ATMEL AT89C4051-24SI 8-bit microcontroller with 4k bytes flash Datasheet

Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Compatible with MCS®51 Products
4K Bytes of Reprogrammable Flash Memory
Endurance: 1,000 Write/Erase Cycles
2.7V to 6V Operating Range
Fully Static Operation: 0 Hz to 24 MHz
Two-level Program Memory Lock
128 x 8-bit Internal RAM
15 Programmable I/O Lines
Two 16-bit Timer/Counters
Six Interrupt Sources
Programmable Serial UART Channel
Direct LED Drive Outputs
On-chip Analog Comparator
Low-power Idle and Power-down Modes
Brown-out Detection
8-bit
Microcontroller
with 4K Bytes
Flash
Description
The AT89C4051 is a low-voltage, high-performance CMOS 8-bit microcomputer with
4K bytes of Flash programmable and erasable read-only memory (PEROM). The
device is manufactured using Atmel’s high-density nonvolatile memory technology and
is compatible with the industry-standard MCS-51 instruction set. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C4051 is a powerful
microcomputer which provides a highly-flexible and cost-effective solution to many
embedded control applications.
AT89C4051
The AT89C4051 provides the following standard features: 4K bytes of Flash,
128 bytes of RAM, 15 I/O lines, two 16-bit timer/counters, a five-vector, two-level interrupt architecture, a full duplex serial port, a precision analog comparator, on-chip
oscillator and clock circuitry. In addition, the AT89C4051 is designed with static logic
for operation down to zero frequency and supports two software-selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters,
serial port and interrupt system to continue functioning. The power-down mode saves
the RAM contents but freezes the oscillator disabling all other chip functions until the
next hardware reset.
Pin Configuration
PDIP/SOIC
RST/VPP
(RXD) P3.0
(TXD) P3.1
XTAL2
XTAL1
(INT0) P3.2
(INT1) P3.3
(TO) P3.4
(T1) P3.5
GND
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
VCC
P1.7
P1.6
P1.5
P1.4
P1.3
P1.2
P1.1 (AIN1)
P1.0 (AIN0)
P3.7
Rev. 1001D–06/01
1
Block Diagram
2
AT89C4051
1001D–06/01
AT89C4051
Pin Description
VCC
Supply voltage.
GND
Ground.
Port 1
Port 1 is an 8-bit bi-directional I/O port. Port pins P1.2 to P1.7 provide internal pullups.
P1.0 and P1.1 require external pullups. P1.0 and P1.1 also serve as the positive input
(AIN0) and the negative input (AIN1), respectively, of the on-chip precision analog comparator. The Port 1 output buffers can sink 20 mA and can drive LED displays directly.
When 1s are written to Port 1 pins, they can be used as inputs. When pins P1.2 to P1.7
are used as inputs and are externally pulled low, they will source current (IIL) because of
the internal pullups.
Port 1 also receives code data during Flash programming and verification.
Port 3
Port 3 pins P3.0 to P3.5, P3.7 are seven bi-directional I/O pins with internal pullups.
P3.6 is hard-wired as an input to the output of the on-chip comparator and is not accessible as a general purpose I/O pin. The Port 3 output buffers can sink 20 mA. When 1s
are written to Port 3 pins they are pulled high by the internal pullups and can be used as
inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL)
because of the pullups.
Port 3 also serves the functions of various special features of the AT89C4051 as listed
below:
Port Pin
Alternate Functions
P3.0
RXD (serial input port)
P3.1
TXD (serial output port)
P3.2
INT0 (external interrupt 0)
P3.3
INT1 (external interrupt 1)
P3.4
T0 (timer 0 external input)
P3.5
T1 (timer 1 external input)
Port 3 also receives some control signals for Flash programming and verification.
RST
Reset input. All I/O pins are reset to 1s as soon as RST goes high. Holding the RST pin
high for two machine cycles while the oscillator is running resets the device.
Each machine cycle takes 12 oscillator or clock cycles.
XTAL1
Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
XTAL2
Output from the inverting oscillator amplifier.
3
1001D–06/01
Oscillator
Characteristics
XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which
can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz
crystal or ceramic resonator may be used. To drive the device from an external clock
source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2.
There are no requirements on the duty cycle of the external clock signal, since the input
to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and
maximum voltage high and low time specifications must be observed.
Figure 1. Oscillator Connections
Note:
C1, C2= 30 pF ± 10 pF for Crystals
= 40 pF ± 10 pF for Ceramic Resonators
Figure 2. External Clock Drive Configuration
4
AT89C4051
1001D–06/01
AT89C4051
Special Function
Registers
A map of the on-chip memory area called the Special Function Register (SFR) space is
shown in the table below.
Note that not all of the addresses are occupied, and unoccupied addresses may not be
implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.
User software should not write 1s to these unlisted locations, since they may be used in
future products to invoke new features. In that case, the reset or inactive values of the
new bits will always be 0.
Table 1. AT89C4051 SFR Map and Reset Values
0F8H
0F0H
0FFH
B
00000000
0F7H
0E8H
0E0H
0EFH
ACC
00000000
0E7H
0D8H
0D0H
0DFH
PSW
00000000
0D7H
0C8H
0CFH
0C0H
0C7H
0B8H
IP
XXX00000
0BFH
0B0H
P3
11111111
0B7H
0A8H
IE
0XX00000
0AFH
0A0H
0A7H
98H
SCON
00000000
90H
P1
11111111
88H
TCON
00000000
80H
SBUF
XXXXXXXX
9FH
97H
TMOD
00000000
TL0
00000000
TL1
00000000
SP
00000111
DPL
00000000
DPH
00000000
TH0
00000000
TH1
00000000
8FH
PCON
0XXX0000
87H
5
1001D–06/01
Restrictions on
Certain Instructions
The AT89C4051 is an economical and cost-effective member of Atmel’s growing family
of microcontrollers. It contains 4K bytes of Flash program memory. It is fully compatible
with the MCS-51 architecture, and can be programmed using the MCS-51 instruction
set. However, there are a few considerations one must keep in mind when utilizing certain instructions to program this device.
All the instructions related to jumping or branching should be restricted such that the
destination address falls within the physical program memory space of the device, which
is 4K for the AT89C4051. This should be the responsibility of the software programmer.
For example, LJMP 0FE0H would be a valid instruction for the AT89C4051 (with 4K of
memory), whereas LJMP 1000H would not.
Branching Instructions
LCALL, LJMP, ACALL, AJMP, SJMP, JMP @A+DPTR. These unconditional branching
instructions will execute correctly as long as the programmer keeps in mind that the destination branching address must fall within the physical boundaries of the program
memory size (locations 00H to FFFH for the 89C4051). Violating the physical space limits may cause unknown program behavior.
CJNE [...], DJNZ [...], JB, JNB, JC, JNC, JBC, JZ, JNZ With these conditional branching
instructions the same rule above applies. Again, violating the memory boundaries may
cause erratic execution.
For applications involving interrupts, the normal interrupt service routine address locations of the 80C51 family architecture have been preserved.
MOVX-related
Instructions, Data
Memory
The AT89C4051 contains 128 bytes of internal data memory. Thus, in the AT89C4051
the stack depth is limited to 128 bytes, the amount of available RAM. External DATA
memory access is not supported in this device, nor is external PROGRAM memory execution. Therefore, no MOVX [...] instructions should be included in the program.
A typical 80C51 assembler will still assemble instructions, even if they are written in violation of the restrictions mentioned above. It is the responsibility of the controller user to
know the physical features and limitations of the device being used and adjust the
instructions used correspondingly.
Program Memory
Lock Bits
On the chip are two lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the following table:
Lock Bit Protection Modes(1)
Program Lock Bits
Note:
6
LB1
LB2
Protection Type
1
U
U
No program lock features
2
P
U
Further programming of the Flash is disabled
3
P
P
Same as mode 2, also verify is disabled
1. The Lock Bits can only be erased with the Chip Erase operation.
AT89C4051
1001D–06/01
AT89C4051
Idle Mode
In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active.
The mode is invoked by software. The content of the on-chip RAM and all the special
functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.
P1.0 and P1.1 should be set to “0” if no external pullups are used, or set to “1” if external
pullups are used.
It should be noted that when idle is terminated by a hardware reset, the device normally
resumes program execution, from where it left off, up to two machine cycles before the
internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM
in this event, but access to the port pins is not inhibited. To eliminate the possibility of an
unexpected write to a port pin when Idle is terminated by reset, the instruction following
the one that invokes Idle should not be one that writes to a port pin or to external
memory.
Power-down Mode
In the power-down mode the oscillator is stopped and the instruction that invokes
power-down is the last instruction executed. The on-chip RAM and Special Function
Registers retain their values until the power-down mode is terminated. The only exit
from power-down is a hardware reset. Reset redefines the SFRs but does not change
the on-chip RAM. The reset should not be activated before VCC is restored to its normal
operating level and must be held active long enough to allow the oscillator to restart and
stabilize.
P1.0 and P1.1 should be set to “0” if no external pullups are used, or set to “1” if external
pullups are used.
Brown-out Detection
When VCC drops below the detection threshold, all port pins (except P1.0 and P1.1) are
weakly pulled high. When VCC goes back up again, an internal Reset is automatically
generated after a delay of typically 15 msec. The nominal brown-out detection threshold
is 2.1V ± 10%.
VCC
2.1V
2.1V
PORT PIN
INTERNAL RESET
15 msec.
7
1001D–06/01
Programming The
Flash
The AT89C4051 is shipped with the 4K bytes of on-chip PEROM code memory array in
the erased state (i.e., contents = FFH) and ready to be programmed. The code memory
array is programmed one byte at a time. Once the array is programmed, to re-program
any non-blank byte, the entire memory array needs to be erased electrically.
Internal Address Counter: The AT89C4051 contains an internal PEROM address
counter which is always reset to 000H on the rising edge of RST and is advanced by
applying a positive going pulse to pin XTAL1.
Programming Algorithm: To program the AT89C4051, the following sequence is
recommended.
1. Power-up sequence:
Apply power between VCC and GND pins
Set RST and XTAL1 to GND
2. Set pin RST to “H”
Set pin P3.2 to “H”
3. Apply the appropriate combination of “H” or “L” logic
levels to pins P3.3, P3.4, P3.5, P3.7 to select one of the programming operations
shown in the PEROM Programming Modes table.
To Program and Verify the Array:
4. Apply data for Code byte at location 000H to P1.0 to P1.7.
5. Raise RST to 12V to enable programming.
6. Pulse P3.2 once to program a byte in the PEROM array or the lock bits. The
byte-write cycle is self-timed and typically takes 1.2 ms.
7. To verify the programmed data, lower RST from 12V to logic “H” level and set
pins P3.3 to P3.7 to the appropriate levels. Output data can be read at the port
P1 pins.
8. To program a byte at the next address location, pulse XTAL1 pin once to advance
the internal address counter. Apply new data to the port P1 pins.
9. Repeat steps 6 through 8, changing data and advancing the address counter for
the entire 4K bytes array or until the end of the object file is reached.
10. Power-off sequence:
set XTAL1 to “L”
set RST to “L”
Turn VCC power off
Data Polling: The AT89C4051 features Data Polling to indicate the end of a write cycle.
During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P1.7. Once the write cycle has been completed, true data is
valid on all outputs, and the next cycle may begin. Data Polling may begin any time after
a write cycle has been initiated.
Ready/Busy: The Progress of byte programming can also be monitored by the
RDY/BSY output signal. Pin P3.1 is pulled low after P3.2 goes High during programming
to indicate BUSY. P3.1 is pulled High again when programming is done to indicate
READY.
Program Verify: If lock bits LB1 and LB2 have not been programmed code data can be
read back via the data lines for verification:
1. Reset the internal address counter to 000H by bringing RST from “L” to “H”.
2. Apply the appropriate control signals for Read Code data and read the output
data at the port P1 pins.
8
AT89C4051
1001D–06/01
AT89C4051
3. Pulse pin XTAL1 once to advance the internal address counter.
4. Read the next code data byte at the port P1 pins.
5. Repeat steps 3 and 4 until the entire array is read.
The lock bits cannot be verified directly. Verification of the lock bits is achieved by
observing that their features are enabled.
Chip Erase: The entire PEROM array (4K bytes) and the two Lock Bits are erased electrically by using the proper combination of control signals and by holding P3.2 low for
10 ms. The code array is written with all “1”s in the Chip Erase operation and must be
executed before any non-blank memory byte can be re-programmed.
Reading the Signature Bytes: The signature bytes are read by the same procedure as
a normal verification of locations 000H, 001H, and 002H, except that P3.5 and P3.7
must be pulled to a logic low. The values returned are as follows.
(000H) = 1EH indicates manufactured by Atmel
(001H) = 41H indicates 89C4051
Programming
Interface
Every code byte in the Flash array can be written and the entire array can be erased by
using the appropriate combination of control signals. The write operation cycle is selftimed and once initiated, will automatically time itself to completion.
All major programming vendors offer worldwide support for the Atmel microcontroller
series. Please contact your local programming vendor for the appropriate software
revision.
Flash Programming Modes
Mode
RST/VPP
Write Code Data(1)(3)
12V
Read Code Data(1)
Write Lock
Chip Erase
Read Signature Byte
Notes:
P3.2/PROG
H
H
P3.3
P3.4
P3.5
P3.7
L
H
H
H
L
L
H
H
Bit - 1
12V
H
H
H
H
Bit - 2
12V
H
H
L
L
H
L
L
L
L
L
L
L
12V
H
(2)
H
1. The internal PEROM address counter is reset to 000H on the rising edge of RST and is advanced by a positive pulse at
XTAL1 pin.
2. Chip Erase requires a 10-ms PROG pulse.
3. P3.1 is pulled Low during programming to indicate RDY/BSY.
9
1001D–06/01
Figure 3. Programming the Flash Memory
AT89C4051
P3.1
RDY/BSY
PP
Figure 4. Verifying the Flash Memory
AT89C4051
10
AT89C4051
1001D–06/01
AT89C4051
Flash Programming and Verification Characteristics
TA = 20°C to 30°C, VCC = 5.0 ± 10%
Symbol
Parameter
Min
Max
Units
VPP
Programming Enable Voltage
11.5
12.5
V
IPP
Programming Enable Current
250
µA
tDVGL
Data Setup to PROG Low
1.0
µs
tGHDX
Data Hold after PROG
1.0
µs
tEHSH
P3.4 (ENABLE) High to VPP
1.0
µs
tSHGL
VPP Setup to PROG Low
10
µs
tGHSL
VPP Hold after PROG
10
µs
tGLGH
PROG Width
1
tELQV
ENABLE Low to Data Valid
tEHQZ
Data Float after ENABLE
tGHBL
110
µs
1.0
µs
1.0
µs
PROG High to BUSY Low
50
ns
tWC
Byte Write Cycle Time
2.0
ms
tBHIH
RDY/BSY\ to Increment Clock Delay
1.0
µs
Increment Clock High
200
ns
tIHIL
Note:
0
1. Only used in 12-volt programming mode.
Flash Programming and Verification Waveforms
11
Absolute Maximum Ratings*
Operating Temperature ................................. -55°C to +125°C
*NOTICE:
Storage Temperature ..................................... -65°C to +150°C
Voltage on Any Pin
with Respect to Ground .....................................-1.0V to +7.0V
Maximum Operating Voltage ............................................ 6.6V
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.
DC Output Current...................................................... 25.0 mA
DC Characteristics
TA = -40°C to 85°C, VCC = 2.7V to 6.0V (unless otherwise noted)
Symbol
Parameter
VIL
Input Low-voltage
VIH
Input High-voltage
VIH1
Input High-voltage
VOL
Condition
(Except XTAL1, RST)
(XTAL1, RST)
(1)
Output Low-voltage
(Ports 1, 3)
VOH
Max
Units
-0.5
0.2 VCC - 0.1
V
0.2 VCC + 0.9
VCC + 0.5
V
0.7 VCC
VCC + 0.5
V
0.5
V
IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 2.7V
IOH = -80 µA, VCC = 5V ± 10%
Output High-voltage
(Ports 1, 3)
Min
2.4
V
IOH = -30 µA
0.75 VCC
V
IOH = -12 µA
0.9 VCC
V
IIL
Logical 0 Input Current
(Ports 1, 3)
VIN = 0.45V
-50
µA
ITL
Logical 1 to 0 Transition Current
(Ports 1, 3)
VIN = 2V, VCC = 5V ± 10%
-750
µA
ILI
Input Leakage Current
(Port P1.0, P1.1)
0 < VIN < VCC
±10
µA
VOS
Comparator Input Offset Voltage
VCC = 5V
20
mV
VCM
Comparator Input Common
Mode Voltage
0
VCC
V
RRST
Reset Pulldown Resistor
50
300
KΩ
CIO
Pin Capacitance
10
pF
15/5.5
mA
Idle Mode, 12 MHz, VCC = 6V/3V
P1.0 & P1.1 = 0V or VCC
5/1
mA
VCC = 6V P1.0 & P1.1 = 0V or VCC
20
µA
VCC = 3V P1.0 & P1.1 = 0V or VCC
5
µA
Test Freq. = 1 MHz, TA = 25°C
Active Mode, 12 MHz, VCC = 6V/3V
Power Supply Current
ICC
Power-down Mode(2)
Notes:
12
1. Under steady state (non-transient) conditions, IOL must be externally limited as follows:
Maximum IOL per port pin: 20 mA
Maximum total IOL for all output pins: 80 mA
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test conditions.
2. Minimum VCC for Power-down is 2V.
AT89C4051
1001D–06/01
AT89C4051
External Clock Drive Waveforms
External Clock Drive
VCC = 2.7V to 6.0V
Symbol
Parameter
1/tCLCL
Oscillator Frequency
tCLCL
Clock Period
tCHCX
VCC = 4.0V to 6.0V
Min
Max
Min
Max
Units
0
12
0
24
MHz
83.3
41.6
ns
High Time
30
15
ns
tCLCX
Low Time
30
15
ns
tCLCH
Rise Time
20
20
ns
tCHCL
Fall Time
20
20
ns
13
1001D–06/01
Serial Port Timing: Shift Register Mode Test Conditions
VCC = 5.0V ± 20%; Load Capacitance = 80 pF
12 MHz Osc
Max
Variable Oscillator
Symbol
Parameter
Min
tXLXL
Serial Port Clock Cycle Time
1.0
12tCLCL
µs
tQVXH
Output Data Setup to Clock Rising Edge
700
10tCLCL-133
ns
tXHQX
Output Data Hold after Clock Rising Edge
50
2tCLCL-117
ns
tXHDX
Input Data Hold after Clock Rising Edge
0
0
ns
tXHDV
Clock Rising Edge to Input Data Valid
700
Min
Max
10tCLCL-133
Units
ns
Shift Register Mode Timing Waveforms
AC Testing Input/Output Waveforms(1)
Note:
1. AC Inputs during testing are driven at VCC - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at VIH
min. for a logic 1 and VIL max. for a logic 0.
Float Waveforms(1)
Note:
14
1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to
float when 100 mV change frothe loaded VOH/VOL level occurs.
AT89C4051
1001D–06/01
AT89C4051
AT89C4051
TYPICAL ICC - ACTIVE (85˚C)
20
Vcc=6.0V
I 15
C
C 10
m
A
Vcc=5.0V
Vcc=3.0V
5
0
0
6
12
18
24
FREQUENCY (MHz)
AT89C4051
TYPICAL ICC - IDLE (85˚C)
3
Vcc=6.0V
I
C 2
C
Vcc=5.0V
m 1
A
Vcc=3.0V
0
0
3
6
9
12
FREQUENCY (MHz)
AT89C4051
TYPICAL ICC vs. VOLTAGE- POWER DOWN (85˚C)
20
I 15
C
C 10
µ
A
5
0
3.0V
4.0V
5.0V
6.0V
Vcc VOLTAGE
Power-Down Mode Notes: 1. XTAL1 tied to GND for ICC (power-down)
2. P.1.0 and P1.1 = VCC or GND
3. Lock bits programmed
15
1001D–06/01
Ordering Information
Speed
(MHz)
Power
Supply
12
2.7V to 6.0V
24
4.0V to 6.0V
Ordering Code
Package
Operation Range
AT89C4051-12PC
AT89C4051-12SC
20P3
20S
Commercial
(0°C to 70°C)
AT89C4051-12PI
AT89C4051-12SI
20P3
20S
Industrial
(-40°C to 85°C)
AT89C4051-24PC
AT89C4051-24SC
20P3
20S
Commercial
(0°C to 70°C)
AT89C4051-24PI
AT89C4051-24SI
20P3
20S
Industrial
(-40°C to 85°C)
Package Type
20P3
20-lead, 0.300” Wide, Plastic Dual In-line Package (PDIP)
20S
20-lead, 0.300” Wide, Plastic Gull Wing Small Outline (SOIC)
16
AT89C4051
1001D–06/01
AT89C4051
Packaging Information
20P3, 20-lead, 0.300" Wide, Plastic Dual Inline
Package (PDIP)
Dimensions in Inches and (Millimeters)
20S, 20-lead, 0.300" Wide, Plastic Gull WIng Small
Outline (SOIC)
Dimensions in Inches and (Millimeters)
JEDEC STANDARD MS-001 AD
1.060(26.9)
.980(24.9)
0.020 (0.508)
0.013 (0.330)
PIN
1
.280(7.11)
.240(6.10)
0.299 (7.60) 0.420 (10.7)
0.291 (7.39) 0.393 (9.98)
PIN 1
.090(2.29)
MAX
.900(22.86) REF
.050 (1.27) BSC
.210(5.33)
MAX
.005(.127)
MIN
SEATING
PLANE
.110(2.79)
.090(2.29)
0.105 (2.67)
0.092 (2.34)
.022(.559)
.014(.356)
.070(1.78)
.045(1.13)
.325(8.26)
.300(7.62)
.014(.356)
.008(.203)
0.513 (13.0)
0.497 (12.6)
.015(.381) MIN
.150(3.81)
.115(2.92)
0 REF
15
.430(10.92) MAX
0.012 (0.305)
0.003 (0.076)
0
REF
8
0.013 (0.330)
0.009 (0.229)
0.035 (0.889)
0.015 (0.381)
17
1001D–06/01
Atmel Headquarters
Atmel Operations
Corporate Headquarters
Atmel Colorado Springs
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600
Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001
Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743
Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex
France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581
Fax-on-Demand
e-mail
North America:
1-(800) 292-8635
[email protected]
International:
1-(408) 441-0732
http://www.atmel.com
Web Site
BBS
1-(408) 436-4309
© Atmel Corporation 2001.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.
MCS is a registered trademark of Intel Corporation.
Terms and product names in this document may be trademarks of others.
Printed on recycled paper.
1001D–06/01/xM
Similar pages