Hynix HMT41GA7MFR8A-PB Ddr3l sdram ecc so-dimms based on 4gb m-die Datasheet

204pin DDR3L SDRAM ECC SODIMM
DDR3L SDRAM
ECC SO-DIMMs
Based on 4Gb M-die
HMT41GA7MFR8A
*SK hynix reserves the right to change products or specifications without notice.
Rev. 0.1 /Jul. 2012
1
Revision History
Revision No.
History
Draft Date
0.1
Initial Release
Jul. 2012
Rev. 0.1 / Jul. 2012
Remark
2
Description
204pin ECC-SO-UDIMMs (72bit-wide, Double Data Rate Synchronous DRAM Small Outline Dual In-Line
Memory Modules) are low power, high-speed operation memory modules. These ECC-SD-UDIMMs are
intended for use as computing memory when installed in systems such as embedded systems and servers,
workstations.ECC-SO-DIMMs are running at 533/667/800 MHz clock speed and offering. 8500/10600/
12800 MB/s bandwidth on the primary data bus.
Features
• Power Supply: VDD=1.35V (1.283V to 1.45V)
• VDDQ = 1.35V (1.283V to 1.45V)
• VDDSPD=3.0V to 3.6V
• Functionality and operations comply with the DDR3 SDRAM datasheet
• 8 internal banks
• Data transfer rates: PC3-12800, PC3-10600, PC3-8500
• Bi-directional Differential Data Strobe
• 8 bit pre-fetch
• Burst Length (BL) switch on-the-fly: BL 8 or BC (Burst Chop) 4
• On Die Termination (ODT) supported
• This product is in compliance with the RoHS directive.
Ordering Information
Part Number
Density
Organization
Component Composition
# of
ranks
HMT41GA7MFR8A-G7/H9/PB
8GB
1Gx72
512Mx8(H5TC4G83MFR)*18
2
Rev. 0.1 / Jul. 2012
3
Key Parameters
MT/s
Grade
tCK
(ns)
CAS
Latency
(tCK)
tRCD
(ns)
tRP
(ns)
tRAS
(ns)
tRC
(ns)
CL-tRCD-tRP
DDR3L-1066
-G7
1.875
7
13.125
13.125
37.5
50.625
7-7-7
DDR3L-1333
-H9
1.5
9
13.5
13.5
(13.125)* (13.125)*
36
49.5
(49.125)*
9-9-9
DDR3L-1600
-PB
1.25
11
13.75
13.75
(13.125)* (13.125)*
35
48.75
(48.125)*
11-11-11
*SK hynix DRAM devices support optional downbinning to CL9 and CL7. SPD setting is programmed to match.
Speed Grade
Frequency [MHz]
Grade
Remark
CL5
CL6
CL7
CL8
CL9
CL10
-G7
667
800
1066
1066
-H9
667
800
1066
1066
1333
1333
-PB
667
800
1066
1066
1333
1333
CL11
1600
Address Table
4GB(2Rx8)
Refresh Method
8K/64ms
Row Address
A0-A14
Column Address
A0-A9
Bank Address
BA0-BA2
Page Size
1KB
Rev. 0.1 / Jul. 2012
4
Pin Descriptions
Pin Name
Description
Num
ber
Pin Name
Num
ber
Description
CK0
Clock Input, positive line
1
ODT[1:0]
On Die Termination Inputs
2
CK0
Clock Input, negative line
1
DQ[63:0]
Data Input/Output
64
CK1
Clock Input, positive line
1
CB[7:0]
Data check bits Input/Output
8
CK1
Clock Input, negative line
1
DQS[8:0]
Data strobes
9
Clock Enables
2
DQS[8:0]
Data strobes, negative line
9
RAS
Row Address Strobe
1
DM[8:0]
Data Masks
9
CAS
Column Address Strobe
1
WE
Write Enable
1
S[3:0]
Chip Selects
4
EVENT
Reserved for optional hardware
temperature event pin
1
Reset and SDRAM control pin
1
CKE[1:0]
A[9:0],A11,
Address Inputs
A[15:13]
14
A10/AP
Address Input/Autoprecharge
1
RESET
A12/BC
Address Input/Burst chop
1
VDD
Power Supply
xx
BA[2:0]
SDRAM Bank Addresses
3
VSS
Ground
xx
SCL
Serial Presence Detect (SPD) Clock
Input
1
VREFDQ
Reference Voltage for DQ
1
SDA
SPD Data Input/Output
1
VREFCA
Reference Voltage for CA
1
SA[1:0]
SPD Address Inputs
2
VTT
Par_In
Parity bit for the Address and Control
bus
1
VDDSPD
Err_Out
Parity error found on the Address
and Control bus
1
Rev. 0.1 / Jul. 2012
Termination Voltage
2
SPD Power
1
Total : 204
5
Input/Output Functional Descriptions
Symbol
Type
Polarity
CK0
IN
Positive
Edge
Positive line of the differential pair of system clock inputs that drives input to the onDIMM Clock Driver (72b-SO-RDIMM), on-DIMM PLL (72b-SO-CDIMM), or to DRAM on
rank 0 (72b-SD-DIMM).
CK0
IN
Negative
Edge
Negative line of the differential pair of system clock inputs that drives input to the onDIMM Clock Driver (72b-SO-RDIMM), on-DIMM PLL (72b-SO-CDIMM), or to DRAM on
rank 0 (72b-SD-DIMM).
CK1
IN
Positive
Edge
Positive line of a secondary differential pair of system clock inputs. Teminated but not
used on 72b-SO-RDIMMs or 72b-SO-CDIMMs. Connected to DRAMs on rank 1 or 72bSD-DIMMs.
CK0/CK0
CK1/CK1
IN
Negative
Edge
Negative line of a secondary differential pair of system clock inputs. Teminated but not
used on 72b-SO-RDIMMs or 72b-SO-CDIMMs. Connected to DRAMs on rank 1 or 72bSD-DIMMs.
IN
Active
High
CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input
buffers and output drivers of the SDRAMs. Taking CKE LOW provieds PRECHARGE
POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN
(row ACTIVE in any bank). Connected to the registering clock driver on 72b-SORDIMMs, connected to DRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs.
CKE[1:0]
Function
Enables the command decoders for the associated rank of SDRAM when low and disables decoders when high. When decoders are disabled, new commands are ignored
and previous operations continue. Connected to SDRAMs on 72b-SD-CDIMMs and 72bSO-DIMMs. For 72b-SO-RDIMMs, the combinations of these input signals perform
unique functions, including disabling all outputs (except CKE and ODT) of the register(s)
on the DIMM or accessing internal control words in the register device(s). For modules
with two registers, S[3:2] operate similarly to S[1:0] for the second set of register outputs or register control words.
S[1:0]
IN
Active
Low
ODT[1:0]
IN
Active
High
On-Die Termination control signals. Connected to SDRAMs on 72b-SO-CDIMMs and 72bSO-DIMMs, connected to the registering clock driver on 72b-SO-RDIMMs.
RAS, CAS, WE
IN
Active
Low
When sampled at the positive rising edge of the clock. CAS, RAS, and WE define the
operation to be executed by the SDRAM. Connected to SDRAMs on 72b-SO-CDIMMs and
72b-SO-DIMMs, connected to the registering clock driver on 72b-SO-RDIMMs.
VREFDQ
Supply
Reference voltage for DQ0-DQ63 and CB0-CB7.
VREFCA
Supply
Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In,
ODT0 and ODT1.
BA[2:0]
A[9:0],
A10/AP,
A11,
A12/BC
A[15:13]
Rev. 0.1 / Jul. 2012
IN
IN
—
Selects which SDRAM internal bank of eight is activated.
BA0 - BA2 define to which bank an Active, Read, Write or Precharge commnad is being
applied. Bank address also derermines mode register is to be accessed during an MRS
cycle. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs, connected to the
registering clock driver on 72b-SO-RDIMMs.
—
Provided the row address for Active commnads and the column address and Auto Precharge bit for Read/Write commands to select one lacation out of the memory array in
the respective bank. A10 is sampled during a Precharge command to detemine whether
the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank
is to be precharged, the bank is selected by BA. A12 is also utilized for BL 4/8 identification for “BL on the fly” during CAS command. The address inputs also provied the opcode during Mode Register Set commands. Connected to SDRAMs on 72b-SO-CDIMMs
and 72b-SO-DIMMs, connected to the registering clock driver on 72b-SO-RDIMMs.
6
Symbol
Type
Polarity
DQ[63:0]
CB[7:0]
I/O
—
DM[8:0]
IN
Active
High
VDD, VSS
Supply
Power and ground for the DDR3 SDRAM input buffers and core logic.
VTT
Supply
Termination Voltage for Address/Command/Control/Clock nets.
DQS1[7:0]
I/O
Positive
Edge
Positive line of the differential data strobe for input and output data
DQS[7:0],
DQS[7:0]
I/O
Negative
Edge
Negative line of the differential data strobe for input and output data
SA[1:0]
IN
—
These signals are tied at the system planar to either VSS or VDDSPD to configure the
serial SPD EEPROM address range.
SDA
I/O
—
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor
must be connected from the SDA bus line to VDDSPD on the system planar to act as a
pullup.
SCL
IN
—
This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to VDDSPD on the system planar to act as a pullup.
EVENT
OUT
(open
drain)
VDDSPD
Supply
Serial EEPROM positive power supply wired to a separate power pin at the connector
which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation.
RESET
IN
The RESET pin is connected to the RESET pin on the register (72b-SD-RDIMM) and to
the RESET pin on the SDRAMs (all modules). When low, all register outputs will be
driven low and the Clock Driver clocks to the DRAMs and register(s) will be set to low
lever (the Clock Driver will remain synchronized with the input clock).
Par_in
IN
Parity bit for the Address and Control bus. (“1”: Odd, “0”: Even). Not used on 72b-SODIMMs or 72b-SO-CDIMMs.
Err_Out
OUT
(open
drain)
Parity error detected on the Address and Control bus. A resistor may be connected from
Err_Out bus line to V on the system planner to act as a pull up. Not used on 72b-SODIMMs or 72b-SO-CDIMMs.
Rev. 0.1 / Jul. 2012
Function
Data and Check Input/Output pins.
Mask write data when high, issued concurrently with input data.
This signal indicates that a thermal event has been detected in the thermal sensing
Active Low device.The system should guarantee the electrical level requirement is met for the
EVENT pin on TS/SPD part.
7
Pin Assignments
Pin
#
Front
Side
Pin
#
Back
Side
Pin
#
Front
Side
Pin
#
Back
Side
Pin
#
Front
Side
Pin
#
Back
Side
Pin
#
Front
Side
Pin
#
Back
Side
1
VREFDQ
2
VSS
53
VSS
54
DQ28
103
A3
104
A4
155
VSS
156
DQS5
3
VSS
4
DQ4
55
DQ24
56
DQ29
105
A1
106
A2
157
DM5
158
VSS
5
DQ0
6
DQ5
57
DQ25
58
VSS
107
A0
108
BA1
159
DQ42
160
DQ46
7
DQ1
8
VSS
59
DM3
60
DQS3
109
VDD
110
VDD
161
DQ43
162
DQ47
9
VSS
10
DQS0
61
VSS
62
DQS3
111
CK0
112
Par_In,
163
NC, CK1
VSS
164
VSS
11
DM0
12
DQS0
63
VSS
64
VSS
113
CK0
114
Err_Out,
165
NC, CK1
DQ48
166
DQ52
13
DQ2
14
VSS
65
DQ26
66
DQ30
115
VDD
116
VDD
167
DQ49
168
DQ53
15
DQ3
16
DQ6
67
DQ27
68
DQ31
117 A10/AP
118
S3
169
VSS
170
VSS
17
VSS
18
DQ7
69
CB0
70
VSS
119
BA0
120
S2
171
DQS6
172
DM6
19
DQ8
20
VSS
71
CB1
72
CB4
121
WE
122
RAS
173
DQS6
174
DQ54
21
DQ9
22
DQ12
123
VDD
124
VDD
175
DQ50
176
DQ55
23
VSS
24
DQ13
73
VSS
74
CB5
125
CAS
126
ODT0
177
DQ51
178
VSS
25
DQS1
26
VSS
75
DQS8
76
DM8
127
S0
128
ODT1
179
VSS
180
DQ60
27
DQS1
28
DM1
77
DQS8
78
VSS
129
S1
130
A13
181
DQ56
182
DQ61
29
VSS
30
RESET
79
VSS
80
CB6
131
VDD
132
VDD
183
DQ57
184
VSS
31
DQ10
32
VSS
81
CB2
82
CB7
133
DQ32
134
DQ36
185
VSS
186
DQS7
33
DQ11
34
DQ14
83
CB3
84
VREFCA 135
DQ33
136
DQ37
187
DM7
188
DQS7
35
VSS
36
DQ15
85
VDD
86
VDD
137
VSS
138
VSS
189
VSS
190
VSS
37
DQ16
38
VSS
87
CKE0
88
A15
139
DQS4
140
DM4
191
DQ58
192
DQ62
39
DQ17
40
DQ20
89
CKE1
90
A14
141
DQS4
142
DQ38
193
DQ59
194
DQ63
41
VSS
42
DQ21
91
BA2
92
A9
143
VSS
144
DQ39
195
VSS
196
VSS
43
DQS2
44
DM2
93
VDD
94
VDD
145
DQ34
146
VSS
197
SA0
198
EVENT
45
DQS2
46
VSS
95 A12/BC
96
A11
147
DQ35
148
DQ44
199 VDDSPD 200
SDA
47
VSS
48
DQ22
97
A8
98
A7
149
VSS
150
DQ45
201
SA1
202
SCL
49
DQ18
50
DQ23
99
A5
100
A6
151
DQ40
152
VSS
203
VTT
204
VTT
51
DQ19
52
VSS
101
VDD
102
VDD
153
DQ41
154
DQS5
Key
NC = No Connect
Notes on following page for differences of 72b-SO-RDIMMs, 72b-SO-CDIMMs, 72b-SO-DIMMs
Rev. 0.1 / Jul. 2012
8
Functional Block Diagram
DQS1
DQS1
DM1
DQ[8, 15]
A[O:N]/BA[O:N]
CK
CKE
WE
CK
CAS
ODT
240ohm
+/-1%
DQS3
DQS3
DM3
DQ[24, 31]
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
CAS
D14
WE
240ohm
+/-1%
DQS
DQS
DM
DQ
DQS5
DQS5
DM5
DQ[40, 47]
ZQ
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
WE
CAS
D15
240ohm
+/-1%
DQS
DQS
DM
DQ
ZQ
DQS7
DQS7
DM7
DQ[56, 63]
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
D16
WE
CS
RAS
ZQ
RAS
CS
DQS
DQS
DM
DQ
CAS
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
WE
CAS
D7
240ohm
+/-1%
D13
RAS
A[O:N]/BA[O:N]
ODT
240ohm
+/-1%
ZQ
ZQ
CS
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
CKE
CK
WE
CAS
D6
DQS
DQS
DM
DQ
RAS
A[O:N]/BA[O:N]
CK
CKE
ODT
WE
CAS
RAS
CS
CK
CK
WE
CAS
RAS
CS
CS
A[O:N]/BA[O:N]
ODT
240ohm
+/-1%
ZQ
RAS
CS
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
CKE
240ohm
+/-1%
D5
RAS
ODT
A[O:N]/BA[O:N]
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
CK
CK
WE
ZQ
DQS
DQS
DM
DQ
D12
VDD
Vtt
CS
ODT1
CK1
CK1
CKE1
CK
CKE
WE
CK
RAS
CS
CAS
CAS
WE
WE
CAS
240ohm
+/-1%
ZQ
240ohm
+/-1%
D4
DQS
DQS
DM
DQ
D11
LDQS
LDQS
LDM
DQ
ZQ
DQS
DQS
DM
DQ
ZQ
CAS
A[O:N]/BA[O:N]
CK
CKE
ODT
CK
CAS
RAS
D3
240ohm
+/-1%
240ohm
+/-1%
LDQS
LDQS
LDM
DQ
Cterm
Vtt
DQS
DQS
DM
DQ
D10
RAS
A[O:N]/BA[O:N]
A[O:N]/BA[O:N]
CK
CKE
CK
WE
ODT
240ohm
+/-1%
240ohm
+/-1%
ZQ
VDD
Vtt
D9
LDQS
LDQS
LDM
DQ
CS
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
WE
ODT
240ohm
+/-1%
D2
ZQ
S1
A[O:N]/BA[O:N]
CKE0
ODT0
WE
CK0
CK0
CK
CKE
WE
CK
CAS
CAS
RAS
ZQ
DQS
DQS
DM
DQ
CS
240ohm
+/-1%
D1
WE
DQS6
DQS6
DM6
DQ[48, 55]
ZQ
CAS
CS
CS
RAS
D0
ZQ
RAS
DQS
DQS
DM
DQ
LDQS
LDQS
LDM
DQ
CS
DQS4
DQS4
DM4
DQ[32, 39]
240ohm
+/-1%
RAS
DQS
DQS
DM
DQ
ZQ
Cterm
CS
DQS2
DQS2
DM2
DQ[16, 23]
CAS
RAS
DQS
DQS
DM
DQ
CS
DQS0
DQS0
DM0
DQ[0, 7]
RAS
S0
8GB, 1Gx72 Module(2Rank of x8)
Option 1
Integrated Thermal Sensor in SPD
SCL
ZQ
240ohm
+/-1%
EVENT
SCL
EVENT
A0
A2
Sensor PD w/Integrated Thermal Sensor
A[O:N]/BA[O:N]
ODT
CK
CKE
CK
WE
SDA
A1
SA0 SA1 SA2
D17
CAS
A[O:N]/BA[O:N]
CK
CKE
ODT
CK
CAS
D8
LDQS
LDQS
LDM
DQ
RAS
240ohm
+/-1%
CS
ZQ
RAS
CS
DQS
DQS
DM
DQ
WE
DQS8
DQS8
DM8
CB[0, 7]
Option 2
Serial SPD
SCL
SCL
SDA
WP
A0
A1
A2
SA0 SA1 SA2
NOTES
1. DQ - to - I/O wiring may be changed within a byte
2. ZQ resistors are 240 ohms +/- 1%. For all other resistor values refer to the appropriate wiring diagram.
3. The connected of the Serial PD to EVENT (option 1) or to ground (option 2) is realized by resistor options.
VTT
VDDSPD
VREFCA
VREFDQ
VDD
Vss
Rev. 0.1 / Jul. 2012
VTT
SPD/TS
D0–D17
D0–D17
D0–D17
D0–D17, SPD, Temp sensor
CK0
CK1
CK0
CK1
CKE0
CKE0
D0–D8
D9–D17
D0–D8
D9–D17
D0–D8
D9–D17
S0
S1
ODT0
ODT1
EVENT
RESET
Sensor PD no Thermal Sensor
D0–D8
D9–D17
D0–D8
D9–D17
Temp Sensor
D0–D17
9
Absolute Maximum Ratings
Absolute Maximum DC Ratings
Absolute Maximum DC Ratings
Symbol
VDD
VDDQ
Parameter
Rating
Units
Notes
Voltage on VDD pin relative to Vss
- 0.4 V ~ 1.80 V
V
1,
Voltage on VDDQ pin relative to Vss
- 0.4 V ~ 1.80 V
V
1,
- 0.4 V ~ 1.80 V
V
1
C
1, 2
VIN, VOUT Voltage on any pin relative to Vss
TSTG
-55 to +100
Storage Temperature
o
Notes:
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement
conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.

DRAM Component Operating Temperature Range
Temperature Range
Symbol
TOPER
Parameter
Rating
Units
Notes
Normal Operating Temperature Range
0 to 85
oC
1,2
Extended Temperature Range
85 to 95
oC
1,3
Notes:
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions.
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC
case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It
is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range.
Please refer to the DIMM SPD for option availability
b. DDR3L SDRAMs support Auto Self-Refresh and Extended Temperature Range and please refer to component
datasheet and/or the DIMM SPD for tREFI requirement in the Extended Temperature Range.
Rev. 0.1 / Jul. 2012
10
AC & DC Operating Conditions
Recommended DC Operating Conditions
Recommended DC Operating Conditions - DDR3L (1.35V) operation
Symbol
VDD
VDDQ
Parameter
Rating
Units
Notes
1.45
V
1,2,3,4
1.45
V
1,2,3,4
Min.
Typ.
Max.
Supply Voltage
1.283
1.35
Supply Voltage for Output
1.283
1.35
Notes:
1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a
very long period of time (e.g., 1 sec).
2. If maximum limit is exceeded, input levels shall be governed by DDR3L specifications.
3. Under these supply voltages, the device operates to this DDR3L specification.
4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and
VDDQ are changed for DDR3 operation (see Figure 0).
Recommended DC Operating Conditions - DDR3 (1.5V) operation
Symbol
VDD
VDDQ
Parameter
Rating
Units
Notes
1.575
V
1,2,3
1.575
V
1,2,3
Min.
Typ.
Max.
Supply Voltage
1.425
1.5
Supply Voltage for Output
1.425
1.5
Notes:
1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications.
2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as
defined for this device.
3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and
VDDQ are changed for DDR3L operation (see Figure 0).
Rev. 0.1 / Jul. 2012
11
Ta
Tb
Tc
Td
Te
Tf
Tg
Th
Ti
Tj
Tk
CK,CK#
VDD, VDDQ (DDR3)
tCKSRX
Tmin = 10ns
VDD, VDDQ (DDR3L)
Tmin = 10ns
Tmin = 200us
T = 500us
RESET#
Tmin = 10ns
CKE
VALID
tDLLK
tIS
COMMAND
READ
BA
READ
1)
tXPR
tMRD
tMRD
tMRD
tMOD
MRS
MRS
MRS
MRS
MR2
MR3
MR1
MR0
tZQinit
ZQCL
1)
VALID
VALID
tIS
ODT
READ
tIS
Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW
VALID
RTT
NOTE 1: From time point “Td” until “Tk” NOP or DES commands must be applied
between MRS and ZQCL commands.
TIME BREAK
DON’T CARE
Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3
Rev. 0.1 / Jul. 2012
12
AC & DC Input Measurement Levels
AC and DC Logic Input Levels for Single-Ended Signals
AC and DC Input Levels for Single-Ended Command and Address Signals
Single Ended AC and DC Input Levels for Command and Address
DDR3L-800/1066
Symbol
VIH.CA(DC90)
VIL.CA(DC90)
VIH.CA(AC160)
VIL.CA(AC160)
VIH.CA(AC135)
VIL.CA(AC135)
VIH.CA(AC125)
VIL.CA(AC125)
VRefCA(DC)
DDR3L-1333/1600
Parameter
DC input logic high
DC input logic low
AC input logic high
AC input logic low
AC Input logic high
AC input logic low
AC Input logic high
AC input logic low
Reference Voltage for
ADD, CMD inputs
Unit Notes
Min
Max
Min
Max
Vref + 0.09
VSS
Vref + 0.160
Note2
Vref + 0.135
Note2
-
VDD
Vref - 0.09
Note2
Vref - 0.160
Note2
Vref - 0.135
-
Vref + 0.09
VSS
Vref + 0.160
Note2
Vref + 0.135
Note2
-
VDD
Vref - 0.09
Note2
Vref - 0.160
Note2
Vref - 0.135
-
V
V
V
V
V
V
V
V
1
1
1,2,5
1,2,5
1,2,5
1,2,5
1,2,5
1,2,5
0.49 * VDD
0.51 * VDD
0.49 * VDD
0.51 * VDD
V
3,4
Notes:
1. For input only pins except RESET, Vref = VrefCA (DC).
2. Refer to "Overshoot and Undershoot Specifications" on page 26.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for
reference: approx. +/- 13.5 mV).
4. For reference: approx. VDD/2 +/- 13.5 mV
5. These levels apply for 1.35 volt (see table above) operation only. If the device is operated at 1.5V (table
"Single Ended AC and DC Input Levels for DQ and DM" on page 14), the respective levels in JESD79-3
(VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIH/L.CA(AC125) etc.) apply.
The 1.5V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIH/
L.CA(AC125) etc.) do not apply when the device is operated in the 1.35 voltage range.
Rev. 0.1 / Jul. 2012
13
AC and DC Input Levels for Single-Ended Signals
DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066s specified in table below.
DDR3 SDRAM will also support corresponding tDS values (Table 43 on page 117 and Table 50 on page 142
in “DDR3L Device Operation”) as well as derating tables Table 46 on page 135 in “DDR3L Device Operation” depending on Vih/Vil AC levels.
Single Ended AC and DC Input Levels for DQ and DM
DDR3L-800/1066
Symbol
VIH.DQ(DC90)
VIL.DQ(DC90)
VIH.DQ(AC160)
VIL.DQ(AC160)
VIH.DQ(AC135)
VIL.DQ(AC135)
VIH.DQ(AC130)
VIL.DQ(AC130)
VRefDQ(DC)
DDR3L-1333/1600
Parameter
DC input logic high
DC input logic low
AC input logic high
AC input logic low
AC Input logic high
AC input logic low
AC Input logic high
AC input logic low
Reference Voltage
for DQ, DM inputs
Unit Notes
Min
Max
Min
Max
Vref + 0.09
VSS
Vref + 0.160
Note2
Vref + 0.135
Note2
-
VDD
Vref - 0.09
Note2
Vref - 0.160
Note2
Vref - 0.135
-
Vref + 0.09
VSS
Vref + 0.135
Note2
-
VDD
Vref - 0.09
Note2
Vref - 0.135
-
V
V
V
V
V
V
V
V
1
1
1, 2, 5
1, 2, 5
1, 2, 5
1, 2, 5
1, 2, 5
1, 2, 5
0.49 * VDD
0.51 * VDD
0.49 * VDD
0.51 * VDD
V
3, 4
Notes:
1. Vref = VrefDQ (DC).
2. Refer to "Overshoot and Undershoot Specifications" on page 26.
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for
reference: approx. +/- 13.5 mV). 4. For reference: approx. VDD/2 +/- 13.5 mV
4. For reference: approx. VDD/2 +/- 13.5 mV
5. These levels apply for 1.35 volt (table "Single Ended AC and DC Input Levels for Command and
Address" on page 13) operation only. If the device is operated at 1.5V (table above), the respective levels
in JESD79-3 (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135) etc.) apply. The
1.5V levels (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135) etc.) do not apply
when the device is operated in the 1.35 voltage range.
Rev. 0.1 / Jul. 2012
14
Vref Tolerances
The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in
figure below. It shows a valid reference voltage VRef (t) as a function of time. (VRef stands for VRefCA and
VRefDQ likewise).
VRef (DC) is the linear average of VRef (t) over a very long period of time (e.g. 1 sec). This average has to
meet the min/max requirements in the table "Differential Input Slew Rate Definition" on page 21. Furthermore VRef (t) may temporarily deviate from VRef (DC) by no more than +/- 1% VDD.
voltage
VDD
VRef ac-noise
VRef(DC)
VRef(t)
VRef(DC)max
VDD/2
VRef(DC)min
VSS
time
Illustration of VRef(DC) tolerance and VRef ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are dependent on VRef.
“VRef ” shall be understood as VRef(DC), as defined in figure above.
This clarifies that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid
high or low level and therefore the time to which setup and hold is measured. System timing and voltage
budgets need to account for VRef(DC) deviations from the optimum position within the data-eye of the input
signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and
voltage associated with VRefac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings.
Rev. 0.1 / Jul. 2012
15
AC and DC Logic Input Levels for Differential Signals
Differential signal definition
tDVAC
Differential Input Voltage(i.e.DQS - DQS#, CK - CK#)
VIL.DIFF.AC.MIN
VIL.DIFF.MIN
0
half cycle
VIL.DIFF.MAX
VIL.DIFF.AC.MAX
tDVAC
time
Definition of differential ac-swing and “time above ac-level” tDVAC
Rev. 0.1 / Jul. 2012
16
Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS)
Differential AC and DC Input Levels
DDR3L-800, 1066, 1333, & 1600
Symbol
Parameter
VIHdiff
VILdiff
VIHdiff (ac)
VILdiff (ac)
Differential input high
Differential input logic low
Differential input high ac
Differential input low ac
Unit Notes
Min
Max
+ 0.180
Note 3
2 x (VIH (ac) - Vref)
Note 3
Note 3
- 0.180
Note 3
2 x (VIL (ac) - Vref)
V
V
V
V
1
1
2
2
Notes:
1. Used to define a differential signal slew-rate.
2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; for DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL
(ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level
applies also here.
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU
need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 26.
Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS
DDR3L-800/1066/1333/1600
Slew Rate [V/ns]
tDVAC [ps]
@ |VIH/Ldiff (ac)| = 320mV
min
max
tDVAC [ps]
@ |VIH/Ldiff (ac)| = 270mV
min
max
> 4.0
189
-
201
-
4.0
189
-
201
-
3.0
162
-
179
-
2.0
109
-
134
1.8
91
-
119
-
1.6
69
-
100
-
1.4
40
-
76
-
1.2
note
-
44
-
1.0
note
-
note
-
< 1.0
note
-
note
-
note : Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become
equal to or less than VIL(ac) level.
Rev. 0.1 / Jul. 2012
17
Single-ended requirements for differential signals
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) has
also to comply with certain requirements for single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH
(ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle.
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac)
/ VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if
VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the singleended signals CK and CK.
VDD or VDDQ
VSEHmin
VSEH
VDD/2 or VDDQ/2
CK or DQS
VSELmax
VSS or VSSQ
VSEL
time
Single-ended requirements for differential signals.
Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the
transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended
components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing,
but adds a restriction on the common mode characteristics of these signals.
Rev. 0.1 / Jul. 2012
18
Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU
DDR3L-800, 1066, 1333
Symbol
VSEH
VSEL
Parameter
Single-ended high level for strobes
Single-ended high level for Ck, CK
Single-ended low level for strobes
Single-ended low level for CK, CK
Unit Notes
Min
Max
(VDD / 2) + 0.175
(VDD /2) + 0.175
Note 3
Note 3
Note 3
Note 3
(VDD / 2) = 0.175
(VDD / 2) = 0.175
V
V
V
V
1,2
1,2
1,2
1,2
Notes:
1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac)
of DQs.
2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced
ac-high or ac-low level is used for a signal group, then the reduced level applies also here.
3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU
need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 26.
Rev. 0.1 / Jul. 2012
19
Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and
strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the
requirements in table below. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signals to the midlevel between of VDD and VSS
Vix Definition
Cross point voltage for differential input signals (CK, DQS)
DDR3L-800, 1066, 1333, 1600
Symbol
VIX
VIX
Parameter
Differential Input Cross Point Voltage
relative to VDD/2 for CK, CK
Differential Input Cross Point Voltage
relative to VDD/2 for DQS, DQS
Unit Notes
Min
Max
-150
150
mV
1
-150
150
mV
1
Notes:
1. The relation between Vix Min/Max and VSEL/VSEH should satisfy following.
(VDD/2) + Vix (Min) - VSEL  25mV 
VSEH - ((VDD/2) + Vix (Max))  25mV
Rev. 0.1 / Jul. 2012
20
Slew Rate Definitions for Single-Ended Input Signals
See 7.5 “Address / Command Setup, Hold and Derating” on page 138 in “DDR3L Device Operation” for single-ended slew rate definitions for address and command signals.

See 7.6 “Data Setup, Hold and Slew Rate Derating” on page 145 in “DDR3L Device Operation” for singleended slew rate definition for data signals.
Slew Rate Definitions for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in table
and figure below.
Differential Input Slew Rate Definition
Measured
Description
Min
Differential input slew rate for rising edge
(CK-CK and DQS-DQS)
Differential input slew rate for falling edge
(CK-CK and DQS-DQS)
Defined by
Max
VILdiffmax
VIHdiffmin [VIHdiffmin-VILdiffmax] / DeltaTRdiff
VIHdiffmin
VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff
Notes:
Differential Input Voltage (i.e. DQS-DQS; CK-CK)
The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds.
Delta
TRdiff
vIHdiffmin
0
vILdiffmax
Delta
TFdiff
Differential Input Slew Rate Definition for DQS, DQS# and CK, CK#
Differential Input Slew Rate Definition for DQS, DQS and CK, CK
Rev. 0.1 / Jul. 2012
21
AC & DC Output Measurement Levels
Single Ended AC and DC Output Levels
Table below shows the output levels used for measurements of single ended signals.
Single-ended AC and DC Output Levels
Symbol
Parameter
VOH(DC)
DC output high measurement level (for IV curve linearity)
VOM(DC)
DC output mid measurement level (for IV curve linearity)
VOL(DC)
VOH(AC)
DDR3L-800, 1066,
1333 and 1600
0.8 x VDDQ
Unit
Notes
V
V
DC output low measurement level (for IV curve linearity)
0.5 x VDDQ
0.2 x VDDQ
AC output high measurement level (for output SR)
VTT + 0.1 x VDDQ
V
1
AC output low measurement level (for output SR)
VTT - 0.1 x VDDQ
V
1
VOL(AC)
V
Notes:
1. The swing of ±0.1 x VDDQ is based on approximately 50% of the static single ended output high or low
swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to VTT = VDDQ / 2.
Differential AC and DC Output Levels
Table below shows the output levels used for measurements of single ended signals.
Differential AC and DC Output Levels
DDR3L-800, 1066,
Symbol
Parameter
VOHdiff (AC)
AC differential output high measurement level (for output SR)
1333 and 1600
+ 0.2 x VDDQ
VOLdiff (AC)
AC differential output low measurement level (for output SR)
- 0.2 x VDDQ
Unit
Notes
V
1
V
1
Notes:
1. The swing of ±0.2 x VDDQ is based on approximately 50% of the static differential output high or low
swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to VTT = VDDQ/2 at each of the
differential outputs.
Rev. 0.1 / Jul. 2012
22
Single Ended Output Slew Rate
When the Reference load for timing measurements, output slew rate for falling and rising edges is defined
and measured between VOL(AC) and VOH(AC) for single ended signals are shown in table and figure below.
Single-ended Output slew Rate Definition
Measured
Description
From
VOL(AC)
VOH(AC)
Single-ended output slew rate for rising edge
Single-ended output slew rate for falling edge
Defined by
To
VOH(AC)
VOL(AC)
[VOH(AC)-VOL(AC)] / DeltaTRse
[VOH(AC)-VOL(AC)] / DeltaTFse
Notes:
1. Output slew rate is verified by design and characterisation, and may not be subject to production test.
Single Ended Output Voltage(l.e.DQ)
Delta TRse
vOH(AC)
V∏
vOl(AC)
Delta TFse
Single Ended Output Slew Rate Definition
Single Ended Output slew Rate Definition
Output Slew Rate (single-ended)
DDR3L-800
DDR3L-1066
DDR3L-1333
DDR3L-1600
Parameter
Symbol
Min
Max
Min
Max
Min
Max
Min
Max
Single-ended Output Slew Rate
SRQse
1.75
51)
1.75
51)
1.75
51)
1.75
51)
Units
V/ns
Description: SR; Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
se: Single-ended Signals
For Ron = RZQ/7 setting
Note 1): In two cases, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.
Case 1 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high
to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low).
Case 2 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high
to low or low to high) while all remaining DQ signals in the same byte lane switching into the opposite direction (i.e. from
low to high of high to low respectively). For the remaining DQ signal switching in to the opposite direction, the regular
maximum limite of 5 V/ns applies.
Rev. 0.1 / Jul. 2012
23
Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined
and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure
below.
Differential Output Slew Rate Definition
Measured
Description
Defined by
From
To
Differential output slew rate for rising edge
VOLdiff (AC)
VOHdiff (AC)
[VOHdiff (AC)-VOLdiff (AC)] / DeltaTRdiff
Differential output slew rate for falling edge
VOHdiff (AC)
VOLdiff (AC)
[VOHdiff (AC)-VOLdiff (AC)] / DeltaTFdiff
Notes:
1. Output slew rate is verified by design and characterization, and may not be subject to production test.
Differential Output Voltage(i.e. DQS-DQS)
Delta
TRdiff
vOHdiff(AC)
O
vOLdiff(AC)
Delta
TFdiff
Differential Output Slew Rate Definition
Differential Output slew Rate Definition
Differential Output Slew Rate
DDR3L-800
DDR3L-1066
DDR3l-1333
DDR3L-1600
Parameter
Symbol
Min
Max
Min
Max
Min
Max
Min
Max
Differential Output Slew Rate
SRQdiff
3.5
12
3.5
12
3.5
12
3.5
12
Units
V/ns
Description: SR; Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
se: Single-ended Signals
For Ron = RZQ/7 setting
Rev. 0.1 / Jul. 2012
24
Reference Load for AC Timing and Output Slew Rate
Figure below represents the effective reference load of 25 ohms used in defining the relevant AC timing
parameters of the device as well as output slew rate measurements.
It is not intended as a precise representation of any particular system environment or a depiction of the
actual load presented by a production tester. System designers should use IBIS or other simulation tools to
correlate the timing reference load to a system environment. Manufacturers correlate to their production
test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.
VDDQ
CK, CK
DUT
DQ
DQS
DQS
25 Ohm
VTT = VDDQ/2
Reference Load for AC Timing and Output Slew Rate
Rev. 0.1 / Jul. 2012
25
Overshoot and Undershoot Specifications
Address and Control Overshoot and Undershoot Specifications
AC Overshoot/Undershoot Specification for Address and Control Pins
DDR3L- DDR3L- DDR3L- DDR3L-
Parameter
Maximum peak amplitude allowed for overshoot area. (See Figure below)
Maximum peak amplitude allowed for undershoot area. (See Figure below)
Maximum overshoot area above VDD (See Figure below)
Maximum undershoot area below VSS (See Figure below)
800
1066
1333
1600
0.4
0.4
0.67
0.67
0.4
0.4
0.5
0.5
0.4
0.4
0.4
0.4
0.4
0.4
0.33
0.33
Units
V
V
V-ns
V-ns
(A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT)
See figure below for each parameter definition
M axim um A m plitude
O vershoot A rea
V olts
(V)
VDD
V SS
U ndershoot Area
M axim um A m plitud e
Tim e (ns)
Add ress and Control O vershoot and U ndershoot D efinition
Address and Control Overshoot and Undershoot Definition
Rev. 0.1 / Jul. 2012
26
Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications
AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask
DDR3L- DDR3L- DDR3L- DDR3L-
Parameter
Maximum peak amplitude allowed for overshoot area. (See Figure below)
Maximum peak amplitude allowed for undershoot area. (See Figure below)
Maximum overshoot area above VDD (See Figure below)
Maximum undershoot area below VSS (See Figure below)
800
1066
1333
1600
0.4
0.4
0.25
0.25
0.4
0.4
0.19
0.19
0.4
0.4
0.15
0.15
0.4
0.4
0.13
0.13
Units
V
V
V-ns
V-ns
(CK, CK, DQ, DQS, DQS, DM)
See figure below for each parameter definition
M a x im u m A m p litu d e
O v e rs h o o t A re a
V o lts
(V )
VDDQ
VSSQ
U n d e rs h o o t A re a
M a x im u m A m p litu d e
T im e (n s )
C lo c k , D a ta S tro b e a n d M a s k O v e rs h o o t a n d U n d e rs h o o t D e fin itio n
Clock, Data, Strobe and Mask Overshoot and Undershoot Definition
Rev. 0.1 / Jul. 2012
27
Refresh parameters by device density
Refresh parameters by device density
Parameter
REF command ACT or
REF command time
Average periodic
refresh interval
Rev. 0.1 / Jul. 2012
RTT_Nom Setting
512Mb
1Gb
2Gb
4Gb
8Gb
Units
tRFC
90
110
160
260
350
ns
7.8
7.8
7.8
7.8
7.8
us
3.9
3.9
3.9
3.9
3.9
us
tREFI
0 C  TCASE  85 C
85 C  TCASE  95 C
28
Standard Speed Bins
DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
DDR3L-800 Speed Bins
For specific Notes See "Speed Bin Table Notes" on page 33.
Speed Bin
DDR3L-800E
CL - nRCD - nRP
6-6-6
Unit
Notes
Parameter
Symbol
min
max
Internal read command to first data
tAA
15
20
ns
ACT to internal read or write delay time
tRCD
15
—
ns
PRE command period
tRP
15
—
ns
ACT to ACT or REF command period
tRC
52.5
—
ns
ACT to PRE command period
tRAS
37.5
9 * tREFI
ns
CWL = 5
tCK(AVG)
3.0
3.3
ns
1,2,3,4,9,10
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3
Supported CL Settings
5, 6
nCK
10
Supported CWL Settings
5
nCK
CL = 5
CL = 6
Rev. 0.1 / Jul. 2012
29
DDR3L-1066 Speed Bins
For specific Notes See "Speed Bin Table Notes" on page 33.
Speed Bin
DDR3L-1066F
CL - nRCD - nRP
Parameter
Symbol
Unit
7-7-7
min
max
Note
Internal read command to
first data
tAA
13.125
20
ns
ACT to internal read or
write delay time
tRCD
13.125
—
ns
PRE command period
tRP
13.125
—
ns
ACT to ACT or REF
command period
tRC
50.625
—
ns
ACT to PRE command
period
tRAS
37.5
9 * tREFI
ns
CWL = 5
tCK(AVG)
3.0
3.3
ns
1,2,3,4,6,9,10
CWL = 6
tCK(AVG)
ns
4
CWL = 5
tCK(AVG)
ns
1,2,3,6
CWL = 6
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,4
CWL = 5
tCK(AVG)
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3
10
CL = 5
CL = 6
CL = 7
CL = 8
Reserved
2.5
3.3
1.875
< 2.5
Reserved
1.875
< 2.5
Supported CL Settings
5, 6, 7, 8
nCK
Supported CWL Settings
5, 6
nCK
Rev. 0.1 / Jul. 2012
30
DDR3L-1333 Speed Bins
For specific Notes See "Speed Bin Table Notes" on page 33.
Speed Bin
DDR3L-1333H
CL - nRCD - nRP
Parameter
Symbol
Unit
9-9-9
min
max
Note
Internal read
command to first data
tAA
13.5
(13.125)5,8
20
ns
ACT to internal read or
write delay time
tRCD
13.5
(13.125)5,8
—
ns
PRE command period
tRP
13.5
(13.125)5,8
—
ns
ACT to ACT or REF
command period
tRC
49.5
(49.125)5,8
—
ns
ACT to PRE command
period
tRAS
36
9 * tREFI
ns
CWL = 5
tCK(AVG)
3.0
3.3
ns
1,2,3,4,7,9,10
CWL = 6, 7
tCK(AVG)
ns
4
CWL = 5
tCK(AVG)
ns
1,2,3,7
CWL = 6
tCK(AVG)
Reserved
ns
1,2,3,4,7
CWL = 7
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,4,7
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,7
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5, 6
tCK(AVG)
Reserved
ns
4
CWL = 7
tCK(AVG)
ns
1,2,3,4
CWL = 5, 6
tCK(AVG)
ns
4
CWL = 7
tCK(AVG)
(Optional)
ns
ns
1,2,3
5
Supported CL Settings
5, 6, 7, 8, 9, 10
nCK
Supported CWL Settings
5, 6, 7
nCK
CL = 5
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
Rev. 0.1 / Jul. 2012
Reserved
2.5
3.3
1.875
< 2.5
(Optional)
5,8
1.875
< 2.5
1.5
<1.875
Reserved
1.5
<1.875
31
DDR3L-1600 Speed Bins
For specific Notes See "Speed Bin Table Notes" on page 33.
Speed Bin
DDR3L-1600K
CL - nRCD - nRP
Parameter
Symbol
Unit
11-11-11
min
max
Internal read
command to first data
tAA
13.75
(13.125)5,9
20
ns
ACT to internal read or
write delay time
tRCD
13.75
(13.125)5,9
—
ns
PRE command period
tRP
13.75
(13.125)5,9
—
ns
ACT to ACT or REF
command period
tRC
48.75
(48.125)5,9
—
ns
ACT to PRE command
period
tRAS
35
9 * tREFI
ns
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
3.0
3.3
ns
CL = 5
CWL = 5
CWL = 6, 7
CWL = 5
CL = 6
CWL = 6
CWL = 7
CWL = 5
CL = 7
CWL = 6
tCK(AVG)
CWL = 7
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
tCK(AVG)
CWL = 8
CWL = 5
CL = 8
CWL = 6
CWL = 7
CWL = 8
CWL = 5, 6
CL = 9
CWL = 7
tCK(AVG)
tCK(AVG)
CWL = 5, 6 tCK(AVG)
tCK(AVG)
CL = 10 CWL = 7
tCK(AVG)
CWL = 8
CWL = 5, 6,7 tCK(AVG)
CL = 11
tCK(AVG)
CWL = 8
Reserved
4
ns
1,2,3,8
Reserved
ns
1,2,3,4,8
Reserved
ns
4
ns
4
3.3
Reserved
1.875
< 2.5
(Optional)5,9
Reserved
ns
1,2,3,4,8
ns
1,2,3,4,8
Reserved
ns
4
Reserved
ns
4
1.875
ns
1,2,3,8
Reserved
< 2.5
ns
1,2,3,4,8
Reserved
ns
1,2,3,4
ns
4
ns
1,2,3,4,8
ns
1,2,3,4
Reserved
1.5
<1.875
(Optional)5,9
Reserved
Reserved
ns
4
ns
1,2,3,8
Reserved
ns
1,2,3,4
Reserved
ns
4
ns
1,2,3
1.5
<1.875
1.25
<1.5
Supported CL Settings
5, 6, 7, 8, 9, 10, 11
Supported CWL Settings
5, 6, 7, 8
Rev. 0.1 / Jul. 2012
1,2,3,4,8,10,11
ns
2.5
CWL = 8
Note
nCK
nCK
32
Speed Bin Table Notes
Absolute Specification (TOPER; VDDQ = VDD = 1.35V +0.100/- 0.067 V);
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should
use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL’, where tCK(AVG) =
3.0 ns should only be used for CL = 5 calculation.
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG)
down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is
tCK(AVG).MAX corresponding to CL SELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to DIMM data sheet and/or the DIMM SPD information if and how this setting is
supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the
table which are not subject to Production Tests but verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the
table which are not subject to Production Tests but verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the
table which are not subject to Production Tests but verified by Design/Characterization.
9. DDR3 SDRAM devices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/tRP must
be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333H
devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin
(Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to
DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin
(Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23)
also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125
ns) for DDR3-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K.
10. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.
11. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding.
Rev. 0.1 / Jul. 2012
33
Environmental Parameters
Symbol
Parameter
Rating
Units
Notes
1, 3
TOPR
Operating temperature
0 to 65
oC
HOPR
Operating humidity (relative)
10 to 90
%
1
TSTG
Storage temperature
o
C
1
HSTG
Storage humidity (without condensation)
5 to 95
%
1
PBAR
Barometric Pressure (operating & storage)
105 to 69
K Pascal
1, 2
-50 to +100
Note:
1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only,
and device functional operation at or above the conditions indicated is not implied. Expousure to absolute
maximum rating conditions for extended periods may affect reliablility.
2. Up to 9850 ft.
3. The designer must meet the case temperature specifications for individual module components.
Rev. 0.1 / Jul. 2012
34
IDD and IDDQ Specification Parameters and Test Conditions
IDD and IDDQ Measurement Conditions
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure
1. shows the setup and test load for IDD and IDDQ measurements.
•
IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R,
IDD4W, IDD5B, IDD6, IDD6ET and IDD7) are measured as time-averaged currents with all VDD balls
of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents.
•
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all
VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents.
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can
be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In
DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one
merged-power layer in Module PCB.
For IDD and IDDQ measurements, the following definitions apply:
•
”0” and “LOW” is defined as VIN <= VILAC(max).
•
”1” and “HIGH” is defined as VIN >= VIHAC(max).
•
“MID_LEVEL” is defined as inputs are VREF = VDD/2.
•
Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.
•
Basic IDD and IDDQ Measurement Conditions are described in Table 2.
•
Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.
•
IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting
RON = RZQ/7 (34 Ohm in MR1);
Qoff = 0B (Output Buffer enabled in MR1);
RTT_Nom = RZQ/6 (40 Ohm in MR1);
RTT_Wr = RZQ/2 (120 Ohm in MR2);
TDQS Feature disabled in MR1
•
Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time
before actual IDD or IDDQ measurement is started.
• Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH}
Rev. 0.1 / Jul. 2012
35
IDDQ (optional)
IDD
VDD
VDDQ
RESET
CK/CK
DDR3L
SDRAM
CKE
CS
RAS, CAS, WE
DQS, DQS
DQ, DM,
TDQS, TDQS
A, BA
ODT
ZQ
VSS
RTT = 25 Ohm
VDDQ/2
VSSQ
Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements
[Note: DIMM level Output test load condition may be different from above
Application specific
memory channel
environment
IDDQ
Test Load
Channel
IO Power
Simulation
IDDQ
Simulation
IDDQ
Simulation
Correction
Channel IO Power
Number
Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported
by IDDQ Measurement
Rev. 0.1 / Jul. 2012
36
Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns
Symbol
tCK
DDR3L-1066
DDR3L-1333
DDR3L-1600
7-7-7
9-9-9
11-11-11
1.875
1.5
1.25
Unit
ns
CL
7
9
11
nCK
nRCD
7
9
11
nCK
nRC
27
33
39
nCK
nRAS
20
24
28
nCK
nRP
7
9
11
nCK
1KB page size
20
20
24
nCK
2KB page size
27
30
32
nCK
1KB page size
4
4
5
nCK
nFAW
nRRD
6
5
6
nCK
nRFC -512Mb
2KB page size
48
60
72
nCK
nRFC-1 Gb
59
74
88
nCK
nRFC- 2 Gb
86
107
128
nCK
nRFC- 4 Gb
139
174
208
nCK
nRFC- 8 Gb
187
234
280
nCK
Table 2 -Basic IDD and IDDQ Measurement Conditions
Symbol
Description
Operating One Bank Active-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and
IDD0
PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL;
DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3.
Operating One Bank Active-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT,
IDD1
RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM:
stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and
RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4.
Rev. 0.1 / Jul. 2012
37
Symbol
Description
Precharge Standby Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
IDD2N
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all
banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details:
see Table 5.
Precharge Standby ODT Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
IDD2NT Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all
banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6;
Pattern Details: see Table 6.
Precharge Power-Down Current Slow Exit
IDD2P0
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc)
Precharge Power-Down Current Fast Exit
IDD2P1
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc)
Precharge Quiet Standby Current
IDD2Q
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0
Active Standby Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
IDD3N
Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all
banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see
Table 5.
Active Power-Down Current
IDD3P
CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer
and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0
Rev. 0.1 / Jul. 2012
38
Symbol
Description
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command, Address,
IDD4R
Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different
data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open,
RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode
Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7.
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command, Address,
IDD4W
Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different
data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open,
WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode
Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8.
Burst Refresh Current
CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Command,
IDD5B
Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0;
Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registersb);
ODT Signal: stable at 0; Pattern Details: see Table 9.
Self-Refresh Current: Normal Temperature Range
TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE:
IDD6
Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer
and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL
Self-Refresh Current: Extended Temperature Range
TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede);
IDD6ET
CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank
Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh
operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL
Rev. 0.1 / Jul. 2012
39
Symbol
Description
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a,f); AL: CL-1; CS:
High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table
IDD7
10; Data IO: read data burst with different data between one burst and the next one according to Table 10;
DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different addressing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern
Details: see Table 10.
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2]
= 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature
range
f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B
Rev. 0.1 / Jul. 2012
40
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
0
ACT
0
0
1
1
0
0
00
0
0
0
0
-
1,2
D, D
1
0
0
0
0
0
00
0
0
0
0
-
D, D
1
1
1
1
0
0
00
0
0
0
0
-
0
0
0
-
Cycle
Number
Datab)
Sub-Loop
CKE
CK, CK
Table 3 - IDD0 Measurement-Loop Patterna)
0
3,4
...
nRAS
Static High
toggling
...
repeat pattern 1...4 until nRAS - 1, truncate if necessary
PRE
0
0
1
0
0
0
00
0
repeat pattern 1...4 until nRC - 1, truncate if necessary
1*nRC+0
ACT
0
0
1
1
0
0
00
0
0
F
0
-
1*nRC+1, 2
D, D
1
0
0
0
0
0
00
0
0
F
0
-
D, D
1
1
1
1
0
0
00
0
0
F
0
-
0
-
1*nRC+3, 4
...
1*nRC+nRAS
repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary
PRE
0
0
1
0
0
0
00
0
0
...
repeat pattern 1...4 until 2*nRC - 1, truncate if necessary
1
2*nRC
repeat Sub-Loop 0, use BA[2:0] = 1 instead
2
4*nRC
repeat Sub-Loop 0, use BA[2:0] = 2 instead
3
6*nRC
repeat Sub-Loop 0, use BA[2:0] = 3 instead
4
8*nRC
repeat Sub-Loop 0, use BA[2:0] = 4 instead
5
10*nRC
repeat Sub-Loop 0, use BA[2:0] = 5 instead
6
12*nRC
repeat Sub-Loop 0, use BA[2:0] = 6 instead
7
14*nRC
repeat Sub-Loop 0, use BA[2:0] = 7 instead
F
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
b) DQ signals are MID-LEVEL.
Rev. 0.1 / Jul. 2012
41
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
0
ACT
0
0
1
1
0
0
00
0
0
0
0
-
1,2
D, D
1
0
0
0
0
0
00
0
0
0
0
-
D, D
1
1
1
1
0
0
00
0
0
0
0
-
0
0
00000000
0
0
-
Cycle
Number
Datab)
Sub-Loop
CKE
CK, CK
Table 4 - IDD1 Measurement-Loop Patterna)
0
3,4
...
nRCD
...
nRAS
Static High
toggling
...
repeat pattern 1...4 until nRCD - 1, truncate if necessary
RD
0
1
0
1
0
0
00
0
0
repeat pattern 1...4 until nRAS - 1, truncate if necessary
PRE
0
0
1
0
0
0
00
0
0
repeat pattern 1...4 until nRC - 1, truncate if necessary
1*nRC+0
ACT
0
0
1
1
0
0
00
0
0
F
0
-
1*nRC+1,2
D, D
1
0
0
0
0
0
00
0
0
F
0
-
D, D
1
1
1
1
0
0
00
0
0
F
0
-
1*nRC+3,4
...
1*nRC+nRCD
...
1*nRC+nRAS
repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary
RD
0
1
0
1
0
0
00
0
0
F
0
00110011
repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary
PRE
0
0
1
0
0
0
00
0
0
F
...
repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary
1
2*nRC
repeat Sub-Loop 0, use BA[2:0] = 1 instead
2
4*nRC
repeat Sub-Loop 0, use BA[2:0] = 2 instead
3
6*nRC
repeat Sub-Loop 0, use BA[2:0] = 3 instead
4
8*nRC
repeat Sub-Loop 0, use BA[2:0] = 4 instead
5
10*nRC
repeat Sub-Loop 0, use BA[2:0] = 5 instead
6
12*nRC
repeat Sub-Loop 0, use BA[2:0] = 6 instead
7
14*nRC
repeat Sub-Loop 0, use BA[2:0] = 7 instead
0
-
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MIDLEVEL.
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are
MID_LEVEL.
Rev. 0.1 / Jul. 2012
42
Static High
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
0
D
1
0
0
0
0
0
0
0
0
0
0
-
1
D
1
0
0
0
0
0
0
0
0
0
0
-
2
D
1
1
1
1
0
0
0
0
0
F
0
-
3
D
1
1
1
1
0
0
0
0
0
F
0
-
Cycle
Number
Command
0
toggling
Datab)
Sub-Loop
CKE
CK, CK
Table 5 - IDD2N and IDD3N Measurement-Loop Patterna)
1
4-7
repeat Sub-Loop 0, use BA[2:0] = 1 instead
2
8-11
repeat Sub-Loop 0, use BA[2:0] = 2 instead
3
12-15
repeat Sub-Loop 0, use BA[2:0] = 3 instead
4
16-19
repeat Sub-Loop 0, use BA[2:0] = 4 instead
5
20-23
repeat Sub-Loop 0, use BA[2:0] = 5 instead
6
24-17
repeat Sub-Loop 0, use BA[2:0] = 6 instead
7
28-31
repeat Sub-Loop 0, use BA[2:0] = 7 instead
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
b) DQ signals are MID-LEVEL.
Static High
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
0
D
1
0
0
0
0
0
0
0
0
0
0
-
1
D
1
0
0
0
0
0
0
0
0
0
0
-
2
D
1
1
1
1
0
0
0
0
0
F
0
-
3
D
1
1
1
1
0
0
0
0
0
F
0
-
Cycle
Number
Command
0
toggling
Datab)
Sub-Loop
CKE
CK, CK
Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna)
1
4-7
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1
2
8-11
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2
3
12-15
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3
4
16-19
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4
5
20-23
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5
6
24-17
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6
7
28-31
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
b) DQ signals are MID-LEVEL.
Rev. 0.1 / Jul. 2012
43
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
0
RD
0
1
0
1
0
0
00
0
0
0
0
00000000
1
D
1
0
0
0
0
0
00
0
0
0
0
-
2,3
D,D
1
1
1
1
0
0
00
0
0
0
0
-
4
RD
0
1
0
1
0
0
00
0
0
F
0
00110011
5
D
1
0
0
0
0
0
00
0
0
F
0
-
D,D
1
1
1
1
0
0
00
0
0
F
0
-
Cycle
Number
Command
Static High
0
toggling
Datab)
Sub-Loop
CKE
CK, CK
Table 7 - IDD4R and IDDQ4R Measurement-Loop Patterna)
6,7
1
8-15
repeat Sub-Loop 0, but BA[2:0] = 1
2
16-23
repeat Sub-Loop 0, but BA[2:0] = 2
3
24-31
repeat Sub-Loop 0, but BA[2:0] = 3
4
32-39
repeat Sub-Loop 0, but BA[2:0] = 4
5
40-47
repeat Sub-Loop 0, but BA[2:0] = 5
6
48-55
repeat Sub-Loop 0, but BA[2:0] = 6
7
56-63
repeat Sub-Loop 0, but BA[2:0] = 7
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
0,
0,
0,
0,
0,
0,
0,
1
1
1
1
1
1
=
=
=
=
=
=
=
A[2:0]
ODT
0
0
1
0
0
1
BA[2:0]
BA[2:0]
BA[2:0]
BA[2:0]
BA[2:0]
BA[2:0]
BA[2:0]
A[6:3]
0
0
1
0
0
1
but
but
but
but
but
but
but
WE
CAS
RAS
CS
0
1
1
0
1
1
0
1
1
0
1
1
Sub-Loop
Sub-Loop
Sub-Loop
Sub-Loop
Sub-Loop
Sub-Loop
Sub-Loop
A[9:7]
WR
D
D,D
WR
D
D,D
repeat
repeat
repeat
repeat
repeat
repeat
repeat
A[10]
1
2
3
4
5
6
7
1
2,3
4
5
6,7
8-15
16-23
24-31
32-39
40-47
48-55
56-63
A[15:11]
0
BA[2:0]
0
Command
Cycle
Number
Sub-Loop
CKE
Static High
toggling
CK, CK
Table 8 - IDD4W Measurement-Loop Patterna)
Datab)
0
0
0
0
0
0
00
00
00
00
00
00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000
00110011
-
1
2
3
4
5
6
7
a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.
b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.
Rev. 0.1 / Jul. 2012
44
Command
CS
RAS
CAS
WE
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
0
0
REF
0
0
0
1
0
0
0
0
0
0
0
-
1
1.2
D, D
1
0
0
0
0
0
00
0
0
0
0
-
D, D
1
1
1
1
0
0
00
0
0
F
0
-
Cycle
Number
Datab)
Sub-Loop
CKE
CK, CK
Table 9 - IDD5B Measurement-Loop Patterna)
Static High
toggling
3,4
2
5...8
repeat cycles 1...4, but BA[2:0] = 1
9...12
repeat cycles 1...4, but BA[2:0] = 2
13...16
repeat cycles 1...4, but BA[2:0] = 3
17...20
repeat cycles 1...4, but BA[2:0] = 4
21...24
repeat cycles 1...4, but BA[2:0] = 5
25...28
repeat cycles 1...4, but BA[2:0] = 6
29...32
repeat cycles 1...4, but BA[2:0] = 7
33...nRFC-1
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.
a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.
b) DQ signals are MID-LEVEL.
Rev. 0.1 / Jul. 2012
45
Table 10 - IDD7 Measurement-Loop Patterna)
2
3
4
Static High
5
6
7
8
9
10
4*nRRD
nFAW
nFAW+nRRD
nFAW+2*nRRD
nFAW+3*nRRD
nFAW+4*nRRD
2*nFAW+0
2*nFAW+1
2&nFAW+2
11
2*nFAW+nRRD
2*nFAW+nRRD+1
2&nFAW+nRRD+2
12
13
2*nFAW+2*nRRD
2*nFAW+3*nRRD
14
2*nFAW+4*nRRD
15
16
17
18
3*nFAW
3*nFAW+nRRD
3*nFAW+2*nRRD
3*nFAW+3*nRRD
19
3*nFAW+4*nRRD
00110011
-
0
-
0
-
0
0
0
00110011
-
0
0
0
00000000
-
0
-
0
-
A[10]
0
0
0
ODT
00000000
-
WE
0
0
0
CAS
ACT
0
0
1
1
0
0
00
0
0
0
RDA
0
1
0
1
0
0
00
1
0
0
D
1
0
0
0
0
0
00
0
0
0
repeat above D Command until nRRD - 1
ACT
0
0
1
1
0
1
00
0
0
F
RDA
0
1
0
1
0
1
00
1
0
F
D
1
0
0
0
0
1
00
0
0
F
repeat above D Command until 2* nRRD - 1
repeat Sub-Loop 0, but BA[2:0] = 2
repeat Sub-Loop 1, but BA[2:0] = 3
D
1
0
0
0
0
3
00
0
0
F
Assert and repeat above D Command until nFAW - 1, if necessary
repeat Sub-Loop 0, but BA[2:0] = 4
repeat Sub-Loop 1, but BA[2:0] = 5
repeat Sub-Loop 0, but BA[2:0] = 6
repeat Sub-Loop 1, but BA[2:0] = 7
D
1
0
0
0
0
7
00
0
0
F
Assert and repeat above D Command until 2* nFAW - 1, if necessary
ACT
0
0
1
1
0
0
00
0
0
F
RDA
0
1
0
1
0
0
00
1
0
F
D
1
0
0
0
0
0
00
0
0
F
Repeat above D Command until 2* nFAW + nRRD - 1
ACT
0
0
1
1
0
1
00
0
0
0
RDA
0
1
0
1
0
1
00
1
0
0
D
1
0
0
0
0
1
00
0
0
0
Repeat above D Command until 2* nFAW + 2* nRRD - 1
repeat Sub-Loop 10, but BA[2:0] = 2
repeat Sub-Loop 11, but BA[2:0] = 3
D
1
0
0
0
0
3
00
0
0
0
Assert and repeat above D Command until 3* nFAW - 1, if necessary
repeat Sub-Loop 10, but BA[2:0] = 4
repeat Sub-Loop 11, but BA[2:0] = 5
repeat Sub-Loop 10, but BA[2:0] = 6
repeat Sub-Loop 11, but BA[2:0] = 7
D
1
0
0
0
0
7
00
0
0
0
Assert and repeat above D Command until 4* nFAW - 1, if necessary
RAS
Datab)
CS
A[9:7]
A[15:11]
BA[2:0]
Command
A[2:0]
1
0
1
2
...
nRRD
nRRD+1
nRRD+2
...
2*nRRD
3*nRRD
A[6:3]
0
toggling
Cycle
Number
Sub-Loop
CKE
CK, CK
ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9
a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.
b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.
Rev. 0.1 / Jul. 2012
46
IDD Specifications (Tcase: 0 to 95oC)
* Module IDD values in the datasheet are only a calculation based on the component IDD spec.
The actual measurements may vary according to DQ loading cap.
8GB, 1G x 72 SO-DIMM: HMT41GA7MFR8A
Symbol
IDD0
IDD1
IDD2N
IDD2NT
IDD2P0
IDD2P1
IDD2Q
IDD3N
IDD3P
IDD4R
IDD4W
IDD5B
IDD6
IDD6ET
IDD7
Rev. 0.1 / Jul. 2012
DDR3L 1066
630
720
450
540
360
396
450
540
360
1035
1035
1485
360
396
1530
DDR3L 1333
630
720
450
540
360
396
540
630
450
1170
1170
1530
360
396
1710
DDR3L 1600
720
810
540
630
360
396
540
630
450
1395
1395
1620
360
396
1845
Unit
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
note
47
Module Dimensions
1Gx72 - HMT41GA7MFR8A
Front
Side
67.60mm
3.80mm max
2.0
Detail-A
pin 1
pin 203
21.00
2.15
2 X  1.80  0.10
20.0mm
6.00
30.0mm
4.00  0.10
1.00  0.08 mm
39.00
1.65 0.10
3.00
Back
SPD
0.45  0.03
2.55
0.3  0.15
4.00  0.10
Detail of Contacts A
0.3~1.0
0.60
1.00  0.05
Note:
1.  0.13 tolerance on all dimensions unless otherwise stated.
Units: millimeters
Rev. 0.1 / Jul. 2012
48
Similar pages