Kersemi IRFR4105ZPBF Automotive mosfet Datasheet

PD - 95374A
IRFR4105ZPbF
IRFU4105ZPbF
AUTOMOTIVE MOSFET
HEXFET® Power MOSFET
Features
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
D
VDSS = 55V
RDS(on) = 24.5mΩ
G
ID = 30A
S
Description
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche
rating . These features combine to make this design an extremely
efficient and reliable device for use in Automotive applications and
a wide variety of other applications.
D-Pak
IRFR4105Z
I-Pak
IRFU4105Z
Absolute Maximum Ratings
Parameter
Max.
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
IDM
21
c
VGS
EAS (Thermally limited)
EAS (Tested )
Single Pulse Avalanche Energy Tested Value
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
c
d
h
Junction-to-Ambient
www.kersemi.com
mJ
A
-55 to + 175
°C
Parameter
RθJA
29
46
300 (1.6mm from case )
y
i
y
10 lbf in (1.1N m)
Thermal Resistance
RθJA
W
W/°C
V
mJ
Mounting Torque, 6-32 or M3 screw
Junction-to-Case
Junction-to-Ambient (PCB mount)
48
0.32
± 20
See Fig.12a, 12b, 15, 16
g
Soldering Temperature, for 10 seconds
RθJC
A
120
PD @TC = 25°C Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Units
30
Typ.
Max.
–––
3.12
–––
40
–––
110
Units
°C/W
1
12/06/04
IRFR/U4105ZPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)DSS
Drain-to-Source Breakdown Voltage
55
–––
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.053
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
19
24.5
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
gfs
IDSS
Forward Transconductance
16
–––
Drain-to-Source Leakage Current
–––
–––
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
–––
-200
IGSS
–––
V
Conditions
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 18A
e
V
VDS = VGS, ID = 250µA
–––
S
VDS = 15V, ID = 18A
20
µA
VDS = 55V, VGS = 0V
nA
VGS = 20V
VDS = 55V, VGS = 0V, TJ = 125°C
Gate-to-Source Reverse Leakage
–––
Qg
VGS = -20V
Total Gate Charge
–––
18
27
Qgs
Gate-to-Source Charge
–––
5.3
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
7.0
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
10
–––
VDD = 28V
tr
Rise Time
–––
40
–––
td(off)
Turn-Off Delay Time
–––
26
–––
tf
Fall Time
–––
24
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
ID = 18A
nC
VDS = 44V
e
ID = 18A
ns
nH
RG = 24.5 Ω
e
D
LS
Internal Source Inductance
–––
7.5
–––
6mm (0.25in.)
from package
Ciss
Input Capacitance
–––
740
–––
and center of die contact
VGS = 0V
Coss
Output Capacitance
–––
140
–––
Crss
Reverse Transfer Capacitance
–––
74
–––
Coss
Output Capacitance
–––
450
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
110
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
180
–––
VGS = 0V, VDS = 0V to 44V
G
S
VDS = 25V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
30
ISM
(Body Diode)
Pulsed Source Current
–––
–––
120
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
19
29
ns
Qrr
Reverse Recovery Charge
–––
14
21
nC
ton
Forward Turn-On Time
2
c
Conditions
MOSFET symbol
A
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 18A, VGS = 0V
e
TJ = 25°C, IF = 18A, VDD = 28V
di/dt = 100A/µs
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.kersemi.com
IRFR/U4105ZPbF
1000
1000
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
10
1
4.5V
60µs PULSE WIDTH
Tj = 25°C
100
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
10
4.5V
60µs PULSE WIDTH
Tj = 175°C
0.1
1
0.1
0
1
10
100
100
0.1
0
VDS, Drain-to-Source Voltage (V)
1
10
100
100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
30
Gfs, Forward Transconductance (S)
1000
ID, Drain-to-Source Current (Α)
VGS
100
T J = 175°C
10
T J = 25°C
1
VDS = 25V
60µs PULSE WIDTH
T J = 175°C
25
20
15
T J = 25°C
10
5
VDS = 8.0V
380µs PULSE WIDTH
0
4
5
6
7
8
9
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.kersemi.com
10
0
0
10
20
30
40
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRFR/U4105ZPbF
1200
20
1000
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C, Capacitance (pF)
C oss = C ds + C gd
800
Ciss
600
400
Coss
200
ID= 18A
VDS= 44V
VDS= 28V
VDS= 11V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
Crss
0
0
1
10
0
100
5
10
15
20
25
30
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100.0
100
T J = 175°C
10.0
T J = 25°C
1.0
10
100µsec
1
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
2.0
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
1
10msec
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.kersemi.com
IRFR/U4105ZPbF
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
30
ID , Drain Current (A)
25
20
15
10
5
ID = 18A
VGS = 10V
2.0
1.5
1.0
0.5
0
25
50
75
100
125
150
-60 -40 -20
175
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
1.100
0.000174
1.601
0.000552
0.418
Ci= τi/Ri
Ci= i/Ri
0.007193
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.kersemi.com
5
IRFR/U4105ZPbF
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
VGS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
120
15V
ID
2.0A
3.5A
BOTTOM 18A
TOP
100
80
60
40
20
0
25
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGD
4.5
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
QGS
4.0
3.5
ID = 250µA
3.0
2.5
2.0
-75 -50 -25
VGS
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.kersemi.com
IRFR/U4105ZPbF
100
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
30
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 18A
25
20
15
10
5
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.kersemi.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. P D (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I av = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRFR/U4105ZPbF
D.U.T
Driver Gate Drive
ƒ
+
-
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
-
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.kersemi.com
IRFR/U4105ZPbF
D-Pak (TO-252AA) Package Outline
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: THIS IS AN IRF R120
WITH ASS EMBLY
LOT CODE 1234
AS SEMBLED ON WW 16, 1999
IN T HE AS SEMBLY LINE "A"
PART NUMBER
INT ERNATIONAL
RECTIF IER
LOGO
Note: "P" in as sembly line position
indicates "Lead-Free"
IRFU120
12
916A
34
AS SEMBLY
LOT CODE
DATE CODE
YEAR 9 = 1999
WEEK 16
LINE A
OR
PART NUMBER
INT ERNAT IONAL
RECTIF IER
LOGO
IRFU120
12
AS SEMBLY
LOT CODE
www.kersemi.com
34
DAT E CODE
P = DESIGNAT ES LEAD-F REE
PRODUCT (OPT IONAL)
YEAR 9 = 1999
WEEK 16
A = AS SEMBLY S IT E CODE
9
IRFR/U4105ZPbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFU120
WIT H ASS EMBLY
LOT CODE 5678
ASS EMBLED ON WW 19, 1999
IN T HE AS SEMBLY LINE "A"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMB ER
IRF U120
919A
56
78
AS SEMBLY
LOT CODE
Note: "P" in assembly line
position indicates "Lead-Free"
DAT E CODE
YEAR 9 = 1999
WEEK 19
LINE A
OR
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFU120
56
ASS EMBLY
LOT CODE
10
78
DAT E CODE
P = DESIGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 9 = 1999
WEEK 19
A = AS SEMBLY S IT E CODE
www.kersemi.com
IRFR/U4105ZPbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
„ Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C, L = 0.18mH
Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive
RG = 25Ω, IAS = 18A, VGS =10V. Part not
avalanche performance.
recommended for use above this value.
† This value determined from sample failure population. 100%
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
tested to this value in production.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material) .
For recommended footprint and soldering techniques refer to
application note #AN-994
 Repetitive rating; pulse width limited by
www.kersemi.com
11
Similar pages