AD AD8544ARZ-REEL General purpose cmos rail-to-rail amplifier Datasheet

a
FEATURES
Single-Supply Operation: 2.7 V to 5.5 V
Low Supply Current: 45 ␮A/Amplifier
Wide Bandwidth: 1 MHz
No Phase Reversal
Low Input Currents: 4 pA
Unity Gain Stable
Rail-to-Rail Input and Output
APPLICATIONS
ASIC Input or Output Amplifier
Sensor Interface
Piezo Electric Transducer Amplifier
Medical Instrumentation
Mobile Communication
Audio Output
Portable Systems
GENERAL DESCRIPTION
The AD8541/AD8542/AD8544 are single, dual, and quad railto-rail input and output single-supply amplifiers featuring very
low supply current and 1 MHz bandwidth. All are guaranteed to
operate from a 2.7 V single supply as well as a 5 V supply. These
parts provide 1 MHz bandwidth at a low current consumption
of 45 mA per amplifier.
Very low input bias currents enable the AD8541/AD8542/AD8544
to be used for integrators, photodiode amplifiers, piezo electric
sensors, and other applications with high source impedance. Supply current is only 45 mA per amplifier, ideal for battery operation.
Rail-to-rail inputs and outputs are useful to designers buffering
ASICs in single-supply systems. The AD8541/AD8542/AD8544
are optimized to maintain high gains at lower supply voltages,
making them useful for active filters and gain stages.
The AD8541/AD8542/AD8544 are specified over the extended
industrial temperature range (–40∞C to +125∞C). The AD8541
is available in 8-lead SOIC, 5-lead SC70, and 5-lead SOT-23
packages. The AD8542 is available in 8-lead SOIC, 8-lead
MSOP, and 8-lead TSSOP surface-mount packages. The AD8544
is available in 14-lead narrow SOIC and 14-lead TSSOP surfacemount packages. All MSOP, SC70, and SOT versions are available
in tape and reel only.
General-Purpose CMOS
Rail-to-Rail Amplifiers
AD8541/AD8542/AD8544
PIN CONFIGURATIONS
5-Lead SC70 and SOT-23
(KS and RT Suffixes)
OUT A 1
AD8541
5 V+
Vⴚ 2
4 ⴚIN A
+IN A 3
8-Lead SOIC
(R Suffix)
8
NC
–IN A
2
7
V+
+IN A
3
6
OUT A
4
5
NC
NC 1
V–
AD8541
NC = NO CONNECT
8-Lead SOIC, MSOP, and TSSOP
(R, RM, and RU Suffixes)
OUT A
1
–IN A
AD8542
8
V+
2
7
OUT B
+IN A
3
6
–IN B
V–
4
5
+IN B
14-Lead SOIC and TSSOP
(R and RU Suffixes)
OUT A
1
14 OUT D
–IN A
2
13 –IN D
+IN A
3
12 +IN D
V+
4
+IN B
5
–IN B
6
9
–IN C
OUT B
7
8
OUT C
AD8544
11 V–
10 +IN C
REV. D
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© 2004 Analog Devices, Inc. All rights reserved.
AD8541/AD8542/AD8544–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (V = 2.7 V, V
S
Parameter
Symbol
INPUT CHARACTERISTICS
Offset Voltage
VOS
Input Bias Current
IB
Input Offset Current
IOS
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Offset Voltage Drift
Bias Current Drift
DVOS /DT
DIB /DT
Offset Current Drift
DIOS /DT
OUTPUT CHARACTERISTICS
Output Voltage High
VOH
Output Voltage Low
VOL
Output Current
IOUT
± ISC
ZOUT
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise Density
Current Noise Density
CM
= 1.35 V, TA = 25ⴗC, unless otherwise noted.)
Conditions
Min
–40∞C £ TA £ +125∞C
VCM = 0 V to 2.7 V
–40∞C £ TA £ +125∞C
RL = 100 kW , VO = 0.5 V to 2.2 V
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +125∞C
IL = 1 mA
–40∞C £ TA £ +125∞C
IL = 1 mA
–40∞C £ TA £ +125∞C
VOUT = VS – 1 V
0
40
38
100
50
2
1
6
7
60
100
1,000
30
50
500
2.7
mV
mV
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
V/mV
V/mV
mV/∞C
fA/∞C
fA/∞C
fA/∞C
45
500
4
100
2,000
25
2.575
2.550
2.65
35
100
125
15
± 20
50
f = 200 kHz, AV = 1
65
60
SR
tS
GBP
Fo
RL = 100 kW
To 0.1% (1 V Step)
0.4
en
en
in
f = 1 kHz
f = 10 kHz
ISY
Unit
0.1
VS = 2.5 V to 6 V
–40∞C £ TA £ +125∞C
VO = 0 V
–40∞C £ TA £ +125∞C
PSRR
Max
4
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
Typ
76
38
55
75
V
V
mV
mV
mA
mA
W
dB
dB
mA
mA
0.75
5
980
63
V/ms
ms
kHz
Degrees
40
38
<0.1
nV/÷Hz
nV/÷Hz
pA/÷Hz
Specifications subject to change without notice.
–2–
REV. D
AD8541/AD8542/AD8544
ELECTRICAL CHARACTERISTICS (V = 3.0 V, V
S
Parameter
Symbol
INPUT CHARACTERISTICS
Offset Voltage
VOS
Input Bias Current
IB
Input Offset Current
IOS
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Offset Voltage Drift
Bias Current Drift
DVOS /DT
DIB /DT
Offset Current Drift
DIOS /DT
OUTPUT CHARACTERISTICS
Output Voltage High
VOH
Output Voltage Low
VOL
Output Current
IOUT
± ISC
ZOUT
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise Density
Current Noise Density
PSRR
CM
= 1.5 V, TA = 25ⴗC, unless otherwise noted.)
Conditions
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
VCM = 0 V to 3 V
–40∞C £ TA £ +125∞C
RL = 100 kW , VO = 0.5 V to 2.2 V
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +125∞C
IL = 1 mA
–40∞C £ TA £ +125∞C
IL = 1 mA
–40∞C £ TA £ +125∞C
VOUT = VS – 1 V
0
40
38
100
50
2
Unit
1
6
7
60
100
1,000
30
50
500
3
mV
mV
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
V/mV
V/mV
mV/∞C
fA/∞C
fA/∞C
fA/∞C
45
500
4
100
2,000
25
2.875
2.850
2.955
32
100
125
18
± 25
50
f = 200 kHz, AV = 1
65
60
SR
tS
GBP
Fo
RL = 100 kW
To 0.01% (1 V Step)
0.4
en
en
in
f = 1 kHz
f = 10 kHz
–3–
Max
0.1
VS = 2.5 V to 6 V
–40∞C £ TA £ +125∞C
VO = 0 V
–40∞C £ TA £ +125∞C
ISY
Typ
4
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
Specifications subject to change without notice.
REV. D
Min
76
40
60
75
V
V
mV
mV
mA
mA
W
dB
dB
mA
mA
0.8
5
980
64
V/ms
ms
kHz
Degrees
42
38
<0.1
nV/÷Hz
nV/÷Hz
pA/÷Hz
AD8541/AD8542/AD8544–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (V = 5.0 V, V
S
Parameter
Symbol
INPUT CHARACTERISTICS
Offset Voltage
VOS
Input Bias Current
IB
Input Offset Current
IOS
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Offset Voltage Drift
Bias Current Drift
DVOS /DT
DIB /DT
Offset Current Drift
DIOS /DT
OUTPUT CHARACTERISTICS
Output Voltage High
VOH
Output Voltage Low
VOL
Output Current
IOUT
± ISC
ZOUT
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Full-Power Bandwidth
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise Density
Current Noise Density
CM
= 2.5 V, TA = 25ⴗC, unless otherwise noted.)
Conditions
Min
–40∞C £ TA £ +125∞C
VCM = 0 V to 5 V
–40∞C £ TA £ +125∞C
RL = 100 kW , VO = 0.5 V to 2.2 V
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +125∞C
IL = 1 mA
–40∞C £ TA £ +125∞C
IL = 1 mA
–40∞C £ TA £ +125∞C
VOUT = VS – 1 V
0
40
38
20
10
2
1
6
7
60
100
1,000
30
50
500
5
mV
mV
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
V/mV
V/mV
mV/∞C
fA/∞C
fA/∞C
fA/∞C
48
40
4
100
2,000
25
4.9
4.875
4.965
25
100
125
30
± 60
45
f = 200 kHz, AV = 1
65
60
SR
BWP
tS
GBP
Fo
RL = 100 kW, CL = 200 pF
1% Distortion
To 0.1% (1 V Step)
0.45
en
en
in
f = 1 kHz
f = 10 kHz
ISY
Unit
0.1
VS = 2.5 V to 6 V
–40∞C £ TA £ +125∞C
VO = 0 V
–40∞C £ TA £ +125∞C
PSRR
Max
4
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
Typ
76
45
65
85
V
V
mV
mV
mA
mA
W
dB
dB
mA
mA
0.92
70
6
1,000
67
V/ms
kHz
ms
kHz
Degrees
42
38
<0.1
nV/÷Hz
nV/÷Hz
pA/÷Hz
Specifications subject to change without notice.
–4–
REV. D
AD8541/AD8542/AD8544
ABSOLUTE MAXIMUM RATINGS 1
PACKAGE INFORMATION
Supply Voltage (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to VS
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . ± 6 V
Storage Temperature Range . . . . . . . . . . . . –65∞C to +150∞C
Operating Temperature Range . . . . . . . . . . –40∞C to +125∞C
Junction Temperature Range . . . . . . . . . . . . –65∞C to +150∞C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300∞C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those listed in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
For supplies less than 6 V, the differential input voltage is equal to ± VS.
Package Type
␪JA*
␪JC
Unit
5-Lead SC70 (KS)
5-Lead SOT-23 (RT)
8-Lead SOIC (R)
8-Lead MSOP (RM)
8-Lead TSSOP (RU)
14-Lead SOIC (R)
14-Lead TSSOP (RU)
376
230
158
210
240
120
240
126
146
43
45
43
36
43
∞C/W
∞C/W
∞C/W
∞C/W
∞C/W
∞C/W
∞C/W
*qJA is specified for worst-case conditions, i.e., ␪JA is specified for device soldered
onto a circuit board for surface mount packages.
ORDERING GUIDE
Model
Temperature
Range
Package
Description
Package
Option
Branding
Information
AD8541AKS-R2
AD8541AKS-REEL7
AD8541AKSZ-REEL7*
AD8541AR
AD8541AR-REEL
AD8541AR-REEL7
AD8541ART-R2
AD8541ART-REEL
AD8541ART-REEL7
AD8541ARTZ-REEL*
AD8541ARTZ-REEL7*
AD8542AR
AD8542AR-REEL
AD8542AR-REEL7
AD8542ARZ*
AD8542ARZ-REEL*
AD8542ARZ-REEL7*
AD8542ARM-R2
AD8542ARM-REEL
AD8542ARU
AD8542ARU-REEL
AD8542ARUZ*
AD8542ARUZ-REEL*
AD8544AR
AD8544AR-REEL
AD8544AR-REEL7
AD8544ARZ*
AD8544ARZ-REEL*
AD8544ARZ-REEL7*
AD8544ARU
AD8544ARU-REEL
AD8544ARUZ*
AD8544ARUZ-REEL*
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
5-Lead SC70
5-Lead SC70
5-Lead SC70
8-Lead SOIC
8-Lead SOIC
8-Lead SOIC
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
8-Lead SOIC
8-Lead SOIC
8-Lead SOIC
8-Lead SOIC
8-Lead SOIC
8-Lead SOIC
8-Lead MSOP
8-Lead MSOP
8-Lead TSSOP
8-Lead TSSOP
8-Lead TSSOP
8-Lead TSSOP
14-Lead SOIC
14-Lead SOIC
14-Lead SOIC
14-Lead SOIC
14-Lead SOIC
14-Lead SOIC
14-Lead TSSOP
14-Lead TSSOP
14-Lead TSSOP
14-Lead TSSOP
KS-5
KS-5
KS-5
R-8
R-8
R-8
RT-5
RT-5
RT-5
RT-5
RT-5
R-8
R-8
R-8
R-8
R-8
R-8
RM-8
RM-8
RU-8
RU-8
RU-8
RU-8
R-14
R-14
R-14
R-14
R-14
R-14
RU-14
RU-14
RU-14
RU-14
A4B
A4B
A4B
A4A
A4A
A4A
A4A
A4A
AVA
AVA
*Z = Pb-free part.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the AD8541/AD8542/AD8544 feature proprietary ESD protection circuitry, permanent damage
may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
REV. D
–5–
WARNING!
ESD SENSITIVE DEVICE
AD8541/AD8542/AD8544 –Typical Performance Characteristics
120
100
80
60
40
20
0
ⴚ4.5 ⴚ3.5 ⴚ2.5 ⴚ1.5 ⴚ0.5 0.5 1.5 2.5 3.5 4.5
INPUT OFFSET VOLTAGE – mV
0.0
ⴚ1.0
ⴚ1.5
ⴚ2.0
ⴚ2.5
ⴚ3.0
100
50
0
5
4
3
2
1
VS = 2.7V
TA = 25ⴗC
OUTPUT SWING – V p-p
SOURCE
10
SINK
1
0.01
0.001
0.01
0.1
1
10
LOAD CURRENT – mA
TPC 7. Output Voltage to Supply
Rail vs. Load Current
100
2.0
1.5
1.0
0
1k
VS = 2.7V
TA = 25ⴗC
120
100
80
ⴚPSRR
60
40
+PSRR
20
0
1k
10k
100k
FREQUENCY – Hz
1M
10M
60
0.5
0.1
5.5
TPC 6. Power Supply Rejection
Ratio vs. Frequency
VS = 2.7V
VIN = 2.5V p-p
RL = 2k⍀
TA = 25ⴗC
2.5
1k
140
ⴚ40
100
3.0
10k
0.5
1.5
2.5
3.5
4.5
COMMON-MODE VOLTAGE – V
ⴚ20
TPC 5. Input Offset Current vs.
Temperature
100
2
160
VS = 2.7V AND 5V
VCM = VS /2
ⴚ1
ⴚ55 ⴚ35 ⴚ15 5 25 45 65 85 105 125 145
TEMPERATURE – ⴗC
20 40 60 80 100 120 140
TEMPERATURE – ⴗC
TPC 4. Input Bias Current vs.
Temperature
⌬ OUTPUT VOLTAGE – mV
6
0
0
ⴚ40 ⴚ20
3
TPC 3. Input Bias Current vs.
Common-Mode Voltage
POWER SUPPLY REJECTION – dB
150
4
0
ⴚ0.5
7
200
5
1
VS = 2.7V AND 5V
VCM = VS /2
250
6
ⴚ3.5
TPC 2. Input Offset Voltage
vs. Temperature
300
7
ⴚ4.0
ⴚ55 ⴚ35 ⴚ15 5 25 45 65 85 105 125 145
TEMPERATURE – ⴗC
INPUT OFFSET CURRENT – pA
INPUT BIAS CURRENT – pA
350
VS = 2.7V AND 5V
8 VCM = VS /2
ⴚ0.5
TPC 1. Input Offset Voltage
Distribution
400
9
VS = 2.7V AND 5V
0.5 VCM = VS /2
10k
100k
1M
FREQUENCY – Hz
TPC 8. Closed-Loop Output
Voltage Swing vs. Frequency
–6–
10M
SMALL SIGNAL OVERSHOOT – %
NUMBER OF AMPLIFIERS
140
1.0
INPUT BIAS CURRENT – pA
VS = 5V
VCM = 2.5V
TA = 25ⴗC
160
INPUT OFFSET VOLTAGE – mV
180
50
VS = 2.7V
RL =
TA = 25ⴗC
40
+OS
30
ⴚOS
20
10
0
10
100
1k
CAPACITANCE – pF
10k
TPC 9. Small Signal Overshoot vs.
Load Capacitance
REV. D
AD8541/AD8542/AD8544
60
50
40
+OS
ⴚOS
30
20
10
0
10
100
1k
CAPACITANCE – pF
50
40
+OS
30
1.35V
ⴚOS
20
10
100
1k
CAPACITANCE – pF
10k
TPC 11. Small Signal Overshoot
vs. Load Capacitance
TPC 12. Small Signal Transient
Response
VS = 2.7V
RL = 2k⍀
AV = 1
TA = 25ⴗC
500mV
80
45
60
90
40
135
20
180
0
10␮s
1k
10M
160
140
100
80
1k
⌬ OUTPUT VOLTAGE – mV
70
60
50
40
30
20
10
+PSRR
40
20
0
ⴚ20
ⴚ40
100
10k
100k
FREQUENCY – Hz
1M
10M
5.0
VS = 5V
TA = 25ⴗC
VS = 5V
VIN = 4.9V p-p
RL = NO LOAD
TA = 25ⴗC
4.5
4.0
100
SOURCE
10
SINK
1
0.1
3.5
3.0
2.5
2.0
1.5
1.0
0.5
10k
100k
1M
FREQUENCY – Hz
10M
TPC 16. Common-Mode Rejection
Ratio vs. Frequency
REV. D
1k
TPC 15. Power Supply Rejection
Ratio vs. Frequency
0
ⴚ10
1k
ⴚPSRR
60
OUTPUT SWING – V p-p
VS = 5V
TA = 25ⴗC
VS = 5V
TA = 25ⴗC
120
10k
90
COMMON-MODE REJECTION – dB
100k
1M
FREQUENCY – Hz
TPC 14. Open-Loop Gain and
Phase vs. Frequency
TPC 13. Large Signal Transient
Response
80
10k
PHASE SHIFT – Degrees
GAIN – dB
VS = 2.7V
RL = NO LOAD
TA = 25ⴗC
1.35V
10␮s
50mV
0
10
10k
TPC 10. Small Signal Overshoot vs.
Load Capacitance
VS = 2.7V
RL = 100kV
CL = 300pF
AV = 1
TA = 25 C
VS = 2.7V
RL = 2k⍀
TA = 25ⴗC
POWER SUPPLY REJECTION RATIO – dB
VS = 2.7V
RL = 10k⍀
TA = 25ⴗC
SMALL SIGNAL OVERSHOOT – %
SMALL SIGNAL OVERSHOOT – %
60
0.01
0.001
0.01
0.1
1
10
LOAD CURRENT – mA
100
TPC 17. Output Voltage to Supply
Rail vs. Frequency
–7–
0
1k
10k
100k
1M
FREQUENCY – Hz
TPC 18. Closed-Loop Output
Voltage Swing vs. Frequency
10M
AD8541/AD8542/AD8544
60
OUTPUT SWING – V p-p
4.0
3.5
SMALL SIGNAL OVERSHOOT – %
VS = 5V
VIN = 4.9V p-p
RL = 2k⍀
TA = 25ⴗC
4.5
3.0
2.5
2.0
1.5
1.0
60
VS = 5V
RL = 10k⍀
TA = 25ⴗC
50
SMALL SIGNAL OVERSHOOT – %
5.0
40
+OS
30
ⴚOS
20
10
0.5
0
1k
10k
100k
1M
FREQUENCY – Hz
0
10
10M
TPC 19. Closed-Loop Output
Voltage Swing vs. Frequency
100
1k
CAPACITANCE – pF
VS = 5V
RL = 2k⍀
TA = 25ⴗC
40
+OS
30
ⴚOS
20
10
0
10
10k
TPC 20. Small Signal Overshoot vs.
Load Capacitance
50
100
1k
CAPACITANCE – pF
10k
TPC 21. Small Signal Overshoot vs.
Load Capacitance
VS = 5V
RL = 100k⍀
CL = 300pF
AV = 1
TA = 25ⴗC
VS = 5V
RL =
TA = 25ⴗC
50
40
+OS
30
2.5V
VS = 5V
RL = 2k⍀
AV = 1
TA = 25ⴗC
20
10
10␮s
50mV
0
10
100
1k
CAPACITANCE – pF
TPC 23. Small Signal Transient
Response
VS = 5V
RL = NO LOAD
TA = 25ⴗC
VS = 5V
RL = 10k⍀
AV = 1
TA = 25ⴗC
45
60
90
40
135
20
180
0
PHASE SHIFT – Degrees
VIN
80
VOUT
2.5V
20␮s
1V
1k
10k
100k
1M
FREQUENCY – Hz
10␮s
1V
10k
TPC 22. Small Signal Overshoot vs.
Load Capacitance
GAIN – dB
2.5V
ⴚOS
10M
TPC 25. Open-Loop Gain and Phase
vs. Frequency
TPC 26. No Phase Reversal
–8–
TPC 24. Large Signal Transient
Response
60
SUPPLY CURRENT/AMPLIFIER – ␮A
SMALL SIGNAL OVERSHOOT – %
60
TA = 25ⴗC
50
40
30
20
10
0
0
1
2
3
4
SUPPLY VOLTAGE – V
5
6
TPC 27. Supply Current per
Amplifier vs. Supply Voltage
REV. D
AD8541/AD8542/AD8544
1,000
VS = 2.7V AND 5V
AV = 1
800 TA = 25ⴗC
VS = 5V
AV = 1
MARKER SET @ 10kHz
MARKER READING: 37.6␮V/ Hz
TA = 25ⴗC
900
50
VS = 5V
45
40
VS = 2.7V
35
30
200mV/DIVISION
700
IMPEDANCE – ⍀
SUPPLY CURRENT/AMPLIFIER – ␮A
55
600
500
400
300
200
25
100
20
ⴚ55 ⴚ35ⴚ15
5 25 45 65 85 105 125 145
TEMPERATURE – ⴗC
TPC 28. Supply Current per
Amplifier vs. Temperature
0
1k
10k
100k
1M
FREQUENCY – Hz
10M
0
100M
TPC 29. Closed-Loop Output
Impedance vs. Frequency
5
10
15
FREQUENCY – kHz
20
TPC 30. Voltage Noise
drift will cause the circuit to no longer attenuate at the ideal
notch frequency. To achieve desired performance, 1% or
better component tolerances or special component screens
are usually required. One method to desensitize the circuitto-component mismatch is to increase R2 with respect to
R1, which lowers Q. A lower Q increases attenuation over a
wider frequency range but reduces attenuation at the peak
notch frequency.
NOTES ON THE AD854x AMPLIFIERS
The AD8541/AD8542/AD8544 amplifiers are improved performance general-purpose operational amplifiers. Performance has
been improved over previous amplifiers in several ways.
Lower Supply Current for 1 MHz Gain Bandwidth
The AD854x series typically uses 45 mA of current per amplifier.
This is much less than the 200 mA to 700 mA used in earlier
generation parts with similar performance. This makes the
AD854x series a good choice for upgrading portable designs for
longer battery life. Alternatively, additional functions and performance can be added at the same current drain.
5.0V
R
100k⍀
R
100k⍀
At 5 V single supply, the short-circuit current is typically 60 mA.
Even 1 V from the supply rail, the AD854x amplifiers can provide
30 mA, sourcing or sinking.
8
3
1/2 AD8542
U1
2
C2
53.6␮F
Higher Output Current
V OUT
1
4
R/2
50k⍀
2.5VREF
Sourcing and sinking are strong at lower voltages, with 15 mA
available at 2.7 V and 18 mA at 3.0 V. For even higher output
currents, please see the Analog Devices AD8531/AD8532/AD8534
parts, with output currents to 250 mA. Information on these
parts is available from your Analog Devices representative,
and data sheets are available at the Analog Devices website at
www.analog.com.
C
26.7nF
C
26.7nF
f0 =
f0 =
R2
2.5k⍀
1/2 AD8542
7
5
U2
6
R1
97.5k⍀
1
2pRC
[
1
R1
4 1ⴚ
R1+R2
Better Performance at Lower Voltages
2.5VREF
]
Figure 1. 60 Hz Twin-T Notch Filter, Q = 10
The AD854x family of parts has been designed to provide better
ac performance, at 3.0 V and 2.7 V, than previously available
parts. Typical gain-bandwidth product is close to 1 MHz at 2.7 V.
Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase margin
is typically over 60∞C, making the part easy to use.
5.0V
R
R
3
7
AD8541
2
4
2C
VIN
6
V OUT
APPLICATIONS
Notch Filter
The AD8542 has very high open-loop gain (especially with a
supply voltage below 4 V), which makes it useful for active filters
of all types. For example, Figure 1 illustrates the AD8542 in the
classic Twin-T Notch Filter design. The Twin-T Notch is desired
for simplicity, low output impedance, and minimal use of op
amps. In fact, this notch filter may be designed with only one op
amp if Q adjustment is not required. Simply remove U2 as illustrated in Figure 2. However, a major drawback to this circuit
topology is ensuring that all the Rs and Cs closely match. The
components must closely match or notch frequency offset and
REV. D
25
R/2
2.5VREF
C
C
Figure 2. 60 Hz Twin-T Notch Filter, Q = • (Ideal)
Figure 3 shows another example of the AD8542 in a notch
filter circuit. The FNDR notch filter has fewer critical
matching requirements than the Twin-T Notch and for the
FNDR Q is directly proportional to a single resistor R1.
While matching component values is still important, it is also
–9–
AD8541/AD8542/AD8544
much easier and/or less expensive to accomplish in the FNDR
circuit. For example, the Twin-T notch uses three capacitors
with two unique values, whereas the FNDR circuit uses only two
capacitors, which may be of the same value. U3 is simply a buffer
that is added to lower the output impedance of the circuit.
R1
Q ADJUST
200⍀
9
1/4 AD8544
8
U3
10
R
2.61k⍀
1/4 AD8544
7
U2
6
2
1
U1
11
R
2.61k⍀
5
1/4 AD8544
4
3
C2
1␮F
The AD854x family has very high impedance with input bias
current typically around 4 pA. This characteristic allows the
AD854x op amps to be used in photodiode applications and
other applications that require high input impedance. Note that
the AD854x has significant voltage offset, which can be removed
by capacitive coupling or software calibration.
Figure 5 illustrates a photodiode or current measurement
application. The feedback resistor is limited to 10 MW to avoid
excessive output offset. Also, note that a resistor is not needed
on the noninverting input to cancel bias current offset because
the bias current related output offset is not significant when
compared to the voltage offset contribution. For the best
performance follow the standard high impedance layout
techniques including:
V OUT
C1
1␮F
2.5VREF
Photodiode Application
∑ Shield the circuit.
∑ Clean the circuit board.
R
2.61k⍀
f=
L=
R
2.61k⍀
1
2p LC1
2.5VREF
R2C2
13
12
∑ Put a trace connected to the noninverting input around the
inverting input.
1/4 AD8544
U4
14
∑ Use separate analog and digital power supplies.
NC
SPARE
C
100pF
2.5VREF
Figure 3. FNDR 60 Hz Notch Filter with Output Buffer
R
10M⍀
Comparator Function
A comparator function is a common application for a spare op
amp in a quad package. Figure 4 illustrates 1/4 of the AD8544
as a comparator in a standard overload detection application.
Unlike many op amps, the AD854x family can double as
comparators because this op amp family has rail-to-rail differential
input range, rail-to-rail output, and a great speed versus power
ratio. R2 is used to introduce hysteresis. The AD854x, when
used as comparators, have 5 ms propagation delay at 5 V and 5 ms
overload recovery time.
V+
OR
2
7
6
3
4
D
2.5VREF
V OUT
AD8541
2.5VREF
Figure 5. High Input Impedance Application–Photodiode
Amplifier
R2
1M⍀
R1
1k⍀
V OUT
VIN
2.5VDC
1/4 AD8544
2.5VREF
Figure 4. AD854x Comparator Application–Overload Detector
–10–
REV. D
AD8541/AD8542/AD8544
* AD8542 SPICE Macro-model Typical Values
* 6/98, Ver. 1
* TAM / ADSC
*
* Copyright 1998 by Analog Devices
*
* Refer to “README.DOC” file for License
* Statement. Use of this model indicates your
* acceptance of the terms and provisions in
* the License Statement.
*
* Node Assignments
*
noninverting input
*
| inverting input
*
| |
positive supply
*
| |
| negative supply
*
| |
| | output
*
| |
| | |
*
| |
| | |
.SUBCKT AD8542
1 2 99 50 45
*
* INPUT STAGE
*
M1 4 1 8 8 PIX L=0.6E-6 W=16E-6
M2 6 7 8 8 PIX L=0.6E-6 W=16E-6
M3 11 1 10 10 NIX L=0.6E-6 W=16E-6
M4 12 7 10 10 NIX L=0.6E-6 W=16E-6
RC1 4 50 20E3
RC2 6 50 20E3
RC3 99 11 20E3
RC4 99 12 20E3
C1 4 6 1.5E-12
C2 11 12 1.5E-12
I1 99 8 1E-5
I2 10 50 1E-5
V1 99 9 0.2
V2 13 50 0.2
D1 8 9 DX
D2 13 10 DX
EOS 7 2 POLY(3) (22,98) (73,98) (81,0) 1E-3 1 1 1
IOS 1 2 2.5E-12
*
* CMRR 64dB, ZERO AT 20kHz
*
ECM1 21 98 POLY(2) (1,98) (2,98) 0 .5 .5
RCM1 21 22 79.6E3
CCM1 21 22 100E-12
RCM2 22 98 50
*
* PSRR=90dB, ZERO AT 200Hz
*
RPS1 70 0 1E6
RPS2 71 0 1E6
CPS1 99 70 1E-5
CPS2 50 71 1E-5
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1
RPS3 72 73 1.59E6
CPS3 72 73 500E-12
RPS4 73 98 25
*
* VOLTAGE NOISE REFERENCE OF 35nV/rt(Hz)
*
REV. D
VN1 80 0 0
RN1 80 0 16.45E-3
HN 81 0 VN1 35
RN2 81 0 1
*
* INTERNAL VOLTAGE REFERENCE
*
VFIX 90 98 DC 1
S1 90 91 (50,99) VSY_SWITCH
VSN1 91 92 DC 0
RSY 92 98 1E3
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5
GSY 99 50 POLY(1) (99,50) 0 3.7E-6
*
* ADAPTIVE GAIN STAGE
* AT Vsy>+4.2, AVol=45 V/mv
* AT Vsy<+3.8, AVol=450 V/mv
*
G1 98 30 POLY(2) (4,6) (11,12) 0 2.5E-5 2.5E-5
VR1 30 31 DC 0
H1 31 98 POLY(2) VR1 VSN1 0 5.45E6 0 0 49.05E9
CF 45 30 10E-12
D3 30 99 DX
D4 50 30 DX
*
* OUTPUT STAGE
*
M5 45 46 99 99 POX L=0.6E-6 W=375E-6
M6 45 47 50 50 NOX L=0.6E-6 W=500E-6
EG1 99 46 POLY(1) (98,30) 1.05 1
EG2 47 50 POLY(1) (30,98) 1.04 1
*
* MODELS
*
.MODEL POX PMOS (LEVEL=2,KP=20E-6,VTO=+1,LAMBDA=0.067)
.MODEL NOX NMOS (LEVEL=2,KP=20E+6,VTO=1,LAMBDA=0.067)
.MODEL PIX PMOS (LEVEL=2,KP=20E-6,VTO=+0.7,LAMBDA=0.01,KF=1E-31)
.MODEL NIX NMOS (LEVEL=2,KP=20E+6,VTO=0.7,LAMBDA=0.01,KF=1E-31)
.MODEL DX D(IS=1E-14)
.MODEL VSY_SWITCH VSWITCH(ROFF=100E3,RON=1,VOFF=+4.2,VON=-3.5)
.ENDS AD8542
–11–
AD8541/AD8542/AD8544
OUTLINE DIMENSIONS
8-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-8)
14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
Dimensions shown in millimeters
3.10
3.00
2.90
8
5.10
5.00
4.90
5
14
4.50
4.40 6.40 BSC
4.30
1
8
4.50
4.40
4.30
6.40
BSC
4
1
PIN 1
7
PIN 1
0.65
BSC
0.15
0.05
1.05
1.00
0.80
1.20
MAX
0.30
COPLANARITY 0.19
0.10
SEATING 0.20
PLANE
0.09
8ⴗ
0ⴗ
0.65
BSC
1.20
MAX
0.15
0.05
0.75
0.60
0.45
0.30
0.19
0.20
0.09
SEATING COPLANARITY
PLANE
0.10
0.75
0.60
0.45
8ⴗ
0ⴗ
COMPLIANT TO JEDEC STANDARDS MO-153AA
COMPLIANT TO JEDEC STANDARDS MO-153AB-1
8-Lead Standard Small Outline Package [SOIC]
Narrow Body
(R-8)
14-Lead Standard Small Outline Package [SOIC]
Narrow Body
(R-14)
Dimensions shown in millimeters and (inches)
Dimensions shown in millimeters and (inches)
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
8
5
1
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
SEATING
0.10
PLANE
8.75 (0.3445)
8.55 (0.3366)
4.00 (0.1575)
3.80 (0.1496)
6.20 (0.2440)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.50 (0.0196)
ⴛ 45ⴗ
0.25 (0.0099)
14
8
1
7
0.25 (0.0098)
0.10 (0.0039)
8ⴗ
0.25 (0.0098) 0ⴗ 1.27 (0.0500)
0.40 (0.0157)
0.17 (0.0067)
COPLANARITY
0.10
1.27 (0.0500)
BSC
0.51 (0.0201)
0.31 (0.0122)
6.20 (0.2441)
5.80 (0.2283)
1.75 (0.0689)
1.35 (0.0531)
SEATING
PLANE
0.50 (0.0197)
ⴛ 45ⴗ
0.25 (0.0098)
8ⴗ
0.25 (0.0098) 0ⴗ 1.27 (0.0500)
0.40 (0.0157)
0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
–12–
REV. D
AD8541/AD8542/AD8544
OUTLINE DIMENSIONS
8-Lead Mini Small Outline Package [MSOP]
(RM-8)
5-Lead Small Outline Transistor Package [SOT-23]
(RT-5)
Dimensions shown in millimeters
Dimensions shown in millimeters
3.00
BSC
8
2.90 BSC
5
5
4.90
BSC
3.00
BSC
1
4
2.80 BSC
1.60 BSC
1
4
2
3
PIN 1
PIN 1
0.95 BSC
0.65 BSC
1.10 MAX
0.15
0.00
0.38
0.22
COPLANARITY
0.10
1.90
BSC
1.30
1.15
0.90
0.23
0.08
0.80
0.60
0.40
8ⴗ
0ⴗ
1.45 MAX
SEATING
PLANE
0.15 MAX
0.50
0.30
COMPLIANT TO JEDEC STANDARDS MO-187AA
SEATING
PLANE
0.22
0.08
10ⴗ
5ⴗ
0ⴗ
COMPLIANT TO JEDEC STANDARDS MO-178AA
5-Lead Thin Shrink Small Outline Transistor Package [SC70]
(KS-5)
Dimensions shown in millimeters
2.00 BSC
4
5
1.25 BSC
2.10 BSC
1
2
3
PIN 1
0.65 BSC
1.00
0.90
0.70
0.10 MAX
1.10 MAX
0.22
0.08
0.30
0.15
0.10 COPLANARITY
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MO-203AA
REV. D
–13–
0.46
0.36
0.26
0.60
0.45
0.30
AD8541/AD8542/AD8544
Revision History
Location
Page
8/04—Data Sheet changed from REV. C to REV. D.
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Change to Figure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1/03—Data Sheet changed from REV. B to REV. C.
Updated format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal
Change to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Changes to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
–14–
REV. D
–15–
–16–
C00935–0–8/04(D)
Similar pages