IRF IRF6637TR1 Directfetpower mosfet Datasheet

PD - 96968
IRF6637
DirectFET™ Power MOSFET ‚
l
l
l
l
l
l
l
l
l
Lead and Bromide Free 
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible 
Ultra Low Package Inductance
Optimized for High Frequency Switching 
Ideal for CPU Core DC-DC Converters
Optimized for both Sync.FET and some Control FET
application
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques 
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
RDS(on)
30V max ±20V max 5.7mΩ@ 10V 8.2mΩ@ 4.5V
Qg
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
4.0nC
1.0nC
20nC
9.9nC
1.8V
tot
11nC
DirectFET™ ISOMETRIC
MP
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MP
Description
The IRF6637 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6637 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6637 has been optimized for parameters that are critical in synchronous buck operating from 12 volt
buss converters including Rds(on) and gate charge to minimize losses in the control FET socket.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Max.
Units
30
V
±20
VGS
Gate-to-Source Voltage
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
14
ID @ TA = 70°C
Continuous Drain Current, VGS
11
ID @ TC = 25°C
Continuous Drain Current, VGS
IDM
Pulsed Drain Current
EAS
Single Pulse Avalanche Energy
IAR
Avalanche Current
g
g
e
@ 10V e
@ 10V f
VGS, Gate-to-Source Voltage (V)
Typical R DS (on) (mΩ)
ID = 14A
20
15
TJ = 125°C
10
TJ = 25°C
5
2.0
4.0
6.0
8.0
VGS, Gate-to-Source Voltage (V)
Fig 1. Typical On-Resistance Vs. Gate Voltage
10.0
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
110
h
25
A
59
31
mJ
11
A
12
ID= 11A
10
VDS = 24V
VDS= 15V
8
6
4
2
0
0
4
8
12
16
20
24
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.52mH, RG = 25Ω, IAS = 11A.
1
2/15/05
IRF6637
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
26
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
5.7
7.7
–––
8.2
10.8
V
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mΩ
VGS = 10V, ID = 14A c
VGS = 4.5V, ID = 11A c
VGS(th)
Gate Threshold Voltage
1.35
1.8
2.35
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-5.4
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
38
–––
–––
Qg
IGSS
Conditions
Typ. Max. Units
VDS = VGS, ID = 250µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 15V, ID = 11A
Total Gate Charge
–––
11
17
Qgs1
Pre-Vth Gate-to-Source Charge
–––
3.1
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.0
–––
Qgd
Gate-to-Drain Charge
–––
4.0
6.0
ID = 11A
Qgodr
See Fig. 15
VDS = 15V
nC
VGS = 4.5V
Gate Charge Overdrive
–––
2.9
–––
Qsw
Switch Charge (Qgs2 + Qgd)
–––
5.0
–––
Qoss
Output Charge
–––
9.9
–––
nC
RG
Gate Resistance
–––
1.2
–––
Ω
td(on)
Turn-On Delay Time
–––
12
–––
VDD = 16V, VGS = 4.5Vc
tr
Rise Time
–––
15
–––
ID = 11A
td(off)
Turn-Off Delay Time
–––
14
–––
tf
Fall Time
–––
3.8
–––
Ciss
Input Capacitance
–––
1330
–––
Coss
Output Capacitance
–––
430
–––
Crss
Reverse Transfer Capacitance
–––
150
–––
ns
VDS = 16V, VGS = 0V
Clamped Inductive Load
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
Min.
–––
Typ. Max. Units
–––
ISM
Pulsed Source Current
MOSFET symbol
2.9
(Body Diode)
A
–––
–––
Conditions
showing the
integral reverse
110
p-n junction diode.
(Body Diode)d
VSD
Diode Forward Voltage
–––
–––
1.0
V
TJ = 25°C, IS = 11A, VGS = 0V c
trr
Reverse Recovery Time
–––
13
20
ns
TJ = 25°C, IF = 11A
Qrr
Reverse Recovery Charge
–––
20
30
nC
di/dt = 500A/µs c
Notes:
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
‚ Repetitive rating; pulse width limited by max. junction temperature.
2
www.irf.com
IRF6637
Absolute Maximum Ratings
Parameter
PD @TC = 25°C
c
Power Dissipation c
Power Dissipation f
TP
Peak Soldering Temperature
TJ
Operating Junction and
TSTG
Storage Temperature Range
Max.
Units
2.3
W
Power Dissipation
PD @TA = 25°C
PD @TA = 70°C
1.5
89
270
°C
-40 to + 150
Thermal Resistance
Parameter
cg
Junction-to-Ambient dg
Junction-to-Ambient eg
Junction-to-Case fg
RθJA
Junction-to-Ambient
RθJA
RθJA
RθJC
RθJ-PCB
Typ.
Max.
–––
55
12.5
–––
20
–––
–––
3.0
Junction-to-PCB Mounted
Linear Derating Factor
1.0
c
Units
°C/W
–––
0.018
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
0.20
10
0.10
0.05
0.02
1
τJ
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
R5
R5
τ2
τ1
τ2
τ3
τ3
τ4
τ4
τ5
τ5
Ci= τi/Ri
Ci= τi/Ri
0.1
τi (sec)
Ri (°C/W)
τC
τ
0.6676
0.000066
1.0462
0.000896
1.5611
0.004386
29.282
0.68618
25.455
32
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
 Surface mounted on 1 in. square Cu board, steady state.
‚ Used double sided cooling , mounting pad.
ƒ Mounted on minimum footprint full size board with metalized
„ TC measured with thermocouple incontact with top (Drain) of part.
Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
 Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
ƒ Mounted to a PCB with
small clip heatsink (still air)
ƒ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6637
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
10
1
BOTTOM
10
2.5V
≤60µs PULSE WIDTH
2.5V
1
1
10
0.1
100
ID = 14A
100
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
≤60µs PULSE WIDTH
TJ = 150°C
TJ = 25°C
TJ = 40°C
1
0.1
2.5
3.0
3.5
1.5
1.0
0.5
4.0
-60 -40 -20 0
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 6. Typical Transfer Characteristics
Fig 7. Normalized On-Resistance vs. Temperature
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
TJ = 25°C
Typical RDS (on) (mΩ)
Coss = Cds + Cgd
C, Capacitance(pF)
VGS = 4.5V
VGS = 10V
VGS, Gate-to-Source Voltage (V)
10000
100
2.0
VDS = 15V
2.0
10
Fig 5. Typical Output Characteristics
1000
1.5
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
10
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
0.1
100
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
Ciss
1000
Coss
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
16
12
8
Crss
100
4
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0
20
40
60
80
100
ID, Drain Current (A)
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
www.irf.com
IRF6637
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000.0
TJ = 150°C
TJ = 25°C
100.0
TJ = -40°C
10.0
1.0
100
100µsec
0.6
0.8
1.0
10msec
1
TA = 25°C
Tj = 150°C
Single Pulse
0.1
0.1
0.4
1msec
10
VGS = 0V
0.2
OPERATION IN THIS AREA
LIMITED BY R DS (on)
0.10
1.2
VSD , Source-to-Drain Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
10.00
100.00
Fig11. Maximum Safe Operating Area
Typical VGS(th) Gate threshold Voltage (V)
60
50
ID, Drain Current (A)
1.00
VDS , Drain-toSource Voltage (V)
40
30
20
10
2.5
2.0
ID = 250µA
1.5
1.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
TJ , Junction Temperature ( °C )
TC , Case Temperature (°C)
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
EAS, Single Pulse Avalanche Energy (mJ)
160
ID
4.9A
7.5A
BOTTOM 11A
TOP
120
80
40
0
25
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy Vs. Drain Current
www.irf.com
5
IRF6637
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16c. Unclamped Inductive Waveforms
Fig 16b. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6637
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
Re-Applied
Voltage
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MP Outline
(Medium Size Can, P-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
D
D
G
D
www.irf.com
S
G- Gate
D- Drain
S- Source
S
D
7
IRF6637
DirectFET™ Outline Dimension, MP Outline
(Medium Size Can, P-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
NOTE: CONTROLLING
DIMENSIONS ARE IN MM
CODE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
MIN
6.25
4.80
3.85
0.35
0.58
0.58
0.75
0.53
0.63
1.59
2.87
0.59
0.03
0.08
MAX
6.35
5.05
3.95
0.45
0.62
0.62
0.79
0.57
0.67
1.72
3.04
0.70
0.08
0.17
IMPERIAL
MAX
0.246
1.889
0.152
0.014
0.023
0.023
0.030
0.021
0.025
0.063
0.113
0.023
0.001
0.003
MAX
0.250
0.199
0.156
0.018
0.032
0.032
0.031
0.022
0.026
0.068
0.119
0.028
0.003
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6637
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6637). For 1000 parts on 7" reel,
order IRF6637TR1
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MAX
MIN
MIN
CODE
MAX
MAX
MAX
MIN
MIN
6.9
12.992
N.C
A
330.0
N.C
177.77 N.C
N.C
0.75
0.795
B
N.C
20.2
N.C
19.06
N.C
N.C
0.53
0.504
C
0.50
12.8
13.5
0.520
13.2
12.8
0.059
0.059
D
N.C
1.5
1.5
N.C
N.C
N.C
2.31
3.937
E
N.C
100.0
58.72
N.C
N.C
N.C
N.C
N.C
F
0.53
N.C
N.C
0.724
18.4
13.50
G
0.47
0.488
N.C
12.4
11.9
0.567
14.4
12.01
H
0.47
0.469
N.C
11.9
11.9
0.606
15.4
12.01
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/05
www.irf.com
9
Similar pages