and Orderable Information section .................................................................................................. 1
Changes from Original (January 2013) to Revision A
Page
•
Changed Features bullet ........................................................................................................................................................ 1
•
Changed motor supply voltage range in Description section ................................................................................................. 1
•
Changed Motor power supply voltage range in Recommended Operating Conditions ........................................................ 4
•
Added tOCR and tDEAD parameters to Electrical Characteristics .............................................................................................. 5
•
Added paragraph to Power Supplies and Input Pins section ............................................................................................... 14
2
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
DRV8839
www.ti.com
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
5 Pin Configuration and Functions
DSS Package
12-Pin WSON
Top View
VM
VM
OUT1
OUT2
GND
GND
1
12
2
11
3
GND
Thermal
Pad
4
10
9
5
8
6
7
VCC
nSLEEP
IN1
EN1
IN2
EN2
Pin Functions
PIN
NAME
NO.
I/O
(1)
EXTERNAL COMPONENTS
OR CONNECTIONS
DESCRIPTION
POWER AND GROUND
GND
5, 6
—
Device ground
VCC
12
—
Device supply
Bypass to GND with a 0.1-μF, 6.3-V ceramic
capacitor
VM
1, 2
—
Motor supply
Bypass to GND with a 0.1-μF, 16-V ceramic
capacitor
EN1
9
I
Enable 1
Logic high enables OUT1
Internal pulldown resistor
EN2
7
I
Enable 2
Logic high enables OUT2
Internal pulldown resistor
IN1
10
I
Input 1
Logic input controls OUT1
Internal pulldown resistor
IN2
8
I
Input 2
Logic input controls OUT2
Internal pulldown resistor
nSLEEP
11
I
Sleep mode input
Logic low puts device in low-power sleep mode
Logic high for normal operation
Internal pulldown resistor
OUT1
3
O
Output 1
OUT2
4
O
Output 2
2, 5
—
No connection
CONTROL
OUTPUT
Connect to motor winding
NO CONNECT
NC
(1)
No connection to these pins
Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output.
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
3
DRV8839
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
www.ti.com
6 Specifications
6.1 Absolute Maximum Ratings
(1) (2)
Over operating free-air temperature range (unless otherwise noted)
(1)
MIN
MAX
UNIT
Power supply voltage, VM
–0.3
12
V
Power supply voltage, VCC
–0.3
7
V
Digital input pin voltage
–0.5
7
V
Internally limited
A
Peak motor drive output current
TJ
Operating junction temperature
–40
150
°C
Tstg
Storage temperature
–60
150
°C
(1)
(2)
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to network ground terminal.
6.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)
±4000
Charged-device model (CDM), per JEDEC specification JESD22C101 (2)
±1500
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
TA = 25°C (unless otherwise noted)
MIN
VCC
Device power supply voltage
VM
NOM
MAX
UNIT
1.8
7
V
Motor power supply voltage
0
11
V
VIN
Logic level input voltage
0
5.5
V
IOUT
H-bridge output current
0
1.8
A
fPWM
Externally applied PWM frequency
0
250
kHz
(1)
(1)
Power dissipation and thermal limits must be observed.
6.4 Thermal Information
DRV8839
THERMAL METRIC (1)
DSS (WSON)
UNIT
12 PINS
RθJA
Junction-to-ambient thermal resistance
RθJC(top)
Junction-to-case (top) thermal resistance
RθJB
Junction-to-board thermal resistance
ψJT
Junction-to-top characterization parameter
0.9
°C/W
ψJB
Junction-to-board characterization parameter
20
°C/W
RθJC(bot)
Junction-to-case (bottom) thermal resistance
6.9
°C/W
(1)
4
50.4
°C/W
58
°C/W
19.9
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
DRV8839
www.ti.com
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
6.5 Electrical Characteristics
TA = 25°C, VM = 5 V, VCC = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
No PWM
40
100
µA
50 kHz PWM
0.8
1.5
mA
nSLEEP = 0 V
30
95
nA
No PWM
300
500
µA
50 kHz PWM
0.7
1.5
mA
5
25
nA
POWER SUPPLY
IVM
VM operating supply current
IVMQ
VM sleep mode supply current
IVCC
VCC operating supply current
IVCCQ
VCC sleep mode supply current
nSLEEP = 0 V
VUVLO
VCC undervoltage lockout
voltage
VCC rising
1.8
VCC falling
1.7
V
LOGIC-LEVEL INPUTS
VIL
Input low voltage
VIH
Input high voltage
0.31 × VCC 0.34 × VCC
0.39 × VCC 0.43 × VCC
VHYS
Input hysteresis
0.08 × VCC
IIL
Input low current
VIN = 0
IIH
Input high current
VIN = 3.3 V
RPD
Pulldown resistance
–5
V
V
V
μA
5
μA
50
100
kΩ
H-BRIDGE FETS
RDS(ON)
HS + LS FET on resistance
IOFF
OFF-state leakage current
I O = 800 mA, TJ = 25°C
280
330
mΩ
±200
nA
PROTECTION CIRCUITS
IOCP
Overcurrent protection trip level
tOCR
Overcurrent protection retry time
tDEAD
Output dead time
tTSD
Thermal shutdown temperature
6.6 Timing Requirements
1.9
3.5
A
1
ms
100
Die temperature
150
ns
160
180
°C
MIN
(1)
TA = 25°C, VM = 5 V, VCC = 3 V, RL = 20 Ω
(1)
MAX
UNIT
1
t1
Output enable time
120
ns
2
t2
Output disable time
120
ns
3
t3
Delay time, INx high to OUTx high
120
ns
4
t4
Delay time, INx low to OUTx low
120
ns
5
t5
Output rise time
50
150
ns
6
t6
Output fall time
50
150
ns
Not production tested – ensured by design
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
5
DRV8839
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
www.ti.com
INx
ENx
3
1
2
4
OUTx
OUTx
z
z
80%
80%
20%
20%
5
6
Figure 1. Timing Requirements
6
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
DRV8839
www.ti.com
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
6.7 Typical Characteristics
1.6
6000
VVM = 1.8 V, VVCC = 1.8 V
VVM = 2 V, VVCC = 2 V
VVM = 3.5 V, VVCC = 3.5 V
VVM = 7 V, VVCC = 7 V
1.2
-40qC
25qC
85qC
125qC
5500
5000
4500
4000
IVMQ (nA)
RDS(ON) (HS+LS) (:)
1.4
1
0.8
3500
3000
2500
2000
0.6
1500
1000
0.4
500
0.2
-40
0
-25
-10
5
20 35 50 65
Temperature (qC)
80
95
110 125
1
2
3
Figure 2. RDS(ON) HS + LS vs Temperature
6
7
VVM (V)
8
9
10
11
D002
1000
-40qC
25qC
85qC
125qC
500
450
400
-40qC
25qC
85qC
125qC
900
800
700
350
IVM (uA)
IVCCQ (nA)
5
Figure 3. IVMQ vs VVM
550
300
250
200
600
500
400
300
150
100
200
50
100
0
1.5
4
D001
0
2
2.5
3
3.5
4 4.5
VVCC (V)
5
5.5
6
6.5
7
1
2
3
4
5
D003
Figure 4. IVCCQ vs VVCC
6
7
VVM (V)
8
9
10
11
D004
Figure 5. IVM vs VVM (No PWM)
650
-40qC
25qC
85qC
125qC
600
550
IVCC (PA)
500
450
400
350
300
250
200
150
1.5
2
2.5
3
3.5
4 4.5
VVCC (V)
5
5.5
6
6.5
7
D005
Figure 6. IVCC vs VVCC (No PWM)
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
7
DRV8839
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
www.ti.com
7 Detailed Description
7.1 Overview
The DRV8839 is an integrated motor driver solution used for brushed motor control. The device integrates two
independent ½ H-bridge, and can drive one motor in both directions or two motors in one direction. The output
driver block for each ½ H-bridge consists of N-channel power MOSFETs. An internal charge pump generates the
gate drive voltages. Protection features include overcurrent protection, short-circuit protection, undervoltage
lockout, and overtemperature protection.
The DRV8839 allows separation of the motor voltage and logic voltage if desired. If VM and VCC are less than
7 V, the two voltages may be connected.
The control interface of the DRV8839 uses INx and ENx to control each ½ H-bridge separately.
7.2 Functional Block Diagram
0 to 11V
VM
VM
VM
Drives DC motor or
1/2 Stepper
1.8 to 7V
VCC
Gate
Drive
Charge
Pump
OCP
OUT1
Step
Motor
VCC
DCM
VM
Logic
IN1
OUT2
Gate
Drive
OCP
EN1
IN2
OverTemp
EN2
Osc
nSLEEP
GND
8
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
DRV8839
www.ti.com
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
7.3 Feature Description
7.3.1 Protection Circuits
The DRV8839 is fully protected against undervoltage, overcurrent, and overtemperature events.
7.3.1.1 Overcurrent Protection (OCP)
An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this
analog current limit persists for longer than the OCP time, all FETs in the H-bridge disables. After approximately
1 ms, the bridge will be re-enabled automatically.
Overcurrent conditions on both high-side and low-side devices; a short to ground, supply, or across the motor
winding result in an overcurrent shutdown.
7.3.1.2 Thermal Shutdown (TSD)
If the die temperature exceeds safe limits, all FETs in the H-bridge disables. Operation automatically resumes
once the die temperature has fallen to a safe level.
7.3.1.3 Undervoltage Lockout (UVLO)
If at any time the voltage on the VCC pin falls below the undervoltage lockout threshold voltage, all circuitry in
the device disables and internal logic resets. Operation resumes when VCC rises above the UVLO threshold.
Table 1. Device Protection
FAULT
CONDITION
ERROR REPORT
INTERNAL
CIRCUITS
H-BRIDGE
RECOVERY
VCC undervoltage
(UVLO)
VCC < VUVLO
None
Disabled
Disabled
VCC > VUVLO
Overcurrent (OCP)
IOUT > IOCP
None
Disabled
Operating
tOCR
Thermal shutdown
(TSD)
TJ > TTSD
None
Disabled
Operating
TJ < TTSD – THYS
7.4 Device Functional Modes
The DRV8839 is active when the nSLEEP pin is set to a logic high. When in sleep mode, the ½ H-bridge FETs
are disabled (High-Z).
Table 2. Device Operating Modes
OPERATING MODE
CONDITION
H-BRIDGE
INTERNAL CIRCUITS
Operating
nSLEEP high
Operating
Operating
Sleep mode
nSLEEP low
Disabled
Disabled
Fault encountered
Any fault condition met
Disabled
See Table 1
7.4.1 Bridge Control
The DRV8839 is controlled using separate enable and input pins for each ½-H-bridge.
The following table shows the logic for the DRV8839:
Table 3. Bridge Control
ENx
INx
OUTx
0
X
Z
1
0
L
1
1
H
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
9
DRV8839
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
www.ti.com
7.4.2 Sleep Mode
If the nSLEEP pin reaches a logic-low state, the DRV8839 enters a low-power sleep mode. In this state all
unnecessary internal circuitry powers down.
7.4.3 Motor Connections
If a single DC motor connects to the DRV8839, it is connected between the OUT1 and OUT2 pins as shown in
Figure 7:
OUT1
DCM
OUT2
Figure 7. Single DC Motor Connection
Motor operation is controlled as follows:
Table 4. Single DC Motor Operation
(1)
(2)
10
EN1
EN2
IN1
IN2
OUT1
0
X
X
X
Z
OUT2
See
(2)
Z
(1)
MOTOR OPERATION
Off (coast)
X
0
X
X
See
1
1
0
0
L
L
Off (coast)
Brake
1
1
0
1
L
H
Reverse
1
1
1
0
H
L
Forward
1
1
1
1
H
H
Brake
State depends on EN2 and IN2, but does not affect motor operation because OUT1 is tri-stated.
State depends on EN1 and IN1, but does not affect motor operation because OUT2 is tri-stated.
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
DRV8839
www.ti.com
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
Two DC motors can be connected to the DRV8839. In this mode, it is not possible to reverse the direction of the
motors; they turn only in one direction. The connections are shown in Figure 8:
OUT1
DCM
OUT2
DCM
Figure 8. Dual DC Motor Connection
Motor operation is controlled as follows:
Table 5. Dual DC Motor Operation
ENx
INx
OUTx
MOTOR OPERATION
0
X
Z
Off (coast)
1
0
L
Brake
1
1
H
Forward
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
11
DRV8839
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
www.ti.com
8 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
The DRV8839 is used in one control applications.
8.2 Typical Application
The following design is a common application of the DRV8839.
VM
VM
VCC
OUT1
10 µF
BDC
0.1 µF
VCC
OUT2
IN1
EN1
IN2
Controller
EN2
nSLEEP
GND
PPAD
Figure 9. Typical Application Schematic
8.2.1 Design Requirements
The design requirements are shown in Table 6.
Table 6. Design Requirements
DESIGN PARAMETER
12
REFERENCE
EXAMPLE VALUE
Motor voltage
VM
5V
Motor RMS current
IRMS
0.3 A
Motor startup current
ISTART
0.6 A
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
DRV8839
www.ti.com
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
8.2.2 Detailed Design Procedure
The following design procedure can be used to configure the DRV8839 in a brushed motor application.
8.2.2.1 Motor Voltage
The appropriate motor voltage depends on the ratings of the motor selected and the desired RPM. A higher
voltage spins a brushed DC motor faster with the same PWM duty cycle applied to the power FETs. A higher
voltage also increases the rate of current change through the inductive motor windings.
8.2.2.2 Low-Power Operation
When entering sleep mode, TI recommends setting all inputs as a logic low to minimize system power.
8.2.2.3 Application Curves
The following scope captures show a typical motor startup and running. Channel 1 is VM, Channel 2 is IN1,
Channel 3 is IN2, and Channel 4 is motor current. the motor used is a NMB Technologies, PPN7PA12C1.
Figure 10. Motor Startup With VCC = 3.3 V, VM = 5 V
Figure 11. Motor Running With VCC = 3.3 V, VM = 5 V
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
13
DRV8839
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
www.ti.com
9 Power Supply Recommendations
The input pins can drive within their recommended operating conditions with or without the VCC and VM power
supplies present. No leakage current path exists to the supply. There is a weak pulldown resistor (approximately
100 kΩ) to ground on each input pin.
VCC and VM can be applied and removed in any order. When VCC is removed, the device enters a low-power
state and draws very little current from VM. If the supply voltage is between 1.8 V and 7 V, VCC and VM can
connect together.
The VM voltage supply does not have any undervoltage lockout protection (UVLO), so as long as VCC > 1.8 V,
the internal device logic remains active. This means that the VM pin voltage may drop to 0 V, however, the load
may not be sufficiently driven at low VM voltages.
9.1 Bulk Capacitance
Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally
beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.
The required amount of local capacitance depends on a variety of factors, including:
• The highest current required by the motor system
• The power supply’s capacitance and ability to source current
• The amount of parasitic inductance between the power supply and motor system
• The acceptable voltage ripple
• The type of motor used (brushed DC, brushless DC, stepper)
• The motor braking method
Power Supply
Parasitic Wire
Inductance
Motor Drive System
VM
+
±
+
Motor
Driver
GND
Local
Bulk Capacitor
IC Bypass
Capacitor
Figure 12. Bulk Capacitance
14
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
DRV8839
www.ti.com
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
10 Layout
10.1 Layout Guidelines
The VCC pin should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value
of 0.1-μF rated for VCC. This capacitor should be placed as close to the VCC pin as possible with a thick trace
or ground plane connection to the device GND pin.
The VCC pin must be bypassed to ground using an appropriate bulk capacitor. This component may be an
electrolytic and should be located close to the DRV8839.
10.2 Layout Example
10 µF
2.2 µF
VM
VCC
VM
nSLEEP
OUT1
IN1
OUT2
EN1
GND
IN2
GND
EN2
Figure 13. Layout Recommendation
10.3 Thermal Considerations
The DRV8839 has thermal shutdown (TSD) as described above. If the die temperature exceeds approximately
150°C, the device disables until the temperature drops to a safe level.
Any tendency of the device to enter thermal shutdown is an indication of either excessive power dissipation,
insufficient heatsinking, or too high an ambient temperature.
10.3.1 Power Dissipation
The power dissipation of the DRV8839 is a function of RMS motor current and the each output’s FET resistance
(RDS(ON)) as seen in Equation 1:
Power ≈ IRMS² × (High-Side RDS(ON) + Low-Side RDS(ON)
(1)
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
15
DRV8839
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
www.ti.com
Thermal Considerations (continued)
For this example, VVM = 1.8 V, VVCC = 1.8 V, the ambient temperature is 35°C, and the junction temperature
reaches 65°C. At 65°C, the sum of RDS(ON) is about 1 Ω. With an example motor current of 0.8 A, the dissipated
power in the form of heat will be 0.8 A² × 1 Ω = 0.64 W.
The temperature that the DRV8839 reaches will depend on the thermal resistance to the air and PCB. It is
important to solder the device PowerPAD to the PCB ground plane, with vias to the top and bottom board layers,
in order dissipate heat into the PCB and reduce the device temperature. In the example used here, the DRV8839
had an effective thermal resistance RθJA of 47°C/W, and as seen in Equation 2:
TJ = TA + (PD × RθJA) = 35°C + (0.64 W × 47°C/W) = 65°C
16
Submit Documentation Feedback
(2)
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
DRV8839
www.ti.com
SLVSBN4B – JANUARY 2013 – REVISED DECEMBER 2015
11 Device and Documentation Support
11.1 Documentation Support
11.1.1 Related Documentation
For related documentation see the following:
• PowerPAD™ Thermally Enhanced Package Application report SLMA002
• PowerPAD™ Made Easy SLMA004
11.2 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
11.3 Trademarks
PowerPAD, E2E are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
11.4 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
11.5 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Submit Documentation Feedback
Copyright © 2013–2015, Texas Instruments Incorporated
Product Folder Links: DRV8839
17
PACKAGE OPTION ADDENDUM
www.ti.com
28-Oct-2014
PACKAGING INFORMATION
Orderable Device
Status
(1)
DRV8839DSSR
ACTIVE
Package Type Package Pins Package
Drawing
Qty
WSON
DSS
12
3000
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
Op Temp (°C)
Device Marking
(4/5)
-40 to 85
8839
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
28-Oct-2014
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
28-Oct-2014
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
DRV8839DSSR
Package Package Pins
Type Drawing
WSON
DSS
12
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
3000
180.0
8.4
Pack Materials-Page 1
2.25
B0
(mm)
K0
(mm)
P1
(mm)
3.25
1.05
4.0
W
Pin1
(mm) Quadrant
8.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
28-Oct-2014
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
DRV8839DSSR
WSON
DSS
12
3000
210.0
185.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Similar pages