BAS40.../BAS140W Silicon Schottky Diode • General-purpose diode for high-speed switching • Circuit protection • Voltage clamping • High-level detecting and mixing • Pb-free (RoHS compliant) package • Qualified according AEC Q1011) BAS140W BAS40-02L BAS40 BAS40-04 ! BAS40-05 BAS40-05W ! , BAS40-06 BAS40-06W ! , , ! , , , BAS40-07 BAS40-07W " ! , , ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type BAS140W BAS40 BAS40-02L* BAS40-04 BAS40-05 BAS40-05W BAS40-06 BAS40-06W BAS40-07 BAS40-07W 1* Package SOD323 SOT23 TSLP-2-1 SOT23 SOT23 SOT323 SOT23 SOT323 SOT143 SOT343 Configuration single single single, leadless series common cathode common cathode common anode common anode parallel pair parallel pair Marking white 4 43s FF 44s 45s 45s 46s 46s 47s 47s BAS40-02L is not qualified according AEC Q101 1 2013-01-11 BAS40.../BAS140W Maximum Ratings at TA = 25 °C, unless otherwise specified Parameter Symbol Value Unit Diode reverse voltage VR 40 V Forward current IF 120 mA Non-repetitive peak surge forward current IFSM 200 t ≤ 10ms Total power dissipation Ptot mW BAS140W, TS ≤ 113°C 250 BAS40, BAS40-07, TS ≤ 81°C 250 BAS40-02L, TS ≤ 127°C 250 BAS40-04, BAS40-06, TS ≤ 56°C 250 BAS40-06W, TS ≤ 106°C 250 BAS40-05, TS ≤ 31°C 250 BAS40-05W, TS ≤ 98°C 250 BAS40-07W, TS ≤ 118°C 250 150 Junction temperature Tj Operating temperature range Top -55 ...150 Storage temperature Tstg -55 ...150 °C Thermal Resistance Parameter Symbol Junction - soldering point1) RthJS Value Unit K/W BAS140W ≤ 150 BAS40, BAS40-07 ≤ 275 BAS40-02L ≤ 90 BAS40-04, BAS40-06 ≤ 375 BAS40-06W ≤ 175 BAS40-05 ≤ 475 BAS40-05W ≤ 205 BAS40-07W ≤ 125 1For calculation of R thJA please refer to Application Note AN077 (Thermal Resistance Calculation) 2 2013-01-11 BAS40.../BAS140W Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter Symbol Values Unit min. typ. max. DC Characteristics 40 V Breakdown voltage V(BR) I(BR) = 10 µA Reverse current IR - - 1 µA VR = 30 V Forward voltage mV VF IF = 1 mA 250 310 380 IF = 10 mA 350 450 500 IF = 40 mA 600 720 1000 ∆ VF - - 20 CT - 3 5 pF RF - 10 - Ω τ rr - - 100 ps Forward voltage matching1) IF = 10 mA AC Characteristics Diode capacitance VR = 0 , f = 1 MHz Differential forward resistance IF = 10 mA, f = 10 kHz Charge carrier life time IF = 25 mA 1∆V F is the difference between lowest and highest VF in a multiple diode component. 3 2013-01-11 BAS40.../BAS140W Diode capacitance CT = ƒ (VR ) Forward resistance rf = ƒ (IF) f = 1MHz f = 10 kHz BAS 40... 5 CT EHB00040 10 3 rf pF BAS 40... EHB00041 Ω 4 10 2 3 2 10 1 1 0 10 0 20 V 10 3 0.1 30 1 10 mA 100 ΙF VR Reverse current IR = ƒ (TA) Reverse current IR = ƒ(VR ) VR = Parameter TA = Parameter 10 -4 10 3 A ΙR BAS 40... EHB00039 µA TA = 150 C 10 2 IR 10 -5 10 1 10 -6 85 C 10 0 VR = 40V 30V 20V 10V 10 -7 10 -1 25 C 10 -8 0 25 50 75 100 °C 10 -2 150 TA 0 10 20 30 V 40 VR 4 2013-01-11 BAS40.../BAS140W Forward Voltage VF = ƒ (TA) Forward current IF = ƒ (VF) IF = Parameter TA = Parameter 10 2 0.8 ΙF V EHB00038 mA 10 1 0.6 VF BAS 40... IF = 40 mA 10 mA 1 mA 0.1 mA 10 µA 1 µA 0.5 0.4 TA = -40 ˚C 25 ˚C 85 ˚C 150 ˚C 10 0 0.3 10 -1 0.2 0.1 0 -50 -25 0 25 50 75 100 °C 10-2 0.0 150 0.5 1.0 TA V 1.5 VF Forward current IF = ƒ (TS ) Forward current IF = ƒ (TS ) BAS140W BAS40, BAS40-07 140 140 mA mA IF 100 IF 100 80 80 60 60 40 40 20 20 0 0 15 30 45 60 75 90 105 120 °C 0 0 150 TS 15 30 45 60 75 90 105 120 °C 150 TS 5 2013-01-11 BAS40.../BAS140W Forward current IF = ƒ (TS ) Forward current IF = ƒ (TS ) BAS40-02L BAS40-04, BAS40-06 140 140 mA mA IF 100 IF 100 80 80 60 60 40 40 20 20 0 0 15 30 45 60 75 90 105 120 °C 0 0 150 15 30 45 60 75 90 105 120 °C TS 150 TS Forward current IF = ƒ (TS ) Forward current IF = ƒ (TS ) BAS40-06W BAS40-05 140 140 mA mA IF 100 IF 100 80 80 60 60 40 40 20 20 0 0 15 30 45 60 75 90 105 120 °C 0 0 150 TS 15 30 45 60 75 90 105 120 °C 150 TS 6 2013-01-11 BAS40.../BAS140W Forward current IF = ƒ (TS ) Forward current IF = ƒ (TS ) BAS40-05W BAS40-07W 140 140 mA mA IF 100 IF 100 80 80 60 60 40 40 20 20 0 0 15 30 45 60 90 105 120 °C 75 0 0 150 15 30 45 60 75 90 105 120 °C TS 150 TS Permissible Puls Load RthJS = ƒ (t p) Permissible Pulse Load BAS140W IFmax / IFDC = ƒ (t p) BAS140W R thJS 5 K/W EHD07165 BAS 140W Ι F max Ι F DC 10 2 EHD07166 BAS 140W tp tp D= T 5 T 10 2 D= 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 5 10 1 5 D= 0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 5 tp tp D= T 10 0 10 -6 10 -5 10 -4 10 T -3 10 -2 s 10 10 0 10 -6 0 tp 7 10 -5 10 -4 10 -3 10 -2 s tp 10 0 2013-01-11 BAS40.../BAS140W Permissible Puls Load RthJS = ƒ (t p) Permissible Pulse Load BAS40-02L IFmax / IFDC = ƒ (t p) BAS40-02L 10 2 10 1 RthJS IFmax/IFDC K/W 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 1 10 0 -6 10 10 -5 10 -4 10 -3 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 - 10 -2 10 -1 s 10 10 0 -6 10 1 10 -5 10 -4 10 -3 10 -2 tp s 10 0 10 0 tp Permissible Puls Load RthJS = ƒ (t p) Permissible Pulse Load BAS40-06W IFmax / IFDC = ƒ (t p) BAS40-06W 10 2 10 3 IFmax/IFDC RthJS K/W 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 1 10 0 -6 10 10 -5 10 -4 10 -3 10 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s tp 8 2013-01-11 BAS40.../BAS140W Permissible Puls Load RthJS = ƒ (t p) Permissible Pulse Load BAS40-05W IFmax / IFDC = ƒ (t p) BAS40-05W 10 10 2 3 IFmax/IFDC RthJS K/W 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 10 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 1 10 0 -6 10 10 -5 10 -4 10 -3 10 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 9 2013-01-11 Package SOD323 10 BAS40.../BAS140W 2013-01-11 Package SOT143 BAS40.../BAS140W 2 0.1 MAX. 10˚ MAX. 1 1 ±0.1 0.2 0.8 +0.1 -0.05 0.4 +0.1 -0.05 A 5 0...8˚ 0.2 M A 0.25 M B 1.7 0.08...0.1 1.3 ±0.1 3 2.4 ±0.15 4 B 10˚ MAX. 2.9 ±0.1 1.9 0.15 MIN. Package Outline Foot Print 1.2 0.8 0.9 1.1 0.9 0.8 1.2 0.8 0.8 Marking Layout (Example) RF s 56 Manufacturer Pin 1 2005, June Date code (YM) BFP181 Type code Standard Packing Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel 0.2 2.6 8 4 Pin 1 3.15 1.15 11 2013-01-11 Package SOT23 BAS40.../BAS140W 0.4 +0.1 -0.05 1) 2 0.08...0.1 C 0.95 1.3 ±0.1 1 2.4 ±0.15 3 0.1 MAX. 10˚ MAX. B 1 ±0.1 10˚ MAX. 2.9 ±0.1 0.15 MIN. Package Outline A 5 0...8˚ 1.9 0.2 0.25 M B C M A 1) Lead width can be 0.6 max. in dambar area Foot Print 0.8 0.9 1.3 0.9 0.8 1.2 Marking Layout (Example) Manufacturer EH s 2005, June Date code (YM) Pin 1 BCW66 Type code Standard Packing Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel 4 0.2 8 2.13 2.65 0.9 Pin 1 1.15 3.15 12 2013-01-11 Package SOT323 BAS40.../BAS140W Package Outline 0.9 ±0.1 2 ±0.2 0.3 +0.1 -0.05 0.1 MAX. 3x 0.1 M 0.1 A 1 2 1.25 ±0.1 0.1 MIN. 2.1 ±0.1 3 0.15 +0.1 -0.05 0.65 0.65 0.2 M A Foot Print 0.8 1.6 0.6 0.65 0.65 Marking Layout (Example) Manufacturer 2005, June Date code (YM) BCR108W Type code Pin 1 Standard Packing Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel 0.2 2.3 8 4 Pin 1 2.15 1.1 13 2013-01-11 Package TSLP-2-1 14 BAS40.../BAS140W 2013-01-11 BAS40.../BAS140W Edition 2009-11-16 Published by Infineon Technologies AG 81726 Munich, Germany 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 15 2013-01-11