PD - 95374A IRFR4105ZPbF IRFU4105ZPbF AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D VDSS = 55V RDS(on) = 24.5mΩ G ID = 30A S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D-Pak IRFR4105Z I-Pak IRFU4105Z Absolute Maximum Ratings Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V Pulsed Drain Current IDM 21 c VGS EAS (Thermally limited) EAS (Tested ) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range c d h Junction-to-Ambient www.kersemi.com mJ A -55 to + 175 °C Parameter RθJA 29 46 300 (1.6mm from case ) y i y 10 lbf in (1.1N m) Thermal Resistance RθJA W W/°C V mJ Mounting Torque, 6-32 or M3 screw Junction-to-Case Junction-to-Ambient (PCB mount) 48 0.32 ± 20 See Fig.12a, 12b, 15, 16 g Soldering Temperature, for 10 seconds RθJC A 120 PD @TC = 25°C Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Units 30 Typ. Max. ––– 3.12 ––– 40 ––– 110 Units °C/W 1 12/06/04 IRFR/U4105ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.053 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 19 24.5 VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 gfs IDSS Forward Transconductance 16 ––– Drain-to-Source Leakage Current ––– ––– ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 ––– -200 IGSS ––– V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 18A e V VDS = VGS, ID = 250µA ––– S VDS = 15V, ID = 18A 20 µA VDS = 55V, VGS = 0V nA VGS = 20V VDS = 55V, VGS = 0V, TJ = 125°C Gate-to-Source Reverse Leakage ––– Qg VGS = -20V Total Gate Charge ––– 18 27 Qgs Gate-to-Source Charge ––– 5.3 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 7.0 ––– VGS = 10V td(on) Turn-On Delay Time ––– 10 ––– VDD = 28V tr Rise Time ––– 40 ––– td(off) Turn-Off Delay Time ––– 26 ––– tf Fall Time ––– 24 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, ID = 18A nC VDS = 44V e ID = 18A ns nH RG = 24.5 Ω e D LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Input Capacitance ––– 740 ––– and center of die contact VGS = 0V Coss Output Capacitance ––– 140 ––– Crss Reverse Transfer Capacitance ––– 74 ––– Coss Output Capacitance ––– 450 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 110 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 180 ––– VGS = 0V, VDS = 0V to 44V G S VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 30 ISM (Body Diode) Pulsed Source Current ––– ––– 120 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 19 29 ns Qrr Reverse Recovery Charge ––– 14 21 nC ton Forward Turn-On Time 2 c Conditions MOSFET symbol A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 18A, VGS = 0V e TJ = 25°C, IF = 18A, VDD = 28V di/dt = 100A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.kersemi.com IRFR/U4105ZPbF 1000 1000 VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 1 4.5V 60µs PULSE WIDTH Tj = 25°C 100 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 4.5V 60µs PULSE WIDTH Tj = 175°C 0.1 1 0.1 0 1 10 100 100 0.1 0 VDS, Drain-to-Source Voltage (V) 1 10 100 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 30 Gfs, Forward Transconductance (S) 1000 ID, Drain-to-Source Current (Α) VGS 100 T J = 175°C 10 T J = 25°C 1 VDS = 25V 60µs PULSE WIDTH T J = 175°C 25 20 15 T J = 25°C 10 5 VDS = 8.0V 380µs PULSE WIDTH 0 4 5 6 7 8 9 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.kersemi.com 10 0 0 10 20 30 40 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRFR/U4105ZPbF 1200 20 1000 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C, Capacitance (pF) C oss = C ds + C gd 800 Ciss 600 400 Coss 200 ID= 18A VDS= 44V VDS= 28V VDS= 11V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 Crss 0 0 1 10 0 100 5 10 15 20 25 30 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100.0 100 T J = 175°C 10.0 T J = 25°C 1.0 10 100µsec 1 VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 2.0 1msec Tc = 25°C Tj = 175°C Single Pulse 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.kersemi.com IRFR/U4105ZPbF 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 30 ID , Drain Current (A) 25 20 15 10 5 ID = 18A VGS = 10V 2.0 1.5 1.0 0.5 0 25 50 75 100 125 150 -60 -40 -20 175 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 0.01 τJ SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 1.100 0.000174 1.601 0.000552 0.418 Ci= τi/Ri Ci= i/Ri 0.007193 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.kersemi.com 5 IRFR/U4105ZPbF DRIVER L VDS D.U.T RG + V - DD IAS 20V VGS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 120 15V ID 2.0A 3.5A BOTTOM 18A TOP 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.5 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) QGS 4.0 3.5 ID = 250µA 3.0 2.5 2.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.kersemi.com IRFR/U4105ZPbF 100 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 30 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 18A 25 20 15 10 5 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.kersemi.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U4105ZPbF D.U.T Driver Gate Drive + - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.kersemi.com IRFR/U4105ZPbF D-Pak (TO-252AA) Package Outline D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRF R120 WITH ASS EMBLY LOT CODE 1234 AS SEMBLED ON WW 16, 1999 IN T HE AS SEMBLY LINE "A" PART NUMBER INT ERNATIONAL RECTIF IER LOGO Note: "P" in as sembly line position indicates "Lead-Free" IRFU120 12 916A 34 AS SEMBLY LOT CODE DATE CODE YEAR 9 = 1999 WEEK 16 LINE A OR PART NUMBER INT ERNAT IONAL RECTIF IER LOGO IRFU120 12 AS SEMBLY LOT CODE www.kersemi.com 34 DAT E CODE P = DESIGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 16 A = AS SEMBLY S IT E CODE 9 IRFR/U4105ZPbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFU120 WIT H ASS EMBLY LOT CODE 5678 ASS EMBLED ON WW 19, 1999 IN T HE AS SEMBLY LINE "A" INT ERNAT IONAL RECT IFIER LOGO PART NUMB ER IRF U120 919A 56 78 AS SEMBLY LOT CODE Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A OR INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 56 ASS EMBLY LOT CODE 10 78 DAT E CODE P = DESIGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 19 A = AS SEMBLY S IT E CODE www.kersemi.com IRFR/U4105ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.18mH Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 18A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Repetitive rating; pulse width limited by www.kersemi.com 11