PD - 97235 IRF6629PbF IRF6629TRPbF l l l l l l l l l DirectFET Power MOSFET RoHs Compliant Typical values (unless otherwise specified) Lead-Free (Qualified up to 260°C Reflow) VDSS VGS RDS(on) RDS(on) Application Specific MOSFETs 25V max ±20V max 1.6mΩ@ 10V 2.1mΩ@ 4.5V Ideal for CPU Core DC-DC Converters Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) Low Conduction Losses 34nC 11nC 4.2nC 27nC 23nC 1.8V High Cdv/dt Immunity Low Profile (<0.7mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques DirectFET ISOMETRIC MX Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF6629PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6629PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6629PbF has been optimized for parameters that are critical in synchronous buck including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6629PbF offers particularly low Rds(on) and high Cdv/dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h VGS, Gate-to-Source Voltage (V) Typical RDS(on) (mΩ) 8 ID = 29A 7 6 5 4 3 T J = 125°C 2 1 T J = 25°C 0 2 4 6 8 10 12 14 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 16 Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com e e f Max. Units 25 ±20 29 23 180 230 1170 23 V A mJ A 6.0 ID= 23A 5.0 VDS= 20V VDS= 13V 4.0 VDS= 5.0V 3.0 2.0 1.0 0.0 0 10 20 30 40 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 4.4mH, RG = 25Ω, IAS = 23A. 1 07/11/06 IRF6629PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Drain-to-Source Breakdown Voltage 25 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 17 ––– Static Drain-to-Source On-Resistance ––– 1.6 2.1 ––– 2.1 2.7 V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 29A i VGS = 4.5V, ID = 23A i VGS(th) Gate Threshold Voltage 1.35 1.8 2.35 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -6.2 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 IGSS Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 150 ––– ––– Total Gate Charge ––– 34 51 gfs Qg Conditions Typ. Max. Units BVDSS VDS = VGS, ID = 100µA VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 15V, ID = 23A VDS = 13V Qgs1 Pre-Vth Gate-to-Source Charge ––– 7.8 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 4.2 ––– Qgd Gate-to-Drain Charge ––– 11 ––– ID = 23A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 11 ––– See Fig. 15 Qsw ––– 15 ––– Qoss Output Charge ––– 23 ––– nC Ω nC RG Gate Resistance ––– 1.3 3.2 td(on) Turn-On Delay Time ––– 20 ––– tr Rise Time ––– 67 ––– td(off) Turn-Off Delay Time ––– 20 ––– tf Fall Time ––– 7.4 ––– Ciss Input Capacitance ––– 4260 ––– Coss Output Capacitance ––– 1130 ––– Crss Reverse Transfer Capacitance ––– 550 ––– Min. Typ. Max. Units ––– ––– VGS = 4.5V VDS = 16V, VGS = 0V VDD = 13V, VGS = 4.5Vi ID = 23A ns Clamped Inductive Load See Fig. 17 VGS = 0V pF VDS = 13V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current ISM Pulsed Source Current MOSFET symbol 3.5 (Body Diode) A ––– ––– 230 Conditions showing the integral reverse VSD Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 23A, VGS = 0V i trr Reverse Recovery Time ––– 22 33 ns TJ = 25°C, IF = 23A Qrr Reverse Recovery Charge ––– 27 41 nC di/dt = 220A/µs iSee Fig. 18 (Body Diode)g Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6629PbF Absolute Maximum Ratings e e f Max. Units 2.8 1.8 100 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter em km lm fm RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.2 ––– °C/W 0.022 W/°C 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thJA ) 10 1 0.1 τJ 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 Ci= τi/Ri Ci= τi/Ri 0.001 1E-005 0.0001 0.001 Ri (°C/W) τi (sec) 7.628 0.069875 20.661 1.140300 16.718 39.9 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 τ3 τA τA 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6629PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 10 2.5V 1 BOTTOM 2.5V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 0.1 1 10 1 100 0.1 1000 Fig 4. Typical Output Characteristics 10 100 1000 Fig 5. Typical Output Characteristics 1000 1.6 ID = 29A VDS = 15V ≤60µs PULSE WIDTH Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 100 T J = 150°C T J = 25°C 10 T J = -40°C 1 0.1 1.4 1.2 1.0 V GS = 10V 0.8 V GS = 4.5V 0.6 1 2 3 4 10 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C 8 Typical RDS(on) ( mΩ) C oss = C ds + C gd 10000 Ciss Coss 1000 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Crss Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 6 4 2 100 0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 20 40 60 80 100 120 140 160 180 200 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6629PbF 1000 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) VGS = 0V T J = 150°C 100 T J = 25°C 100 100µsec T J = -40°C 10 1msec 10 10msec 1 T A = 25°C T J = 150°C Single Pulse 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.01 VSD, Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage 1.00 10.00 100.00 Fig 11. Maximum Safe Operating Area 3.0 Typical VGS(th) Gate threshold Voltage (V) 200 180 160 ID, Drain Current (A) 0.10 VDS, Drain-to-Source Voltage (V) 140 120 100 80 60 40 20 0 25 50 75 100 125 2.5 2.0 1.5 1.0 ID = 100µA ID = 250µA ID = 1.0mA ID = 1.0A 0.5 -75 -50 -25 0 150 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS , Single Pulse Avalanche Energy (mJ) 5000 ID 0.71A 1.2A BOTTOM 23A TOP 4000 3000 2000 1000 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6629PbF Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6629PbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage + Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Board Footprint, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D S G S D www.irf.com D 7 IRF6629PbF DirectFET Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE MIN MAX A 6.35 6.25 B 5.05 4.80 3.95 C 3.85 D 0.45 0.35 E 0.72 0.68 F 0.72 0.68 1.42 G 1.38 0.84 H 0.80 0.42 J 0.38 K 0.89 1.02 L 2.29 2.42 M 0.616 0.676 R 0.020 0.080 P 0.08 0.17 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.027 0.027 0.054 0.032 0.015 0.035 0.090 0.0235 0.0008 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.056 0.033 0.017 0.040 0.095 0.0274 0.0031 0.007 DirectFET Part Marking 8 www.irf.com IRF6629PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6629TRPBF). For 1000 parts on 7" reel, order IRF6629TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC CODE MIN MIN MAX MAX MIN MIN MAX MAX 12.992 6.9 A N.C N.C 330.0 177.77 N.C N.C B 0.795 0.75 N.C N.C 20.2 19.06 N.C N.C 0.504 C 0.53 0.50 12.8 13.5 0.520 13.2 12.8 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 3.937 2.31 N.C 100.0 58.72 N.C N.C N.C N.C F N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.488 0.47 N.C 12.4 11.9 0.567 14.4 12.01 H 0.469 0.47 N.C 11.9 11.9 0.606 15.4 12.01 LOADED TAPE FEED DIRECTION CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MIN MAX MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 5.45 0.219 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/06 www.irf.com 9 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/