PD - 96968 IRF6637 DirectFET Power MOSFET l l l l l l l l l Lead and Bromide Free Low Profile (<0.7 mm) Dual Sided Cooling Compatible Ultra Low Package Inductance Optimized for High Frequency Switching Ideal for CPU Core DC-DC Converters Optimized for both Sync.FET and some Control FET application Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques Typical values (unless otherwise specified) VDSS VGS RDS(on) RDS(on) 30V max ±20V max 5.7mΩ@ 10V 8.2mΩ@ 4.5V Qg Qgd Qgs2 Qrr Qoss Vgs(th) 4.0nC 1.0nC 20nC 9.9nC 1.8V tot 11nC DirectFET ISOMETRIC MP Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF6637 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6637 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6637 has been optimized for parameters that are critical in synchronous buck operating from 12 volt buss converters including Rds(on) and gate charge to minimize losses in the control FET socket. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Max. Units 30 V ±20 VGS Gate-to-Source Voltage ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 14 ID @ TA = 70°C Continuous Drain Current, VGS 11 ID @ TC = 25°C Continuous Drain Current, VGS IDM Pulsed Drain Current EAS Single Pulse Avalanche Energy IAR Avalanche Current g g e @ 10V e @ 10V f VGS, Gate-to-Source Voltage (V) Typical R DS (on) (mΩ) ID = 14A 20 15 TJ = 125°C 10 TJ = 25°C 5 2.0 4.0 6.0 8.0 VGS, Gate-to-Source Voltage (V) Fig 1. Typical On-Resistance Vs. Gate Voltage 10.0 Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com 110 h 25 A 59 31 mJ 11 A 12 ID= 11A 10 VDS = 24V VDS= 15V 8 6 4 2 0 0 4 8 12 16 20 24 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.52mH, RG = 25Ω, IAS = 11A. 1 2/15/05 IRF6637 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 26 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 5.7 7.7 ––– 8.2 10.8 V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 14A c VGS = 4.5V, ID = 11A c VGS(th) Gate Threshold Voltage 1.35 1.8 2.35 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.4 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 38 ––– ––– Qg IGSS Conditions Typ. Max. Units VDS = VGS, ID = 250µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 15V, ID = 11A Total Gate Charge ––– 11 17 Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.1 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.0 ––– Qgd Gate-to-Drain Charge ––– 4.0 6.0 ID = 11A Qgodr See Fig. 15 VDS = 15V nC VGS = 4.5V Gate Charge Overdrive ––– 2.9 ––– Qsw Switch Charge (Qgs2 + Qgd) ––– 5.0 ––– Qoss Output Charge ––– 9.9 ––– nC RG Gate Resistance ––– 1.2 ––– Ω td(on) Turn-On Delay Time ––– 12 ––– VDD = 16V, VGS = 4.5Vc tr Rise Time ––– 15 ––– ID = 11A td(off) Turn-Off Delay Time ––– 14 ––– tf Fall Time ––– 3.8 ––– Ciss Input Capacitance ––– 1330 ––– Coss Output Capacitance ––– 430 ––– Crss Reverse Transfer Capacitance ––– 150 ––– ns VDS = 16V, VGS = 0V Clamped Inductive Load VGS = 0V pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current Min. ––– Typ. Max. Units ––– ISM Pulsed Source Current MOSFET symbol 2.9 (Body Diode) A ––– ––– Conditions showing the integral reverse 110 p-n junction diode. (Body Diode)d VSD Diode Forward Voltage ––– ––– 1.0 V TJ = 25°C, IS = 11A, VGS = 0V c trr Reverse Recovery Time ––– 13 20 ns TJ = 25°C, IF = 11A Qrr Reverse Recovery Charge ––– 20 30 nC di/dt = 500A/µs c Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. Repetitive rating; pulse width limited by max. junction temperature. 2 www.irf.com IRF6637 Absolute Maximum Ratings Parameter PD @TC = 25°C c Power Dissipation c Power Dissipation f TP Peak Soldering Temperature TJ Operating Junction and TSTG Storage Temperature Range Max. Units 2.3 W Power Dissipation PD @TA = 25°C PD @TA = 70°C 1.5 89 270 °C -40 to + 150 Thermal Resistance Parameter cg Junction-to-Ambient dg Junction-to-Ambient eg Junction-to-Case fg RθJA Junction-to-Ambient RθJA RθJA RθJC RθJ-PCB Typ. Max. ––– 55 12.5 ––– 20 ––– ––– 3.0 Junction-to-PCB Mounted Linear Derating Factor 1.0 c Units °C/W ––– 0.018 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 1 τJ 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 R5 R5 τ2 τ1 τ2 τ3 τ3 τ4 τ4 τ5 τ5 Ci= τi/Ri Ci= τi/Ri 0.1 τi (sec) Ri (°C/W) τC τ 0.6676 0.000066 1.0462 0.000896 1.5611 0.004386 29.282 0.68618 25.455 32 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6637 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 10 1 BOTTOM 10 2.5V ≤60µs PULSE WIDTH 2.5V 1 1 10 0.1 100 ID = 14A 100 Typical RDS(on) (Normalized) ID, Drain-to-Source Current (Α) ≤60µs PULSE WIDTH TJ = 150°C TJ = 25°C TJ = 40°C 1 0.1 2.5 3.0 3.5 1.5 1.0 0.5 4.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd TJ = 25°C Typical RDS (on) (mΩ) Coss = Cds + Cgd C, Capacitance(pF) VGS = 4.5V VGS = 10V VGS, Gate-to-Source Voltage (V) 10000 100 2.0 VDS = 15V 2.0 10 Fig 5. Typical Output Characteristics 1000 1.5 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 10 ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 0.1 100 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Ciss 1000 Coss Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 16 12 8 Crss 100 4 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 20 40 60 80 100 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6637 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 TJ = 150°C TJ = 25°C 100.0 TJ = -40°C 10.0 1.0 100 100µsec 0.6 0.8 1.0 10msec 1 TA = 25°C Tj = 150°C Single Pulse 0.1 0.1 0.4 1msec 10 VGS = 0V 0.2 OPERATION IN THIS AREA LIMITED BY R DS (on) 0.10 1.2 VSD , Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage 10.00 100.00 Fig11. Maximum Safe Operating Area Typical VGS(th) Gate threshold Voltage (V) 60 50 ID, Drain Current (A) 1.00 VDS , Drain-toSource Voltage (V) 40 30 20 10 2.5 2.0 ID = 250µA 1.5 1.0 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 TJ , Junction Temperature ( °C ) TC , Case Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS, Single Pulse Avalanche Energy (mJ) 160 ID 4.9A 7.5A BOTTOM 11A TOP 120 80 40 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com 5 IRF6637 Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16c. Unclamped Inductive Waveforms Fig 16b. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6637 D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. Re-Applied Voltage + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MP Outline (Medium Size Can, P-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. D D G D www.irf.com S G- Gate D- Drain S- Source S D 7 IRF6637 DirectFET Outline Dimension, MP Outline (Medium Size Can, P-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC NOTE: CONTROLLING DIMENSIONS ARE IN MM CODE A B C D E F G H J K L M N P MIN 6.25 4.80 3.85 0.35 0.58 0.58 0.75 0.53 0.63 1.59 2.87 0.59 0.03 0.08 MAX 6.35 5.05 3.95 0.45 0.62 0.62 0.79 0.57 0.67 1.72 3.04 0.70 0.08 0.17 IMPERIAL MAX 0.246 1.889 0.152 0.014 0.023 0.023 0.030 0.021 0.025 0.063 0.113 0.023 0.001 0.003 MAX 0.250 0.199 0.156 0.018 0.032 0.032 0.031 0.022 0.026 0.068 0.119 0.028 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6637 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6637). For 1000 parts on 7" reel, order IRF6637TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MAX MIN MIN CODE MAX MAX MAX MIN MIN 6.9 12.992 N.C A 330.0 N.C 177.77 N.C N.C 0.75 0.795 B N.C 20.2 N.C 19.06 N.C N.C 0.53 0.504 C 0.50 12.8 13.5 0.520 13.2 12.8 0.059 0.059 D N.C 1.5 1.5 N.C N.C N.C 2.31 3.937 E N.C 100.0 58.72 N.C N.C N.C N.C N.C F 0.53 N.C N.C 0.724 18.4 13.50 G 0.47 0.488 N.C 12.4 11.9 0.567 14.4 12.01 H 0.47 0.469 N.C 11.9 11.9 0.606 15.4 12.01 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/05 www.irf.com 9