STMicroelectronics M28W640ECT10ZB6F 64 mbit 4mb x16, boot block 3v supply flash memory Datasheet

M28W640ECT
M28W640ECB
64 Mbit (4Mb x16, Boot Block)
3V Supply Flash Memory
PRELIMINARY DATA
FEATURES SUMMARY
■ SUPPLY VOLTAGE
Figure 1. Packages
– VDD = 2.7V to 3.6V Core Power Supply
– VDDQ= 1.65V to 3.6V for Input/Output
■
– VPP = 12V for fast Program (optional)
ACCESS TIME: 70, 85, 90,100ns
■
PROGRAMMING TIME:
– 10µs typical
– Double Word Programming Option
FBGA
TFBGA48 (ZB)
6.39 x 10.5mm
– Quadruple Word Programming Option
■
COMMON FLASH INTERFACE
■
MEMORY BLOCKS
– Parameter Blocks (Top or Bottom location)
– Main Blocks
■
BLOCK LOCKING
– All blocks locked at Power Up
– Any combination of blocks can be locked
TSOP48 (N)
12 x 20mm
– WP for Block Lock-Down
■
SECURITY
– 128 bit user Programmable OTP cells
– 64 bit unique device identifier
■
AUTOMATIC STAND-BY MODE
■
PROGRAM and ERASE SUSPEND
■
100,000 PROGRAM/ERASE CYCLES per
BLOCK
■
ELECTRONIC SIGNATURE
– Manufacturer Code: 20h
– Top Device Code, M28W640ECT: 8848h
– Bottom Device Code, M28W640ECB: 8849h
April 2003
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
1/55
M28W640ECT, M28W640ECB
TABLE OF CONTENTS
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. TSOP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 4. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VDD Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VDDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/55
M28W640ECT, M28W640ECB
Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 7. Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 8. Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . 16
BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 10. Protection Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Program Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 13. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 14. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 15. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9. Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 16. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 10. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 17. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 11. Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 12. Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 19. Power-Up and Reset AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3/55
M28W640ECT, M28W640ECB
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . 30
Table 20. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 30
Figure 14. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline31
Table 21. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data . . . 31
Figure 15. TFBGA48 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 32
Figure 16. TFBGA48 Daisy Chain - PCB Connections proposal (Top view through package) . . . . 32
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 23. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
APPENDIX A. BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 24. Top Boot Block Addresses, M28W640ECT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 25. Bottom Boot Block Addresses, M28W640ECB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 26. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 27. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 28. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 29. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 30. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 31. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
APPENDIX C. FLOWCHARTS AND PSEUDO CODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 17. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 18. Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 19. Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 20. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 47
Figure 21. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 22. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 23. Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE . . . . . . . 52
Table 32. Write State Machine Current/Next, sheet 1 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 33. Write State Machine Current/Next, sheet 2 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 34. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4/55
M28W640ECT, M28W640ECB
SUMMARY DESCRIPTION
The M28W640EC is a 64 Mbit (4 Mbit x 16) nonvolatile Flash memory that can be erased electrically at block level and programmed in-system on
a Word-by-Word basis using a 2.7V to 3.6V V DD
supply for the circuitry and a 1.65V to 3.6V VDDQ
supply for the Input/Output pins. An optional 12V
VPP power supply is provided to speed up customer programming.
The device features an asymmetrical blocked architecture. The M28W640EC has an array of 135
blocks: 8 Parameter Blocks of 4 KWord and 127
Main Blocks of 32 KWord. M28W640ECT has the
Parameter Blocks at the top of the memory address space while the M28W640ECB locates the
Parameter Blocks starting from the bottom. The
memory maps are shown in Figure 5, Block Addresses.
The M28W640EC features an instant, individual
block locking scheme that allows any block to be
locked or unlocked with no latency, enabling instant code and data protection. All blocks have
three levels of protection. They can be locked and
locked-down individually preventing any accidental programming or erasure. There is an additional
hardware protection against program and erase.
When V PP ≤ VPPLK all blocks are protected against
program or erase. All blocks are locked at Power
Up.
Each block can be erased separately. Erase can
be suspended in order to perform either read or
program in any other block and then resumed.
Program can be suspended to read data in any
other block and then resumed. Each block can be
programmed and erased over 100,000 cycles.
The device includes a 192 bit Protection Register
to increase the protection of a system design. The
Protection Register is divided into a 64 bit segment
and a 128 bit segment. The 64 bit segment contains a unique device number written by ST, while
the second one is one-time-programmable by the
user. The user programmable segment can be
permanently protected. Figure 6, shows the Protection Register Memory Map.
Program and Erase commands are written to the
Command Interface of the memory. An on-chip
Program/Erase Controller takes care of the timings necessary for program and erase operations.
The end of a program or erase operation can be
detected and any error conditions identified. The
command set required to control the memory is
consistent with JEDEC standards.
The memory is offered in TSOP48 (12 X 20mm)
and TFBGA48 (6.39 x 10.5mm, 0.75mm pitch)
packages and is supplied with all the bits erased
(set to ’1’).
Figure 2. Logic Diagram
VDD VDDQ VPP
22
16
A0-A21
DQ0-DQ15
W
E
G
M28W640ECT
M28W640ECB
RP
WP
VSS
AI04378b
Table 1. Signal Names
A0-A21
Address Inputs
DQ0-DQ15
Data Input/Output
E
Chip Enable
G
Output Enable
W
Write Enable
RP
Reset
WP
Write Protect
VDD
Core Power Supply
VDDQ
Power Supply for
Input/Output
VPP
Optional Supply Voltage for
Fast Program & Erase
VSS
Ground
NC
Not Connected Internally
5/55
M28W640ECT, M28W640ECB
Figure 3. TSOP Connections
A15
A14
A13
A12
A11
A10
A9
A8
A21
A20
W
RP
VPP
WP
A19
A18
A17
A7
A6
A5
A4
A3
A2
A1
1
48
12 M28W640ECT 37
13 M28W640ECB 36
24
25
AI04379b
6/55
A16
VDDQ
VSS
DQ15
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
VDD
DQ11
DQ3
DQ10
DQ2
DQ9
DQ1
DQ8
DQ0
G
VSS
E
A0
M28W640ECT, M28W640ECB
Figure 4. TFBGA Connections (Top view through package)
1
2
3
A
A13
A11
A8
B
A14
A10
C
A15
D
4
5
6
7
8
VPP
WP
A19
A7
A4
W
RP
A18
A17
A5
A2
A12
A9
A21
A20
A6
A3
A1
A16
DQ14
DQ5
DQ11
DQ2
DQ8
E
A0
E
VDDQ
DQ15
DQ6
DQ12
DQ3
DQ9
DQ0
VSS
F
VSS
DQ7
DQ13
DQ4
VDD
DQ10
DQ1
G
AI04380
7/55
M28W640ECT, M28W640ECB
Figure 5. Block Addresses
M28W640ECB
Bottom Boot Block Addresses
M28W640ECT
Top Boot Block Addresses
3FFFFF
3FFFFF
32 KWords
4 KWords
3F8000
3F7FFF
3FF000
Total of 8
4 KWord Blocks
32 KWords
3F0000
Total of 127
32 KWord Blocks
3F8FFF
4 KWords
3F8000
3F7FFF
32 KWords
3F0000
00FFFF
32 KWords
008000
007FFF
4 KWords
Total of 127
32 KWord Blocks
007000
Total of 8
4 KWord Blocks
00FFFF
32 KWords
008000
007FFF
000FFF
32 KWords
4 KWords
000000
000000
AI04386b
Note: Also see Appendix A, Tables 24 and 25 for a full listing of the Block Addresses.
Figure 6. Protection Register Memory Map
PROTECTION REGISTER
8Ch
User Programmable OTP
85h
84h
Unique device number
81h
80h
Protection Register Lock
1
0
AI05520b
8/55
M28W640ECT, M28W640ECB
SIGNAL DESCRIPTIONS
See Figure 2 Logic Diagram and Table 1,Signal
Names, for a brief overview of the signals connected to this device.
Address Inputs (A0-A21). The Address Inputs
select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the
Command Interface of the internal state machine.
Data Input/Output (DQ0-DQ15). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation or inputs a command
or the data to be programmed during a Write Bus
operation.
Chip Enable (E). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is
at VILand Reset is at VIH the device is in active
mode. When Chip Enable is at VIH the memory is
deselected, the outputs are high impedance and
the power consumption is reduced to the stand-by
level.
Output Enable (G). The Output Enable controls
data outputs during the Bus Read operation of the
memory.
Write Enable (W). The Write Enable controls the
Bus Write operation of the memory’s Command
Interface. The data and address inputs are latched
on the rising edge of Chip Enable, E, or Write Enable, W, whichever occurs first.
Write Protect (WP). Write Protect is an input
that gives an additional hardware protection for
each block. When Write Protect is at VIL, the LockDown is enabled and the protection status of the
block cannot be changed. When Write Protect is at
VIH, the Lock-Down is disabled and the block can
be locked or unlocked. (refer to Table 7, Read Protection Register and Protection Register Lock).
Reset (RP). The Reset input provides a hardware reset of the memory. When Reset is at VIL,
the memory is in reset mode: the outputs are high
impedance and the current consumption is minimized. After Reset all blocks are in the Locked
state. When Reset is at V IH, the device is in normal
operation. Exiting reset mode the device enters
read array mode, but a negative transition of Chip
Enable or a change of the address is required to
ensure valid data outputs.
V DD Supply Voltage. VDD provides the power
supply to the internal core of the memory device.
It is the main power supply for all operations
(Read, Program and Erase).
V DDQ Supply Voltage. VDDQ provides the
power supply to the I/O pins and enables all Outputs to be powered independently from VDD. V DDQ
can be tied to V DD or can use a separate supply.
V PP Program Supply Voltage. VPP is both a
control input and a power supply pin. The two
functions are selected by the voltage range applied to the pin. The Supply Voltage V DD and the
Program Supply Voltage VPP can be applied in
any order.
If VPP is kept in a low voltage range (0V to 3.6V)
VPP is seen as a control input. In this case a voltage lower than VPPLK gives an absolute protection
against program or erase, while V PP > VPP1 enables these functions (see Table 15, DC Characteristics for the relevant values). VPP is only
sampled at the beginning of a program or erase; a
change in its value after the operation has started
does not have any effect on Program or Erase,
however for Double or Quadruple Word Program
the results are uncertain.
If VPP is in the range 11.4V to 12.6V it acts as a
power supply pin. In this condition V PP must be
stable until the Program/Erase algorithm is completed (see Table 17 and 18).
VSS Ground. VSS is the reference for all voltage
measurements.
Note: Each device in a system should have
VDD, VDDQ and V PP decoupled with a 0.1µF capacitor close to the pin. See Figure 8, AC Measurement Load Circuit. The PCB trace widths
should be sufficient to carry the required VPP
program and erase currents.
9/55
M28W640ECT, M28W640ECB
BUS OPERATIONS
There are six standard bus operations that control
the device. These are Bus Read, Bus Write, Output Disable, Standby, Automatic Standby and Reset. See Table 2, Bus Operations, for a summary.
Typically glitches of less than 5ns on Chip Enable
or Write Enable are ignored by the memory and do
not affect bus operations.
Read. Read Bus operations are used to output
the contents of the Memory Array, the Electronic
Signature, the Status Register and the Common
Flash Interface. Both Chip Enable and Output Enable must be at VIL in order to perform a read operation. The Chip Enable input should be used to
enable the device. Output Enable should be used
to gate data onto the output. The data read depends on the previous command written to the
memory (see Command Interface section). See
Figure 9, Read Mode AC Waveforms, and Table
16, Read AC Characteristics, for details of when
the output becomes valid.
Read mode is the default state of the device when
exiting Reset or after power-up.
Write. Bus Write operations write Commands to
the memory or latch Input Data to be programmed.
A write operation is initiated when Chip Enable
and Write Enable are at V IL with Output Enable at
VIH. Commands, Input Data and Addresses are
latched on the rising edge of Write Enable or Chip
Enable, whichever occurs first.
See Figures 10 and 11, Write AC Waveforms, and
Tables 17 and 18, Write AC Characteristics, for
details of the timing requirements.
Output Disable. The data outputs are high impedance when the Output Enable is at V IH.
Standby. Standby disables most of the internal
circuitry allowing a substantial reduction of the current consumption. The memory is in stand-by
when Chip Enable is at VIH and the device is in
read mode. The power consumption is reduced to
the stand-by level and the outputs are set to high
impedance, independently from the Output Enable
or Write Enable inputs. If Chip Enable switches to
VIH during a program or erase operation, the device enters Standby mode when finished.
Automatic Standby. Automatic Standby provides a low power consumption state during Read
mode. Following a read operation, the device enters Automatic Standby after 150ns of bus inactivity even if Chip Enable is Low, VIL, and the supply
current is reduced to IDD1. The data Inputs/Outputs will still output data if a bus Read operation is
in progress.
Reset. During Reset mode when Output Enable
is Low, VIL, the memory is deselected and the outputs are high impedance. The memory is in Reset
mode when Reset is at V IL. The power consumption is reduced to the Standby level, independently
from the Chip Enable, Output Enable or Write Enable inputs. If Reset is pulled to V SS during a Program or Erase, this operation is aborted and the
memory content is no longer valid.
Table 2. Bus Operations
E
G
W
RP
WP
VPP
DQ0-DQ15
Bus Read
VIL
VIL
VIH
VIH
X
Don’t Care
Data Output
Bus Write
VIL
VIH
VIL
VIH
X
VDD or VPPH
Data Input
Output Disable
VIL
VIH
VIH
VIH
X
Don’t Care
Hi-Z
Standby
VIH
X
X
VIH
X
Don’t Care
Hi-Z
X
X
X
VIL
X
Don’t Care
Hi-Z
Operation
Reset
Note: X = VIL or VIH, VPPH = 12V ± 5%.
10/55
M28W640ECT, M28W640ECB
COMMAND INTERFACE
All Bus Write operations to the memory are interpreted by the Command Interface. Commands
consist of one or more sequential Bus Write operations. An internal Program/Erase Controller handles all timings and verifies the correct execution
of the Program and Erase commands. The Program/Erase Controller provides a Status Register
whose output may be read at any time during, to
monitor the progress of the operation, or the Program/Erase states. See Table 3, Command
Codes, for a summary of the commands and see
Appendix 22, Table 32, Write State Machine Current/Next, for a summary of the Command Interface.
The Command Interface is reset to Read mode
when power is first applied, when exiting from Reset or whenever V DD is lower than VLKO . Command sequences must be followed exactly. Any
invalid combination of commands will reset the device to Read mode. Refer to Table 4, Commands,
in conjunction with the text descriptions below.
Read Memory Array Command
The Read command returns the memory to its
Read mode. One Bus Write cycle is required to issue the Read Memory Array command and return
the memory to Read mode. Subsequent read operations will read the addressed location and output the data. When a device Reset occurs, the
memory defaults to Read mode.
Read Status Register Command
The Status Register indicates when a program or
erase operation is complete and the success or
failure of the operation itself. Issue a Read Status
Register command to read the Status Register’s
contents. Subsequent Bus Read operations read
the Status Register at any address, until another
command is issued. See Table 11, Status Register
Bits, for details on the definitions of the bits.
The Read Status Register command may be issued at any time, even during a Program/Erase
operation. Any Read attempt during a Program/
Erase operation will automatically output the content of the Status Register.
Read Electronic Signature Command
The Read Electronic Signature command reads
the Manufacturer and Device Codes and the Block
Locking Status, or the Protection Register.
The Read Electronic Signature command consists
of one write cycle, a subsequent read will output
the Manufacturer Code, the Device Code, the
Block Lock and Lock-Down Status, or the Protection and Lock Register. See Tables 5, 6 and 7 for
the valid address.
Table 3. Command Codes
Hex Code
Command
01h
Block Lock confirm
10h
Program
20h
Erase
2Fh
Block Lock-Down confirm
30h
Double Word Program
40h
Program
50h
Clear Status Register
56h
Quadruple Word Program
60h
Block Lock, Block Unlock, Block LockDown
70h
Read Status Register
90h
Read Electronic Signature
98h
Read CFI Query
B0h
Program/Erase Suspend
C0h
Protection Register Program
D0h
Program/Erase Resume, Block Unlock
confirm
FFh
Read Memory Array
Read CFI Query Command
The Read Query Command is used to read data
from the Common Flash Interface (CFI) Memory
Area, allowing programming equipment or applications to automatically match their interface to
the characteristics of the device. One Bus Write
cycle is required to issue the Read Query Command. Once the command is issued subsequent
Bus Read operations read from the Common
Flash Interface Memory Area. See Appendix B,
Common Flash Interface, Tables 26, 27, 28, 29,
30 and 31 for details on the information contained
in the Common Flash Interface memory area.
Block Erase Command
The Block Erase command can be used to erase
a block. It sets all the bits within the selected block
to ’1’. All previous data in the block is lost. If the
block is protected then the Erase operation will
abort, the data in the block will not be changed and
the Status Register will output the error.
Two Bus Write cycles are required to issue the
command.
■ The first bus cycle sets up the Erase command.
11/55
M28W640ECT, M28W640ECB
The second latches the block address in the
internal state machine and starts the Program/
Erase Controller.
If the second bus cycle is not Write Erase Confirm
(D0h), Status Register bits b4 and b5 are set and
the command aborts.
Erase aborts if Reset turns to VIL. As data integrity
cannot be guaranteed when the Erase operation is
aborted, the block must be erased again.
During Erase operations the memory will accept
the Read Status Register command and the Program/Erase Suspend command, all other commands will be ignored. Typical Erase times are
given in Table 8, Program, Erase Times and Program/Erase Endurance Cycles.
See Appendix C, Figure 21, Erase Flowchart and
Pseudo Code, for a suggested flowchart for using
the Erase command.
Program Command
The memory array can be programmed word-byword. Two bus write cycles are required to issue
the Program Command.
■ The first bus cycle sets up the Program
command.
■ The second latches the Address and the Data to
be written and starts the Program/Erase
Controller.
During Program operations the memory will accept the Read Status Register command and the
Program/Erase Suspend command. Typical Program times are given in Table 8, Program, Erase
Times and Program/Erase Endurance Cycles.
Programming aborts if Reset goes to VIL. As data
integrity cannot be guaranteed when the program
operation is aborted, the block containing the
memory location must be erased and reprogrammed.
See Appendix C, Figure 17, Program Flowchart
and Pseudo Code, for the flowchart for using the
Program command.
Double Word Program Command
This feature is offered to improve the programming
throughput, writing a page of two adjacent words
in parallel.The two words must differ only for the
address A0. Programming should not be attempted when VPP is not at VPPH.
Three bus write cycles are necessary to issue the
Double Word Program command.
■ The first bus cycle sets up the Double Word
Program Command.
■ The second bus cycle latches the Address and
the Data of the first word to be written.
■ The third bus cycle latches the Address and the
Data of the second word to be written and starts
the Program/Erase Controller.
■
12/55
Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity
cannot be guaranteed when the program operation is aborted, the block containing the memory
location must be erased and reprogrammed.
See Appendix C, Figure 18, Double Word Program Flowchart and Pseudo Code, for the flowchart for using the Double Word Program
command.
Quadruple Word Program Command
This feature is offered to improve the programming
throughput, writing a page of four adjacent words
in parallel.The four words must differ only for the
addresses A0 and A1. Programming should not be
attempted when VPP is not at VPPH.
Five bus write cycles are necessary to issue the
Quadruple Word Program command.
■ The first bus cycle sets up the Quadruple Word
Program Command.
■ The second bus cycle latches the Address and
the Data of the first word to be written.
■ The third bus cycle latches the Address and the
Data of the second word to be written.
■ The fourth bus cycle latches the Address and
the Data of the third word to be written.
■ The fifth bus cycle latches the Address and the
Data of the fourth word to be written and starts
the Program/Erase Controller.
Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity
cannot be guaranteed when the program operation is aborted, the block containing the memory
location must be erased and reprogrammed.
See Appendix C, Figure 19, Quadruple Word Program Flowchart and Pseudo Code, for the flowchart for using the Quadruple Word Program
command.
Clear Status Register Command
The Clear Status Register command can be used
to reset bits 1, 3, 4 and 5 in the Status Register to
‘0’. One bus write cycle is required to issue the
Clear Status Register command.
The bits in the Status Register do not automatically return to ‘0’ when a new Program or Erase command is issued. The error bits in the Status
Register should be cleared before attempting a
new Program or Erase command.
Program/Erase Suspend Command
The Program/Erase Suspend command is used to
pause a Program or Erase operation. One bus
write cycle is required to issue the Program/Erase
command and pause the Program/Erase controller.
M28W640ECT, M28W640ECB
During Program/Erase Suspend the Command Interface will accept the Program/Erase Resume,
Read Array, Read Status Register, Read Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation was Erase then
the Program, Double Word Program, Quadruple
Word Program, Block Lock, Block Lock-Down or
Protection Program commands will also be accepted. The block being erased may be protected
by issuing the Block Protect, Block Lock or Protection Program commands. When the Program/
Erase Resume command is issued the operation
will complete. Only the blocks not being erased
may be read or programmed correctly.
During a Program/Erase Suspend, the device can
be placed in a pseudo-standby mode by taking
Chip Enable to V IH. Program/Erase is aborted if
Reset turns to VIL.
See Appendix C, Figure 20, Program Suspend &
Resume Flowchart and Pseudo Code, and Figure
22, Erase Suspend & Resume Flowchart and
Pseudo Code for flowcharts for using the Program/
Erase Suspend command.
Program/Erase Resume Command
The Program/Erase Resume command can be
used to restart the Program/Erase Controller after
a Program/Erase Suspend operation has paused
it. One Bus Write cycle is required to issue the
command. Once the command is issued subsequent Bus Read operations read the Status Register.
See Appendix C, Figure 20, Program Suspend &
Resume Flowchart and Pseudo Code, and Figure
22, Erase Suspend & Resume Flowchart and
Pseudo Code for flowcharts for using the Program/
Erase Resume command.
Protection Register Program Command
The Protection Register Program command is
used to Program the 128 bit user One-Time-Programmable (OTP) segment of the Protection Register. The segment is programmed 16 bits at a
time. When shipped all bits in the segment are set
to ‘1’. The user can only program the bits to ‘0’.
Two write cycles are required to issue the Protection Register Program command.
■ The first bus cycle sets up the Protection
Register Program command.
■ The second latches the Address and the Data to
be written to the Protection Register and starts
the Program/Erase Controller.
Read operations output the Status Register content after the programming has started.
The segment can be protected by programming bit
1 of the Protection Lock Register (see Figure 6,
Protection Register Memory Map). Attempting to
program a previously protected Protection Regis-
ter will result in a Status Register error. The protection of the Protection Register is not reversible.
The Protection Register Program cannot be suspended.
Block Lock Command
The Block Lock command is used to lock a block
and prevent Program or Erase operations from
changing the data in it. All blocks are locked at
power-up or reset.
Two Bus Write cycles are required to issue the
Block Lock command.
■ The first bus cycle sets up the Block Lock
command.
■ The second Bus Write cycle latches the block
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Table. 10 shows the protection status after issuing
a Block Lock command.
The Block Lock bits are volatile, once set they remain set until a hardware reset or power-down/
power-up. They are cleared by a Blocks Unlock
command. Refer to the section, Block Locking, for
a detailed explanation.
Block Unlock Command
The Blocks Unlock command is used to unlock a
block, allowing the block to be programmed or
erased. Two Bus Write cycles are required to issue the Blocks Unlock command.
■ The first bus cycle sets up the Block Unlock
command.
■ The second Bus Write cycle latches the block
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Table. 10 shows the protection status after issuing
a Block Unlock command. Refer to the section,
Block Locking, for a detailed explanation.
Block Lock-Down Command
A locked block cannot be Programmed or Erased,
or have its protection status changed when WP is
low, VIL. When WP is high, VIH, the Lock-Down
function is disabled and the locked blocks can be
individually unlocked by the Block Unlock command.
Two Bus Write cycles are required to issue the
Block Lock-Down command.
■ The first bus cycle sets up the Block Lock
command.
■ The second Bus Write cycle latches the block
address.
The lock status can be monitored for each block
using the Read Electronic Signature command.
Locked-Down blocks revert to the locked (and not
13/55
M28W640ECT, M28W640ECB
locked-down) state when the device is reset on
power-down. Table. 10 shows the protection status after issuing a Block Lock-Down command.
Refer to the section, Block Locking, for a detailed
explanation.
Cycles
Table 4. Commands
Commands
Bus Write Operations
1st Cycle
2nd Cycle
Op. Add Data
Op. Add Data
Read Memory
Array
1+ Write
X
FFh
Read
RA
RD
Read Status
Register
1+ Write
X
70h
Read
X
SRD
Read Electronic
Signature
1+ Write
X
90h
Read SA(2)
IDh
Read CFI Query
1+ Write
X
98h
Read
QA
QD
20h
Write
BA
D0h
40h or
Write
10h
PA
PD
Erase
2
Write
X
Program
2
Write
X
Double Word
Program(3)
3
Write
X
Quadruple Word
Program(4)
5
Write
X
Clear Status
Register
1
Write
X
50h
Program/Erase
Suspend
1
Write
X
B0h
Program/Erase
Resume
1
Write
X
D0h
Block Lock
2
Write
X
60h
Write
BA
01h
Block Unlock
2
Write
X
60h
Write
BA
D0h
Block Lock-Down
2
Write
X
60h
Write
BA
2Fh
Protection
Register Program
2
Write
X
C0h
Write PRA
30h
3rd Cycle
4th Cycle
Op. Add Data Op.
Write PA1
PD1
Write
PA2
PD2
56h(5) Write PA1
PD1
Write
PA2
PD2 Write
5th Cycle
Add Data
PA3
Op. Add Data
PD3 Write
PA4
PD4
PRD
Note: 1. X = Don’t Care, RA=Read Address, RD=Read Data, SRD=Status Register Data, ID=Identifier (Manufacture and Device Code),
QA=Query Address, QD=Query Data, BA=Block Address, PA=Program Address, PD=Program Data, PRA=Protection Register Address, PRD=Protection Register Data.
2. The signature addresses are listed in Tables 5, 6 and 7.
3. Program Addresses 1 and 2 must be consecutive Addresses differing only for A0.
4. Program Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.
5. To be characterized.
Table 5. Read Electronic Signature
Code
Device
E
G
W
A0
A1
A2-A7
A8-A21
DQ0-DQ7
DQ8-DQ15
VIL
VIL
VIH
VIL
VIL
0
Don’t Care
20h
00h
M28W640ECT
VIL
VIL
VIH
VIH
VIL
0
Don’t Care
48h
88h
M28W640ECB
VIL
VIL
VIH
VIH
VIL
0
Don’t Care
49h
88h
Manufacture
Code
Device Code
Note:
14/55
RP = VIH.
M28W640ECT, M28W640ECB
Table 6. Read Block Lock Signature
Block Status
E
G
W
A0
A1
A2-A7
Locked Block
VIL
VIL
VIH
VIL
VIH
0
Unlocked Block
VIL
VIL
VIH
VIL
VIH
Locked-Down
Block
VIL
VIL
VIH
VIL
VIH
A8-A11
A12-A21
DQ0
DQ1
DQ2-DQ15
Don’t Care Block Address
1
0
00h
0
Don’t Care Block Address
0
0
00h
0
Don’t Care Block Address
X (1)
1
00h
Note: 1. A Locked-Down Block can be locked "DQ0 = 1" or unlocked "DQ0 = 0"; see Block Locking section.
Table 7. Read Protection Register and Lock Register
Word
E
G
W
A0-A7
A8-A21
DQ0
DQ1
DQ2
Lock
VIL
VIL
VIH
80h
Don’t Care
0
OTP Prot.
data
0
00h
00h
Unique ID 0
VIL
VIL
VIH
81h
Don’t Care
ID data
ID data
ID data
ID data
ID data
Unique ID 1
VIL
VIL
VIH
82h
Don’t Care
ID data
ID data
ID data
ID data
ID data
Unique ID 2
VIL
VIL
VIH
83h
Don’t Care
ID data
ID data
ID data
ID data
ID data
Unique ID 3
VIL
VIL
VIH
84h
Don’t Care
ID data
ID data
ID data
ID data
ID data
OTP 0
VIL
VIL
VIH
85h
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 1
VIL
VIL
VIH
86h
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 2
VIL
VIL
VIH
87h
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 3
VIL
VIL
VIH
88h
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 4
VIL
VIL
VIH
89h
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 5
VIL
VIL
VIH
8Ah
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 6
VIL
VIL
VIH
8Bh
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
OTP 7
VIL
VIL
VIH
8Ch
Don’t Care
OTP data
OTP data
OTP data
OTP data
OTP data
DQ3-DQ7 DQ8-DQ15
15/55
M28W640ECT, M28W640ECB
Table 8. Program, Erase Times and Program/Erase Endurance Cycles
M28W640EC
Parameter
Test Conditions
Unit
Min
Typ
Max
VPP = VDD
10
200
µs
Double Word Program
VPP = 12V ±5%
10
200
µs
Quadruple Word Program
VPP = 12V ±5%
10
200
µs
VPP = 12V ±5%
0.16/0.08 (1)
5
s
VPP = VDD
0.32
5
s
VPP = 12V ±5%
0.02/0.01 (1)
4
s
VPP = VDD
0.04
4
s
VPP = 12V ±5%
1
10
s
VPP = VDD
1
10
s
VPP = 12V ±5%
0.4
10
s
VPP = VDD
0.4
10
s
Word Program
Main Block Program
Parameter Block Program
Main Block Erase
Parameter Block Erase
Program/Erase Cycles (per Block)
100,000
cycles
Note: 1. Typical time to program a Main or Parameter Block using the Double Word Program and the Quadruple Word Program commands
respectively.
BLOCK LOCKING
The M28W640EC features an instant, individual
block locking scheme that allows any block to be
locked or unlocked with no latency. This locking
scheme has three levels of protection.
■ Lock/Unlock - this first level allows softwareonly control of block locking.
■
■
Lock-Down - this second level requires
hardware interaction before locking can be
changed.
VPP ≤ VPPLK - the third level offers a complete
hardware protection against program and erase
on all blocks.
The protection status of each block can be set to
Locked, Unlocked, and Lock-Down. Table 10, defines all of the possible protection states (WP,
DQ1, DQ0), and Appendix C, Figure 23, shows a
flowchart for the locking operations.
Reading a Block’s Lock Status
The lock status of every block can be read in the
Read Electronic Signature mode of the device. To
enter this mode write 90h to the device. Subsequent reads at the address specified in Table 6,
will output the protection status of that block. The
lock status is represented by DQ0 and DQ1. DQ0
indicates the Block Lock/Unlock status and is set
by the Lock command and cleared by the Unlock
16/55
command. It is also automatically set when entering Lock-Down. DQ1 indicates the Lock-Down status and is set by the Lock-Down command. It
cannot be cleared by software, only by a hardware
reset or power-down.
The following sections explain the operation of the
locking system.
Locked State
The default status of all blocks on power-up or after a hardware reset is Locked (states (0,0,1) or
(1,0,1)). Locked blocks are fully protected from
any program or erase. Any program or erase operations attempted on a locked block will return an
error in the Status Register. The Status of a
Locked block can be changed to Unlocked or
Lock-Down using the appropriate software commands. An Unlocked block can be Locked by issuing the Lock command.
Unlocked State
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)),
can be programmed or erased. All unlocked
blocks return to the Locked state after a hardware
reset or when the device is powered-down. The
status of an unlocked block can be changed to
Locked or Locked-Down using the appropriate
software commands. A locked block can be unlocked by issuing the Unlock command.
M28W640ECT, M28W640ECB
Lock-Down State
Blocks that are Locked-Down (state (0,1,x))are
protected from program and erase operations (as
for Locked blocks) but their protection status cannot be changed using software commands alone.
A Locked or Unlocked block can be Locked-Down
by issuing the Lock-Down command. LockedDown blocks revert to the Locked state when the
device is reset or powered-down.
The Lock-Down function is dependent on the WP
input pin. When WP=0 (VIL), the blocks in the
Lock-Down state (0,1,x) are protected from program, erase and protection status changes. When
WP=1 (V IH) the Lock-Down function is disabled
(1,1,1) and Locked-Down blocks can be individually unlocked to the (1,1,0) state by issuing the
software command, where they can be erased and
programmed. These blocks can then be relocked
(1,1,1) and unlocked (1,1,0) as desired while WP
remains high. When WP is low , blocks that were
previously Locked-Down return to the Lock-Down
state (0,1,x) regardless of any changes made
while WP was high. Device reset or power-down
resets all blocks , including those in Lock-Down, to
the Locked state.
Locking Operations During Erase Suspend
Changes to block lock status can be performed
during an erase suspend by using the standard
locking command sequences to unlock, lock or
lock-down a block. This is useful in the case when
another block needs to be updated while an erase
operation is in progress.
To change block locking during an erase operation, first write the Erase Suspend command, then
check the status register until it indicates that the
erase operation has been suspended. Next write
the desired Lock command sequence to a block
and the lock status will be changed. After completing any desired lock, read, or program operations,
resume the erase operation with the Erase Resume command.
If a block is locked or locked-down during an erase
suspend of the same block, the locking status bits
will be changed immediately, but when the erase
is resumed, the erase operation will complete.
Locking operations cannot be performed during a
program suspend. Refer to Appendix D, Command Interface and Program/Erase Controller
State, for detailed information on which commands are valid during erase suspend.
Table 9. Block Lock Status
Item
Address
Block Lock Configuration
Data
LOCK
Block is Unlocked
DQ0=0
xx002
Block is Locked
DQ0=1
Block is Locked-Down
DQ1=1
17/55
M28W640ECT, M28W640ECB
Table 10. Protection Status
Current
Protection Status(1)
(WP, DQ1, DQ0)
Next Protection Status(1)
(WP, DQ1, DQ0)
Current State
Program/Erase
Allowed
After
Block Lock
Command
After
Block Unlock
Command
After Block
Lock-Down
Command
After
WP transition
1,0,0
yes
1,0,1
1,0,0
1,1,1
0,0,0
1,0,1(2)
no
1,0,1
1,0,0
1,1,1
0,0,1
1,1,0
yes
1,1,1
1,1,0
1,1,1
0,1,1
1,1,1
no
1,1,1
1,1,0
1,1,1
0,1,1
0,0,0
yes
0,0,1
0,0,0
0,1,1
1,0,0
0,0,1(2)
no
0,0,1
0,0,0
0,1,1
1,0,1
0,1,1
no
0,1,1
0,1,1
0,1,1
1,1,1 or 1,1,0 (3)
Note: 1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read
in the Read Electronic Signature command with A1 = VIH and A0 = VIL.
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.
3. A WP transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.
18/55
M28W640ECT, M28W640ECB
STATUS REGISTER
The Status Register provides information on the
current or previous Program or Erase operation.
The various bits convey information and errors on
the operation. To read the Status register the
Read Status Register command can be issued, refer to Read Status Register Command section. To
output the contents, the Status Register is latched
on the falling edge of the Chip Enable or Output
Enable signals, and can be read until Chip Enable
or Output Enable returns to VIH. Either Chip Enable or Output Enable must be toggled to update
the latched data.
Bus Read operations from any address always
read the Status Register during Program and
Erase operations.
The bits in the Status Register are summarized in
Table 11, Status Register Bits. Refer to Table 11
in conjunction with the following text descriptions.
Program/Erase Controller Status (Bit 7). The Program/Erase Controller Status bit indicates whether
the Program/Erase Controller is active or inactive.
When the Program/Erase Controller Status bit is
Low (set to ‘0’), the Program/Erase Controller is
active; when the bit is High (set to ‘1’), the Program/Erase Controller is inactive, and the device
is ready to process a new command.
The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller
pauses. After the Program/Erase Controller pauses the bit is High .
During Program, Erase, operations the Program/
Erase Controller Status bit can be polled to find the
end of the operation. Other bits in the Status Register should not be tested until the Program/Erase
Controller completes the operation and the bit is
High.
After the Program/Erase Controller completes its
operation the Erase Status, Program Status, VPP
Status and Block Lock Status bits should be tested
for errors.
Erase Suspend Status (Bit 6). The Erase Suspend Status bit indicates that an Erase operation
has been suspended or is going to be suspended.
When the Erase Suspend Status bit is High (set to
‘1’), a Program/Erase Suspend command has
been issued and the memory is waiting for a Program/Erase Resume command.
The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).
Bit 7 is set within 30µs of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than
entering the Suspend mode.
When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low.
Erase Status (Bit 5). The Erase Status bit can be
used to identify if the memory has failed to verify
that the block has erased correctly. When the
Erase Status bit is High (set to ‘1’), the Program/
Erase Controller has applied the maximum number of pulses to the block and still failed to verify
that the block has erased correctly. The Erase Status bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Controller inactive).
Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a
hardware reset. If set High it should be reset before a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Status (Bit 4). The Program Status bit
is used to identify a Program failure. When the
Program Status bit is High (set to ‘1’), the Program/Erase Controller has applied the maximum
number of pulses to the byte and still failed to verify that it has programmed correctly. The Program
Status bit should be read once the Program/Erase
Controller Status bit is High (Program/Erase Controller inactive).
Once set High, the Program Status bit can only be
reset Low by a Clear Status Register command or
a hardware reset. If set High it should be reset before a new command is issued, otherwise the new
command will appear to fail.
VPP Status (Bit 3). The VPP Status bit can be
used to identify an invalid voltage on the VPP pin
during Program and Erase operations. The VPP
pin is only sampled at the beginning of a Program
or Erase operation. Indeterminate results can occur if V PP becomes invalid during an operation.
When the VPP Status bit is Low (set to ‘0’), the voltage on the V PP pin was sampled at a valid voltage;
when the V PP Status bit is High (set to ‘1’), the VPP
pin has a voltage that is below the V PP Lockout
Voltage, VPPLK, the memory is protected and Program and Erase operations cannot be performed.
Once set High, the V PP Status bit can only be reset
Low by a Clear Status Register command or a
hardware reset. If set High it should be reset before a new Program or Erase command is issued,
otherwise the new command will appear to fail.
Program Suspend Status (Bit 2). The Program
Suspend Status bit indicates that a Program operation has been suspended. When the Program
Suspend Status bit is High (set to ‘1’), a Program/
Erase Suspend command has been issued and
the memory is waiting for a Program/Erase Resume command. The Program Suspend Status
should only be considered valid when the Pro-
19/55
M28W640ECT, M28W640ECB
gram/Erase Controller Status bit is High (Program/
Erase Controller inactive). Bit 2 is set within 5µs of
the Program/Erase Suspend command being issued therefore the memory may still complete the
operation rather than entering the Suspend mode.
When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low.
Block Protection Status (Bit 1). The Block Protection Status bit can be used to identify if a Program or Erase operation has tried to modify the
contents of a locked block.
When the Block Protection Status bit is High (set
to ‘1’), a Program or Erase operation has been attempted on a locked block.
Once set High, the Block Protection Status bit can
only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be
reset before a new command is issued, otherwise
the new command will appear to fail.
Reserved (Bit 0). Bit 0 of the Status Register is
reserved. Its value must be masked.
Note: Refer to Appendix C, Flowcharts and
Pseudo Codes, for using the Status Register.
Table 11. Status Register Bits
Bit
7
6
5
4
3
2
1
0
Name
Definition
’1’
Ready
’0’
Busy
’1’
Suspended
’0’
In progress or Completed
’1’
Erase Error
’0’
Erase Success
’1’
Program Error
’0’
Program Success
’1’
VPP Invalid, Abort
’0’
VPP OK
’1’
Suspended
’0’
In Progress or Completed
’1’
Program/Erase on protected Block, Abort
’0’
No operation to protected blocks
P/E.C. Status
Erase Suspend Status
Erase Status
Program Status
VPP Status
Program Suspend Status
Block Protection Status
Reserved
Note: Logic level ’1’ is High, ’0’ is Low.
20/55
Logic Level
M28W640ECT, M28W640ECB
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause permanent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics
SURE Program and other relevant quality documents.
Table 12. Absolute Maximum Ratings
Value
Symbol
Parameter
Unit
Min
Max
Ambient Operating Temperature (1)
– 40
85
°C
TBIAS
Temperature Under Bias
– 40
125
°C
TSTG
Storage Temperature
– 55
155
°C
Input or Output Voltage
– 0.6
VDDQ+0.6
V
Supply Voltage
– 0.6
4.1
V
Program Voltage
– 0.6
13
V
TA
VIO
VDD, VDDQ
VPP
Note: 1. Depends on range.
21/55
M28W640ECT, M28W640ECB
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC
and AC characteristics Tables that follow, are derived from tests performed under the Measure-
ment Conditions summarized in Table 13,
Operating and AC Measurement Conditions. Designers should check that the operating conditions
in their circuit match the measurement conditions
when relying on the quoted parameters.
Table 13. Operating and AC Measurement Conditions
M28W640ECT, M28W640ECB
70(1)
Parameter
85
90
10
Units
Min
Max
Min
Max
Min
Max
Min
Max
VDD Supply Voltage
3.0
3.6
3.0
3.6
2.7
3.6
2.7
3.6
V
VDDQ Supply Voltage (VDDQ ≤
VDD)
1.65
3.6
1.65
3.6
1.65
3.6
1.65
3.6
V
Ambient Operating Temperature
– 40
85
– 40
85
– 40
85
– 40
85
°C
Load Capacitance (CL)
50
Input Rise and Fall Times
Input Pulse Voltages
Input and Output Timing Ref.
Voltages
50
50
50
pF
5
5
5
5
ns
0 to VDDQ
0 to VDDQ
0 to VDDQ
0 to VDDQ
V
VDDQ/2
VDDQ/2
VDDQ/2
VDDQ/2
V
Note: 1. To be characterized.
Figure 7. AC Measurement I/O Waveform
Figure 8. AC Measurement Load Circuit
VDDQ
VDDQ
VDDQ/2
VDDQ
VDD
0V
25kΩ
AI00610
DEVICE
UNDER
TEST
CL
0.1µF
25kΩ
0.1µF
CL includes JIG capacitance
AI00609C
Table 14. Capacitance
Symbol
CIN
COUT
Parameter
Input Capacitance
Output Capacitance
Note: Sampled only, not 100% tested.
22/55
Test Condition
Max
Unit
VIN = 0V
Min
6
pF
VOUT = 0V
12
pF
M28W640ECT, M28W640ECB
Table 15. DC Characteristics
Symbol
Parameter
Test Condition
Min
Typ
Max
Unit
ILI
Input Leakage Current
0V≤ VIN ≤ VDDQ
±1
µA
ILO
Output Leakage Current
0V≤ VOUT ≤VDDQ
±10
µA
IDD
Supply Current (Read)
IDD1
Supply Current (Stand-by or
Automatic Stand-by)
IDD2
Supply Current
(Reset)
IDD3
IDD4
Supply Current (Program)
Supply Current (Erase)
E = VSS, G = VIH, f = 5MHz
9
18
mA
E = VDDQ ± 0.2V,
RP = VDDQ ± 0.2V
15
50
µA
RP = VSS ± 0.2V
15
50
µA
Program in progress
VPP = 12V ± 5%
5
10
mA
Program in progress
VPP = VDD
10
20
mA
Erase in progress
VPP = 12V ± 5%
5
20
mA
Erase in progress
VPP = VDD
10
20
mA
E = VDDQ ± 0.2V,
Erase suspended
15
50
µA
400
µA
IDD5
Supply Current
(Program/Erase Suspend)
IPP
Program Current
(Read or Stand-by)
VPP > VDD
IPP1
Program Current
(Read or Stand-by)
VPP ≤ VDD
1
5
µA
IPP2
Program Current (Reset)
RP = VSS ± 0.2V
1
5
µA
Program in progress
VPP = 12V ± 5%
1
10
mA
Program in progress
VPP = VDD
1
5
µA
Erase in progress
VPP = 12V ± 5%
3
10
mA
Erase in progress
VPP = VDD
1
5
µA
–0.5
0.4
V
–0.5
0.8
V
VDDQ –0.4
VDDQ +0.4
V
0.7 VDDQ
VDDQ +0.4
V
0.1
V
IPP3
IPP4
Program Current (Program)
Program Current (Erase)
VIL
Input Low Voltage
VDDQ ≥ 2.7V
VIH
Input High Voltage
VDDQ ≥ 2.7V
VOL
Output Low Voltage
IOL = 100µA, VDD = VDD min,
VDDQ = VDDQ min
VOH
Output High Voltage
IOH = –100µA, VDD = VDD min,
VDDQ = VDDQ min
VPP1
Program Voltage (Program or
Erase operations)
1.65
3.6
V
VPPH
Program Voltage
(Program or Erase
operations)
11.4
12.6
V
VPPLK
Program Voltage
(Program and Erase lock-out)
1
V
VLKO
VDD Supply Voltage (Program
and Erase lock-out)
2
V
VDDQ –0.1
V
23/55
M28W640ECT, M28W640ECB
Figure 9. Read AC Waveforms
tAVAV
VALID
A0-A21
tAVQV
tAXQX
E
tELQV
tELQX
tEHQX
tEHQZ
G
tGLQV
tGHQX
tGLQX
tGHQZ
VALID
DQ0-DQ15
ADDR. VALID
CHIP ENABLE
OUTPUTS
ENABLED
DATA VALID
STANDBY
AI04387
Table 16. Read AC Characteristics
M28W640EC
Symbol
Alt
Parameter
Unit
70
85
90
10
tAVAV
tRC
Address Valid to Next Address Valid
Min
70(3)
85
90
100
ns
tAVQV
tACC
Address Valid to Output Valid
Max
70(3)
85
90
100
ns
tAXQX (1)
tOH
Address Transition to Output Transition
Min
0
0
0
0
ns
tEHQX (1)
tOH
Chip Enable High to Output Transition
Min
0
0
0
0
ns
tEHQZ (1)
tHZ
Chip Enable High to Output Hi-Z
Max
20
20
25
25
ns
tELQV (2)
tCE
Chip Enable Low to Output Valid
Max
70(3)
85
90
100
ns
tELQX (1)
tLZ
Chip Enable Low to Output Transition
Min
0
0
0
0
ns
tGHQX (1)
tOH
Output Enable High to Output Transition
Min
0
0
0
0
ns
tGHQZ (1)
tDF
Output Enable High to Output Hi-Z
Max
20
20
25
25
ns
tGLQV (2)
tOE
Output Enable Low to Output Valid
Max
20
20
30
30
ns
tGLQX (1)
tOLZ
Output Enable Low to Output Transition
Min
0
0
0
0
ns
Note: 1. Sampled only, not 100% tested.
2. G may be delayed by up to t ELQV - tGLQV after the falling edge of E without increasing tELQV .
3. To be characterized.
24/55
VPP
WP
DQ0-DQ15
W
G
E
A0-A21
tWLWH
COMMAND
SET-UP COMMAND
tDVWH
tELWL
tWHDX
tWHWL
tWHEH
CMD or DATA
CONFIRM COMMAND
OR DATA INPUT
tVPHWH
tWPHWH
tAVWH
VALID
tAVAV
tWHEL
tWHGL
tWHAX
PROGRAM OR ERASE
AI04388
tQVVPL
tQVWPL
STATUS REGISTER
STATUS REGISTER
READ
1st POLLING
tELQV
M28W640ECT, M28W640ECB
Figure 10. Write AC Waveforms, Write Enable Controlled
25/55
M28W640ECT, M28W640ECB
Table 17. Write AC Characteristics, Write Enable Controlled
M28W640EC
Symbol
Alt
Parameter
Unit
70
85
90
10
tAVAV
tWC
Write Cycle Time
Min
70(3)
85
90
100
ns
tAVWH
tAS
Address Valid to Write Enable High
Min
45
45
50
50
ns
tDVWH
tDS
Data Valid to Write Enable High
Min
45
45
50
50
ns
tELWL
tCS
Chip Enable Low to Write Enable Low
Min
0
0
0
0
ns
Chip Enable Low to Output Valid
Min
70(3)
85
90
100
ns
Output Valid to VPP Low
Min
0
0
0
0
ns
Output Valid to Write Protect Low
Min
0
0
0
0
ns
tELQV
tQVVPL (1,2)
tQVWPL
tVPHWH (1)
tVPS
VPP High to Write Enable High
Min
200
200
200
200
ns
tWHAX
tAH
Write Enable High to Address Transition
Min
0
0
0
0
ns
tWHDX
tDH
Write Enable High to Data Transition
Min
0
0
0
0
ns
tWHEH
tCH
Write Enable High to Chip Enable High
Min
0
0
0
0
ns
tWHEL
Write Enable High to Chip Enable Low
Min
25
25
30
30
ns
tWHGL
Write Enable High to Output Enable Low
Min
20
20
30
30
ns
tWHWL
tWPH
Write Enable High to Write Enable Low
Min
25
25
30
30
ns
tWLWH
tWP
Write Enable Low to Write Enable High
Min
45
45
50
50
ns
Write Protect High to Write Enable High
Min
45
45
50
50
ns
tWPHWH
Note: 1. Sampled only, not 100% tested.
2. Applicable if VPP is seen as a logic input (V PP < 3.6V).
3. To be characterized.
26/55
VPP
WP
DQ0-DQ15
E
G
W
A0-A21
tELEH
COMMAND
POWER-UP AND
SET-UP COMMAND
tDVEH
tWLEL
tEHDX
tEHEL
tEHWH
CMD or DATA
CONFIRM COMMAND
OR DATA INPUT
tVPHEH
tWPHEH
tAVEH
VALID
tAVAV
tEHGL
tEHAX
PROGRAM OR ERASE
AI04389
tQVVPL
tQVWPL
STATUS REGISTER
STATUS REGISTER
READ
1st POLLING
tELQV
M28W640ECT, M28W640ECB
Figure 11. Write AC Waveforms, Chip Enable Controlled
27/55
M28W640ECT, M28W640ECB
Table 18. Write AC Characteristics, Chip Enable Controlled
M28W640EC
Symbol
Alt
Parameter
Unit
70
85
90
10
tAVAV
tWC
Write Cycle Time
Min
70(3)
85
90
100
ns
tAVEH
tAS
Address Valid to Chip Enable High
Min
45
45
50
50
ns
tDVEH
tDS
Data Valid to Chip Enable High
Min
45
45
50
50
ns
tEHAX
tAH
Chip Enable High to Address
Transition
Min
0
0
0
0
ns
tEHDX
tDH
Chip Enable High to Data Transition
Min
0
0
0
0
ns
tEHEL
tCPH
Chip Enable High to Chip Enable Low
Min
25
25
30
30
ns
Chip Enable High to Output Enable
Low
Min
25
25
30
30
ns
tEHGL
tEHWH
tWH
Chip Enable High to Write Enable High
Min
0
0
0
0
ns
tELEH
tCP
Chip Enable Low to Chip Enable High
Min
45
45
50
50
ns
Chip Enable Low to Output Valid
Min
70(3)
85
90
100
ns
Output Valid to VPP Low
Min
0
0
0
0
ns
Data Valid to Write Protect Low
Min
0
0
0
0
ns
tELQV
tQVVPL (1,2)
tQVWPL
tVPHEH (1)
tVPS
VPP High to Chip Enable High
Min
200
200
200
200
ns
tWLEL
tCS
Write Enable Low to Chip Enable Low
Min
0
0
0
0
ns
Write Protect High to Chip Enable High
Min
45
45
50
50
ns
tWPHEH
Note: 1. Sampled only, not 100% tested.
2. Applicable if VPP is seen as a logic input (V PP < 3.6V).
3. To be characterized.
28/55
M28W640ECT, M28W640ECB
Figure 12. Power-Up and Reset AC Waveforms
W, E, G
tPHWL
tPHEL
tPHGL
tPHWL
tPHEL
tPHGL
RP
tVDHPH
tPLPH
VDD, VDDQ
Power-Up
Reset
AI03537b
Table 19. Power-Up and Reset AC Characteristics
M28W640EC
Symbol
tPHWL
tPHEL
tPHGL
Parameter
Reset High to Write Enable Low, Chip
Enable Low, Output Enable Low
Test Condition
Unit
70
85
90
10
During Program
and Erase
Min
50
50
50
50
µs
others
Min
30
30
30
30
ns
tPLPH(1,2)
Reset Low to Reset High
Min
100
100
100
100
ns
tVDHPH(3)
Supply Voltages High to Reset High
Min
50
50
50
50
µs
Note: 1. The device Reset is possible but not guaranteed if tPLPH < 100ns.
2. Sampled only, not 100% tested.
3. It is important to assert RP in order to allow proper CPU initialization during power up or reset.
29/55
M28W640ECT, M28W640ECB
PACKAGE MECHANICAL
Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline
A2
1
N
e
E
B
N/2
D1
A
CP
D
DIE
C
A1
TSOP-a
α
L
Note: Drawing is not to scale.
Table 20. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Typ
Min
1.20
Max
0.0472
A1
0.05
0.15
0.0020
0.0059
A2
0.95
1.05
0.0374
0.0413
B
0.17
0.27
0.0067
0.0106
C
0.10
0.21
0.0039
0.0083
D
19.80
20.20
0.7795
0.7953
D1
18.30
18.50
0.7205
0.7283
E
11.90
12.10
0.4685
0.4764
–
–
–
–
L
0.50
0.70
0.0197
0.0279
α
0°
5°
0°
5°
N
48
e
CP
30/55
Max
0.50
0.0197
48
0.10
0.0039
M28W640ECT, M28W640ECB
Figure 14. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline
D
D1
SD
FD
FE
SE
E
E1
e
BALL "A1"
ddd
e
b
A2
A
A1
BGA-Z34
Note: Drawing is not to scale.
Table 21. TFBGA48 6.39x10.5mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.200
A1
0.0472
0.260
A2
Max
0.0102
1.000
0.0394
b
0.400
0.350
0.450
0.0157
0.0138
0.0177
D
6.390
6.290
6.490
0.2516
0.2476
0.2555
D1
5.250
–
–
0.2067
–
–
ddd
0.100
0.0039
E
10.500
10.400
10.600
0.4134
0.4094
0.4173
E1
3.750
–
–
0.1476
–
–
e
0.750
–
–
0.0295
–
–
FD
0.570
–
–
0.0224
–
–
FE
3.375
–
–
0.1329
–
–
SD
0.375
–
–
0.0148
–
–
SE
0.375
–
–
0.0148
–
–
31/55
M28W640ECT, M28W640ECB
Figure 15. TFBGA48 Daisy Chain - Package Connections (Top view through package)
1
2
3
4
5
6
7
8
A
B
C
D
E
F
AI04390
Figure 16. TFBGA48 Daisy Chain - PCB Connections proposal (Top view through package)
1
2
3
4
5
6
7
8
START
POINT
A
B
C
D
E
END
POINT
F
AI04391
32/55
M28W640ECT, M28W640ECB
PART NUMBERING
Table 22. Ordering Information Scheme
Example:
M28W640ECT
90
N
6
T
Device Type
M28
Operating Voltage
W = VDD = 2.7V to 3.6V; VDDQ = 1.65V to 3.6V
Device Function
640EC = 64 Mbit (4 Mb x16), Boot Block
Array Matrix
T = Top Boot
B = Bottom Boot
Speed
70 = 70 ns (to be characterized)
85 = 85 ns
90 = 90 ns
10 = 100 ns
Package
N = TSOP48: 12 x 20 mm
ZB = TFBGA48: 6.39 x 10.5mm, 0.75 mm pitch
Temperature Range
1 = 0 to 70 °C
6 = –40 to 85 °C
Option
Blank = Standard Packing
T = Tape & Reel Packing
E = Lead-Free Package, Standard Packing
F = Lead-Free Package, Tape & Reel Packing
33/55
M28W640ECT, M28W640ECB
Table 23. Daisy Chain Ordering Scheme
Example:
M28W640EC
-ZB T
Device Type
M28W640EC
Daisy Chain
-ZB = TFBGA48: 6.39 x 10.5mm, 0.75 mm pitch
Option
Blank = Standard Packing
T = Tape & Reel Packing
E = Lead-Free Package, Standard Packing
F = Lead-Free Package, Tape & Reel Packing
Note:Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available
options (Speed, Package, etc...) or for further information on any aspect of this device, please contact
the ST Sales Office nearest to you.
34/55
M28W640ECT, M28W640ECB
APPENDIX A. BLOCK ADDRESS TABLES
Table 24. Top Boot Block Addresses,
M28W640ECT
#
Size
(KWord)
40
32
2F0000-2F7FFF
41
32
2E8000-2EFFFF
Address Range
42
32
2E0000-2E7FFF
32
2D8000-2DFFFF
0
4
3FF000-3FFFFF
43
1
4
3FE000-3FEFFF
44
32
2D0000-2D7FFF
45
32
2C8000-2CFFFF
46
32
2C0000-2C7FFF
3FB000-3FBFFF
47
32
2B8000-2BFFFF
48
32
2B0000-2B7FFF
49
32
2A8000-2AFFFF
32
2A0000-2A7FFF
2
4
3FD000-3FDFFF
3
4
3FC000-3FCFFF
4
4
5
4
3FA000-3FAFFF
6
4
3F9000-3F9FFF
7
4
3F8000-3F8FFF
50
8
32
3F0000-3F7FFF
51
32
298000-29FFFF
52
32
290000-297FFF
53
32
288000-28FFFF
32
280000-287FFF
278000-27FFFF
9
32
3E8000-3EFFFF
10
32
3E0000-3E7FFF
11
32
3D8000-3DFFFF
54
12
32
3D0000-3D7FFF
55
32
56
32
270000-277FFF
32
268000-26FFFF
13
32
3C8000-3CFFFF
14
32
3C0000-3C7FFF
57
15
32
3B8000-3BFFFF
58
32
260000-267FFF
32
258000-25FFFF
16
32
3B0000-3B7FFF
59
17
32
3A8000-3AFFFF
60
32
250000-257FFF
32
248000-24FFFF
18
32
3A0000-3A7FFF
61
19
32
398000-39FFFF
62
32
240000-247FFF
63
32
238000-23FFFF
20
32
390000-397FFF
21
32
388000-38FFFF
64
32
230000-237FFF
22
32
380000-387FFF
65
32
228000-22FFFF
66
32
220000-227FFF
23
32
378000-37FFFF
24
32
370000-377FFF
67
32
218000-21FFFF
32
210000-217FFF
25
32
368000-36FFFF
68
26
32
360000-367FFF
69
32
208000-20FFFF
70
32
200000-207FFF
1F8000-1FFFFF
27
32
358000-35FFFF
28
32
350000-357FFF
71
32
348000-34FFFF
72
32
1F0000-1F7FFF
73
32
1E8000-1EFFFF
29
32
30
32
340000-347FFF
31
32
338000-33FFFF
74
32
1E0000-1E7FFF
32
1D8000-1DFFFF
32
32
330000-337FFF
75
33
32
328000-32FFFF
76
32
1D0000-1D7FFF
32
1C8000-1CFFFF
34
32
320000-327FFF
77
35
32
318000-31FFFF
78
32
1C0000-1C7FFF
310000-317FFF
79
32
1B8000-1BFFFF
80
32
1B0000-1B7FFF
36
32
37
32
308000-30FFFF
38
32
300000-307FFF
81
32
1A8000-1AFFFF
2F8000-2FFFFF
82
32
1A0000-1A7FFF
83
32
198000-19FFFF
39
32
35/55
M28W640ECT, M28W640ECB
84
32
190000-197FFF
130
32
020000-027FFF
85
32
188000-18FFFF
131
32
018000-01FFFF
86
32
180000-187FFF
132
32
010000-017FFF
87
32
178000-17FFFF
133
32
008000-00FFFF
88
32
170000-177FFF
134
32
000000-007FFF
89
32
168000-16FFFF
90
32
160000-167FFF
91
32
158000-15FFFF
92
32
150000-157FFF
93
32
148000-14FFFF
94
32
140000-147FFF
95
32
138000-13FFFF
96
32
130000-137FFF
97
32
128000-12FFFF
98
32
120000-127FFF
99
32
118000-11FFFF
100
32
110000-117FFF
101
32
108000-10FFFF
102
32
100000-107FFF
103
32
0F8000-0FFFFF
104
32
0F0000-0F7FFF
105
32
0E8000-0EFFFF
106
32
0E0000-0E7FFF
107
32
0D8000-0DFFFF
108
32
0D0000-0D7FFF
109
32
0C8000-0CFFFF
110
32
0C0000-0C7FFF
111
32
0B8000-0BFFFF
112
32
0B0000-0B7FFF
113
32
0A8000-0AFFFF
114
32
0A0000-0A7FFF
115
32
098000-09FFFF
116
32
090000-097FFF
117
32
088000-08FFFF
118
32
080000-087FFF
119
32
078000-07FFFF
120
32
070000-077FFF
121
32
068000-06FFFF
122
32
060000-067FFF
123
32
058000-05FFFF
124
32
050000-057FFF
125
32
048000-04FFFF
126
32
040000-047FFF
127
32
038000-03FFFF
128
32
030000-037FFF
129
32
028000-02FFFF
36/55
M28W640ECT, M28W640ECB
Table 25. Bottom Boot Block Addresses,
M28W640ECB
#
Size
(KWord)
Address Range
134
32
3F8000-3FFFFF
133
32
3F0000-3F7FFF
132
32
3E8000-3EFFFF
131
32
3E0000-3E7FFF
130
32
3D8000-3DFFFF
129
32
3D0000-3D7FFF
128
32
3C8000-3CFFFF
127
32
3C0000-3C7FFF
126
32
3B8000-3BFFFF
125
32
3B0000-3B7FFF
124
32
3A8000-3AFFFF
123
32
3A0000-3A7FFF
122
32
398000-39FFFF
121
32
390000-397FFF
120
32
388000-38FFFF
119
32
380000-387FFF
118
32
378000-37FFFF
117
32
370000-377FFF
116
32
368000-36FFFF
115
32
360000-367FFF
114
32
358000-35FFFF
113
32
350000-357FFF
112
32
348000-34FFFF
111
32
340000-347FFF
110
32
338000-33FFFF
109
32
330000-337FFF
108
32
328000-32FFFF
107
32
320000-327FFF
106
32
318000-31FFFF
105
32
310000-317FFF
104
32
308000-30FFFF
103
32
300000-307FFF
102
32
2F8000-2FFFFF
101
32
2F0000-2F7FFF
100
32
2E8000-2EFFFF
99
32
2E0000-2E7FFF
98
32
2D8000-2DFFFF
97
32
2D0000-2D7FFF
96
32
2C8000-2CFFFF
95
32
2C0000-2C7FFF
94
32
2B8000-2BFFFF
93
32
2B0000-2B7FFF
92
32
2A8000-2AFFFF
91
32
2A0000-2A7FFF
90
32
298000-29FFFF
89
32
290000-297FFF
88
32
288000-28FFFF
87
32
280000-287FFF
86
32
278000-27FFFF
85
32
270000-277FFF
84
32
268000-26FFFF
83
32
260000-267FFF
82
32
258000-25FFFF
81
32
250000-257FFF
80
32
248000-24FFFF
79
32
240000-247FFF
78
32
238000-23FFFF
77
32
230000-237FFF
76
32
228000-22FFFF
75
32
220000-227FFF
74
32
218000-21FFFF
73
32
210000-217FFF
72
32
208000-20FFFF
71
32
200000-207FFF
70
32
1F8000-1FFFFF
69
32
1F0000-1F7FFF
68
32
1E8000-1EFFFF
67
32
1E0000-1E7FFF
66
32
1D8000-1DFFFF
65
32
1D0000-1D7FFF
64
32
1C8000-1CFFFF
63
32
1C0000-1C7FFF
62
32
1B8000-1BFFFF
61
32
1B0000-1B7FFF
60
32
1A8000-1AFFFF
59
32
1A0000-1A7FFF
58
32
198000-19FFFF
57
32
190000-197FFF
56
32
188000-18FFFF
55
32
180000-187FFF
54
32
178000-17FFFF
53
32
170000-177FFF
52
32
168000-16FFFF
51
32
160000-167FFF
50
32
158000-15FFFF
49
32
150000-157FFF
48
32
148000-14FFFF
47
32
140000-147FFF
37/55
M28W640ECT, M28W640ECB
46
32
138000-13FFFF
45
32
130000-137FFF
44
32
128000-12FFFF
43
32
120000-127FFF
42
32
118000-11FFFF
41
32
110000-117FFF
40
32
108000-10FFFF
39
32
100000-107FFF
38
32
0F8000-0FFFFF
37
32
0F0000-0F7FFF
36
32
0E8000-0EFFFF
35
32
0E0000-0E7FFF
34
32
0D8000-0DFFFF
33
32
0D0000-0D7FFF
32
32
0C8000-0CFFFF
31
32
0C0000-0C7FFF
30
32
0B8000-0BFFFF
29
32
0B0000-0B7FFF
28
32
0A8000-0AFFFF
27
32
0A0000-0A7FFF
26
32
098000-09FFFF
25
32
090000-097FFF
24
32
088000-08FFFF
23
32
080000-087FFF
22
32
078000-07FFFF
21
32
070000-077FFF
20
32
068000-06FFFF
19
32
060000-067FFF
18
32
058000-05FFFF
17
32
050000-057FFF
16
32
048000-04FFFF
15
32
040000-047FFF
14
32
038000-03FFFF
13
32
030000-037FFF
12
32
028000-02FFFF
11
32
020000-027FFF
10
32
018000-01FFFF
9
32
010000-017FFF
8
32
008000-00FFFF
7
4
007000-007FFF
6
4
006000-006FFF
5
4
005000-005FFF
4
4
004000-004FFF
3
4
003000-003FFF
2
4
002000-002FFF
1
4
001000-001FFF
38/55
0
4
000000-000FFF
M28W640ECT, M28W640ECB
APPENDIX B. COMMON FLASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC approved, standardized data structure that can be
read from the Flash memory device. It allows a
system software to query the device to determine
various electrical and timing parameters, density
information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when
necessary.
When the CFI Query Command (RCFI) is issued
the device enters CFI Query mode and the data
structure is read from the memory. Tables 26, 27,
28, 29, 30 and 31 show the addresses used to retrieve the data.
The CFI data structure also contains a security
area where a 64 bit unique security number is written (see Table 31, Security Code area). This area
can be accessed only in Read mode by the final
user. It is impossible to change the security number after it has been written by ST. Issue a Read
command to return to Read mode.
Table 26. Query Structure Overview
Offset
Sub-section Name
Description
00h
Reserved
Reserved for algorithm-specific information
10h
CFI Query Identification String
Command set ID and algorithm data offset
1Bh
System Interface Information
Device timing & voltage information
27h
Device Geometry Definition
Flash device layout
P
Primary Algorithm-specific Extended Query table
Additional information specific to the Primary
Algorithm (optional)
A
Alternate Algorithm-specific Extended Query table
Additional information specific to the Alternate
Algorithm (optional)
Note: Query data are always presented on the lowest order data outputs.
Table 27. CFI Query Identification String
Offset
Data
Description
00h
0020h
Manufacturer Code
01h
8848h
8849h
Device Code
02h-0Fh
reserved
10h
0051h
11h
0052h
12h
0059h
13h
0003h
14h
0000h
15h
0035h
16h
0000h
17h
0000h
18h
0000h
19h
0000h
1Ah
0000h
Value
ST
Top
Bottom
Reserved
"Q"
Query Unique ASCII String "QRY"
"R"
"Y"
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code
defining a specific algorithm
Address for Primary Algorithm extended Query table (see Table 29)
Intel
compatible
P = 35h
Alternate Vendor Command Set and Control Interface ID Code second vendor specified algorithm supported (0000h means none exists)
NA
Address for Alternate Algorithm extended Query table
(0000h means none exists)
NA
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
39/55
M28W640ECT, M28W640ECB
Table 28. CFI Query System Interface Information
Offset
Data
1Bh
0027h
VDD Logic Supply Minimum Program/Erase or Write voltage
bit 7 to 4
BCD value in volts
bit 3 to 0
BCD value in 100 mV
2.7V
1Ch
0036h
VDD Logic Supply Maximum Program/Erase or Write voltage
bit 7 to 4
BCD value in volts
bit 3 to 0
BCD value in 100 mV
3.6V
1Dh
00B4h
VPP [Programming] Supply Minimum Program/Erase voltage
bit 7 to 4
HEX value in volts
bit 3 to 0
BCD value in 100 mV
11.4V
1Eh
00C6h
VPP [Programming] Supply Maximum Program/Erase voltage
bit 7 to 4
HEX value in volts
bit 3 to 0
BCD value in 100 mV
12.6V
1Fh
0004h
Typical time-out per single word program = 2n µs
16µs
20h
0004h
Typical time-out for Double/Quadruple Word Program = 2n µs
16µs
21h
000Ah
Typical time-out per individual block erase = 2n ms
1s
22h
0000h
Typical time-out for full chip erase = 2n ms
NA
23h
0005h
Maximum time-out for Word program = 2n times typical
512µs
24h
0005h
Maximum time-out for Double/Quadruple Word Program = 2n times typical
512µs
25h
0003h
Maximum time-out per individual block erase = 2n times typical
8s
26h
0000h
Maximum time-out for chip erase = 2n times typical
NA
40/55
Description
Value
M28W640ECT, M28W640ECB
Table 29. Device Geometry Definition
Data
27h
0017h
Device Size = 2n in number of bytes
28h
29h
0001h
0000h
Flash Device Interface Code description
2Ah
2Bh
0003h
0000h
Maximum number of bytes in multi-byte program or page = 2n
8
2Ch
0002h
Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous
Erase Blocks of the same size.
2
2Dh
2Eh
007Eh
0000h
Region 1 Information
Number of identical-size erase block = 007Eh+1
2Fh
30h
0000h
0001h
Region 1 Information
Block size in Region 1 = 0100h * 256 byte
31h
32h
0007h
0000h
Region 2 Information
Number of identical-size erase block = 0007h+1
33h
34h
0020h
0000h
Region 2 Information
Block size in Region 2 = 0020h * 256 byte
2Dh
2Eh
0007h
0000h
Region 1 Information
Number of identical-size erase block = 0007h+1
2Fh
30h
0020h
0000h
Region 1 Information
Block size in Region 1 = 0020h * 256 byte
31h
32h
007Eh
0000h
Region 2 Information
Number of identical-size erase block = 007Eh=1
33h
34h
0000h
0001h
Region 2 Information
Block size in Region 2 = 0100h * 256 byte
M28W640ECB
M28W640ECT
Offset Word
Mode
Description
Value
8 MByte
x16
Async.
127
64 KByte
8
8 KByte
8
8 KByte
127
64 KByte
41/55
M28W640ECT, M28W640ECB
Table 30. Primary Algorithm-Specific Extended Query Table
Offset
P = 35h (1)
Data
(P+0)h = 35h
0050h
(P+1)h = 36h
0052h
(P+2)h = 37h
0049h
(P+3)h = 38h
0031h
Major version number, ASCII
"1"
(P+4)h = 39h
0030h
Minor version number, ASCII
"0"
(P+5)h = 3Ah
0066h
(P+6)h = 3Bh
0000h
(P+7)h = 3Ch
0000h
(P+8)h = 3Dh
0000h
Extended Query table contents for Primary Algorithm. Address (P+5)h
contains less significant byte.
bit 0
Chip Erase supported
(1 = Yes, 0 = No)
bit 1
Suspend Erase supported
(1 = Yes, 0 = No)
bit 2
Suspend Program supported
(1 = Yes, 0 = No)
bit 3
Legacy Lock/Unlock supported
(1 = Yes, 0 = No)
bit 4
Queued Erase supported
(1 = Yes, 0 = No)
bit 5
Instant individual block locking supported (1 = Yes, 0 = No)
bit 6
Protection bits supported
(1 = Yes, 0 = No)
bit 7
Page mode read supported
(1 = Yes, 0 = No)
bit 8
Synchronous read supported
(1 = Yes, 0 = No)
bit 31 to 9 Reserved; undefined bits are ‘0’
No
Yes
Yes
No
No
Yes
Yes
No
No
(P+9)h = 3Eh
0001h
Supported Functions after Suspend
Read Array, Read Status Register and CFI Query are always supported
during Erase or Program operation
bit 0
Program supported after Erase Suspend (1 = Yes, 0 = No)
bit 7 to 1
Reserved; undefined bits are ‘0’
Yes
(P+A)h = 3Fh
0003h
(P+B)h = 40h
0000h
Description
Value
"P"
Primary Algorithm extended Query table unique ASCII string “PRI”
"R"
"I"
Block Lock Status
Defines which bits in the Block Status Register section of the Query are
implemented.
Address (P+A)h contains less significant byte
bit 0 Block Lock Status Register Lock/Unlock bit active (1 = Yes, 0 = No)
bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No)
bit 15 to 2 Reserved for future use; undefined bits are ‘0’
Yes
Yes
(P+C)h = 41h
0030h
VDD Logic Supply Optimum Program/Erase voltage (highest performance)
bit 7 to 4
HEX value in volts
bit 3 to 0
BCD value in 100 mV
3V
(P+D)h = 42h
00C0h
VPP Supply Optimum Program/Erase voltage
bit 7 to 4
HEX value in volts
bit 3 to 0
BCD value in 100 mV
12V
(P+E)h = 43h
0001h
Number of Protection register fields in JEDEC ID space.
"00h," indicates that 256 protection bytes are available
01
(P+F)h = 44h
0080h
80h
(P+10)h = 45h
0000h
(P+11)h = 46h
0003h
(P+12)h = 47h
0004h
Protection Field 1: Protection Description
This field describes user-available One Time Programmable (OTP)
Protection register bytes. Some are pre-programmed with device unique
serial numbers. Others are user programmable. Bits 0–15 point to the
Protection register Lock byte, the section’s first byte.
The following bytes are factory pre-programmed and user-programmable.
bit 0 to 7
Lock/bytes JEDEC-plane physical low address
bit 8 to 15
Lock/bytes JEDEC-plane physical high address
bit 16 to 23 "n" such that 2n = factory pre-programmed bytes
bit 24 to 31 "n" such that 2n = user programmable bytes
(P+13)h = 48h
Reserved
Note: 1. See Table 27, offset 15 for P pointer definition.
42/55
00h
8 Byte
16 Byte
M28W640ECT, M28W640ECB
Table 31. Security Code Area
Offset
Data
80h
00XX
81h
XXXX
82h
XXXX
83h
XXXX
84h
XXXX
85h
XXXX
86h
XXXX
87h
XXXX
88h
XXXX
89h
XXXX
8Ah
XXXX
8Bh
XXXX
8Ch
XXXX
Description
Protection Register Lock
64 bits: unique device number
128 bits: User Programmable OTP
43/55
M28W640ECT, M28W640ECB
APPENDIX C. FLOWCHARTS AND PSEUDO CODES
Figure 17. Program Flowchart and Pseudo Code
Start
program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0x40) ;
/*or writeToFlash (any_address, 0x10) ; */
Write 40h or 10h
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
Write Address
& Data
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03538b
Note: 1. Status check of b1 (Protected Block), b3 (V PP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
44/55
M28W640ECT, M28W640ECB
Figure 18. Double Word Program Flowchart and Pseudo Code
Start
Write 30h
double_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2)
{
writeToFlash (any_address, 0x30) ;
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
/*Memory enters read status state after
the Program command*/
Write Address 1
& Data 1 (3)
Write Address 2
& Data 2 (3)
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
YES
b4 = 0
YES
b1 = 0
NO
Program to Protected
Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03539b
Note: 1. Status check of b1 (Protected Block), b3 (V PP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.
45/55
M28W640ECT, M28W640ECB
Figure 19. Quadruple Word Program Flowchart and Pseudo Code
Start
quadruple_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2,
addressToProgram3, dataToProgram3,
addressToProgram4, dataToProgram4)
{
writeToFlash (any_address, 0x56) ;
Write 56h
Write Address 1
& Data 1 (3)
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
Write Address 2
& Data 2 (3)
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
writeToFlash (addressToProgram3, dataToProgram3) ;
/*see note (3) */
Write Address 3
& Data 3 (3)
writeToFlash (addressToProgram4, dataToProgram4) ;
/*see note (3) */
Write Address 4
& Data 4 (3)
/*Memory enters read status state after
the Program command*/
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
YES
b4 = 0
YES
b1 = 0
NO
Program to Protected
Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI06233
Note: 1. Status check of b1 (Protected Block), b3 (V PP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.
46/55
M28W640ECT, M28W640ECB
Figure 20. Program Suspend & Resume Flowchart and Pseudo Code
Start
program_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
Write B0h
writeToFlash (any_address, 0x70) ;
/* read status register to check if
program has already completed */
Write 70h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b2 = 1
NO
Program Complete
YES
Write FFh
}
Read data from
another address
Write D0h
if (status_register.b2==0) /*program completed */
{ writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
else
{ writeToFlash (any_address, 0xFF) ;
read_data ( ); /*read data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume program*/
}
Write FFh
}
Program Continues
Read Data
AI03540b
47/55
M28W640ECT, M28W640ECB
Figure 21. Erase Flowchart and Pseudo Code
Start
erase_command ( blockToErase ) {
writeToFlash (any_address, 0x20) ;
Write 20h
writeToFlash (blockToErase, 0xD0) ;
/* only A12-A20 are significannt */
/* Memory enters read status state after
the Erase Command */
Write Block
Address & D0h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1)
YES
Command
Sequence Error (1)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
YES
b4, b5 = 1
if ( (status_register.b4==1) && (status_register.b5==1) )
/* command sequence error */
error_handler ( ) ;
NO
b5 = 0
NO
Erase Error (1)
if ( (status_register.b5==1) )
/* erase error */
error_handler ( ) ;
YES
b1 = 0
NO
Erase to Protected
Block Error (1)
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03541b
Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.
48/55
M28W640ECT, M28W640ECB
Figure 22. Erase Suspend & Resume Flowchart and Pseudo Code
Start
erase_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
Write B0h
writeToFlash (any_address, 0x70) ;
/* read status register to check if
erase has already completed */
Write 70h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b6 = 1
NO
Erase Complete
if (status_register.b6==0) /*erase completed */
{ writeToFlash (any_address, 0xFF) ;
YES
read_data ( ) ;
/*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
Write FFh
Read data from
another block
or
Program/Protection Program
or
Block Protect/Unprotect/Lock
}
else
Write D0h
Write FFh
Erase Continues
Read Data
{ writeToFlash (any_address, 0xFF) ;
read_program_data ( );
/*read or program data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume erase*/
}
}
AI03542b
49/55
M28W640ECT, M28W640ECB
Figure 23. Locking Operations Flowchart and Pseudo Code
Start
locking_operation_command (address, lock_operation) {
writeToFlash (any_address, 0x60) ; /*configuration setup*/
Write 60h
if (lock_operation==LOCK) /*to protect the block*/
writeToFlash (address, 0x01) ;
else if (lock_operation==UNLOCK) /*to unprotect the block*/
writeToFlash (address, 0xD0) ;
else if (lock_operation==LOCK-DOWN) /*to lock the block*/
writeToFlash (address, 0x2F) ;
Write
01h, D0h or 2Fh
writeToFlash (any_address, 0x90) ;
Write 90h
Read Block
Lock States
Locking
change
confirmed?
if (readFlash (address) ! = locking_state_expected)
error_handler () ;
/*Check the locking state (see Read Block Signature table )*/
NO
YES
writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/
Write FFh
}
End
AI04364
50/55
M28W640ECT, M28W640ECB
Figure 24. Protection Register Program Flowchart and Pseudo Code
Start
protection_register_program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0xC0) ;
Write C0h
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
Write Address
& Data
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI04381
Note: 1. Status check of b1 (Protected Block), b3 (V PP Invalid) and b4 (Program Error) can be made after each program operation or after
a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.
51/55
M28W640ECT, M28W640ECB
APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE
Table 32. Write State Machine Current/Next, sheet 1 of 2.
Current
State
SR
bit 7
Data
When
Read
Read Array
“1”
Array
Command Input (and Next State)
Read
Array
(FFh)
Program
Setup
(10/40h)
Erase
Confirm
(D0h)
Prog/Ers
Resume
(D0h)
Read
Status
(70h)
Clear
Status
(50h)
Read Array
Read Sts.
Read Array
Read Array
Erase
Setup
Read Array
Read
Status
Read Array
Electronic
Signature
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
“1”
CFI
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Lock Setup
“1”
Status
Lock Cmd
Error
“1”
Status
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Lock
(complete)
“1”
Status
Read Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read Array
Prot. Prog.
Setup
“1”
Status
Protection Register Program
Prot. Prog.
(continue)
“0”
Status
Protection Register Program continue
Prot. Prog.
(complete)
“1”
Status
Read
Status
Read Array
Prog. Setup
“1”
Status
Program
(continue)
“0”
Status
Prog. Sus
Status
“1”
Status
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read Array
“1”
Array
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read
Elect.Sg.
“1”
Electronic
Signature
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Prog. Sus
Read CFI
“1”
CFI
Prog. Sus
Read Array
Program Suspend to
Read Array
Program
(continue)
Prog. Sus
Read Array
Program
(continue)
Prog. Sus
Read Sts
Prog. Sus
Read Array
Program
(complete)
“1”
Status
Read Array
Read
Status
Read Array
Erase
Setup
“1”
Status
Erase
Cmd.Error
“1”
Status
Erase
(continue)
“0”
Status
Erase Sus
Read Sts
“1”
Status
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase Sus
Read Array
“1”
Array
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase Sus
Read
Elect.Sg.
“1”
Electronic
Signature
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase Sus
Read CFI
“1”
CFI
Erase Sus
Read Array
Program
Setup
Erase Sus
Read Array
Erase
(continue)
Erase Sus
Read Array
Erase
(continue)
Erase Sus Erase Sus
Read Sts Read Array
Erase
(complete)
“1”
Status
Read Array
Program
Setup
Erase
Setup
“1”
Status
Read
Elect.Sg.
“1”
Read CFI
Query
Ers. Setup
Prog/Ers
Suspend
(B0h)
Program
Setup
Read
Status
Read Array Prog.Setup
Erase
Setup
(20h)
Lock
(complete)
Lock Command Error
Read Array
Program
Setup
Erase
Setup
Lock Cmd
Error
Lock
(complete)
Read Array
Lock Command Error
Program
Prog. Sus
Read Sts
Program (continue)
Program
Setup
Erase
Setup
Erase Command Error
Read Array
Program
Setup
Program (continue)
Read Array
Erase
(continue)
Erase
Setup
Erase (continue)
Erase
CmdError
Erase
(continue)
Erase Command Error
Read Array
Read
Status
Erase Sus
Read Sts
Erase (continue)
Read Array
Read
Status
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program, Prot = Protection, Sus = Suspend.
52/55
Read Array
Read Array
M28W640ECT, M28W640ECB
Table 33. Write State Machine Current/Next, sheet 2 of 2.
Command Input (and Next State)
Current State
Read Elect.Sg.
(90h)
Read CFI
Query
(98h)
Lock Setup
(60h)
Prot. Prog.
Setup (C0h)
Lock Confirm
(01h)
Lock Down
Confirm (2Fh)
Read Array
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Read Array
Read Status
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Read Array
Read Elect.Sg.
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Read Array
Read CFI Query Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Read Array
Lock Setup
Lock Command Error
Lock (complete)
Lock Cmd Error
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Lock (complete)
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Prot. Prog.
Setup
Protection Register Program
Prot. Prog.
(continue)
Protection Register Program (continue)
Prot. Prog.
(complete)
Read Elect.Sg. Read CFI Query
Unlock
Confirm
(D0h)
Lock Setup
Prot. Prog.
Setup
Prog. Setup
Program
Program
(continue)
Program (continue)
Read Array
Read Array
Read Array
Prog. Suspend
Read Status
Prog. Suspend Prog. Suspend
Read Elect.Sg. Read CFI Query
Program Suspend Read Array
Program
(continue)
Prog. Suspend
Read Array
Prog. Suspend Prog. Suspend
Read Elect.Sg. Read CFI Query
Program Suspend Read Array
Program
(continue)
Prog. Suspend
Read Elect.Sg.
Prog. Suspend Prog. Suspend
Read Elect.Sg. Read CFI Query
Program Suspend Read Array
Program
(continue)
Prog. Suspend
Read CFI
Prog. Suspend Prog. Suspend
Read Elect.Sg. Read CFI Query
Program Suspend Read Array
Program
(continue)
Program
(complete)
Read Elect.Sg.
Read CFIQuery
Erase Setup
Erase
Cmd.Error
Lock Setup
Prot. Prog.
Setup
Read Array
Erase
(continue)
Erase Command Error
Read Elect.Sg. Read CFI Query
Lock Setup
Erase (continue)
Prot. Prog.
Setup
Read Array
Erase (continue)
Erase Suspend
Read Ststus
Erase Suspend Erase Suspend
Read Elect.Sg. Read CFI Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase Suspend
Read Array
Erase Suspend Erase Suspend
Read Elect.Sg. Read CFI Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase Suspend
Read Elect.Sg.
Erase Suspend Erase Suspend
Read Elect.Sg. Read CFI Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase Suspend Erase Suspend Erase Suspend
Read CFI Query Read Elect.Sg. Read CFI Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase
(complete)
Read Elect.Sg. Read CFI Query
Lock Setup
Prot. Prog.
Setup
Read Array
Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection.
53/55
M28W640ECT, M28W640ECB
REVISION HISTORY
Table 34. Document Revision History
Date
Version
17-Jun-2002
-01
First Issue
03-Oct-2002
1.1
Revision numbering modified: a minor revision will be indicated by incrementing the
digit after the dot, and a major revision, by incrementing the digit before the dot
(revision version 01 equals 1.0).
Document Revision History moved to end of document.
Minimum VDDQ voltage changed from 2.7V to 1.65V. Note removed from Figure 6,
Protection Register Memory Map. Note removed from Table 7, Read Protection
Register and Lock Register, and DQ2 value changed.
“Double Word Program Command” and “Quadruple Word Program Command”
paragraphs clarified.
Part numbers corrected in Figures 2, 3 and 5.
29-Apr-2003
1.2
Lead-Free Package options added (see Table 22, Ordering Information Scheme and
Table 23, Daisy Chain Ordering Scheme.)
54/55
Revision Details
M28W640ECT, M28W640ECB
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
 2003 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
55/55
Similar pages