PD -91689A IRG4IBC20KD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Short Circuit Rated UltraFast IGBT C • High switching speed optimized for up to 25kHz with low VCE(on) • Short Circuit Rating 10µs @ 125°C, VGE = 15V • Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than previous generation • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-220 FULLPAK VCES = 600V VCE(on) typ. = 2.27V G @VGE = 15V, IC = 6.3A E n-ch an nel Benefits • Generation 4 IGBTs offer highest efficiencies available maximizing the power density of the system • IGBTs optimized for specific application conditions • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise EMI • Designed to exceed the power handling capability of equivalent industry-standard IGBTs TO-220 FULLPAK Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VISOL VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time RMS Isolation Voltage, Terminal to Case, t = 1 min Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 11.5 6.3 23 24 6.3 24 10 2500 ± 20 34 14 -55 to +150 V A µs V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– ––– ––– 2.0 (0.07) 3.7 5.5 65 ––– Units °C/W g (oz) 1 4/24/2000 IRG4IBC20KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown VoltageS 600 — — V Temperature Coeff. of Breakdown Voltage — 0.49 — V/°C Collector-to-Emitter Saturation Voltage — 2.27 2.8 — 3.01 — V — 2.43 — Gate Threshold Voltage 3.0 — 6.0 Temperature Coeff. of Threshold Voltage — -10 — mV/°C Forward Transconductance T 2.9 4.3 — S Zero Gate Voltage Collector Current — — 250 µA — — 1000 Diode Forward Voltage Drop — 1.4 1.7 V — 1.3 1.6 Gate-to-Emitter Leakage Current — — ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 9.0A VGE = 15V See Fig. 2, 5 IC = 16A IC = 9.0A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 9.0A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 8.0A See Fig. 13 IC = 8.0A, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres trr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 34 51 IC = 9.0A 4.9 7.4 nC VCC = 400V See Fig.8 14 21 VGE = 15V 54 — 34 — TJ = 25°C ns 180 270 IC = 9.0A, VCC = 480V 72 110 VGE = 15V, RG = 50Ω 0.34 — Energy losses include "tail" 0.30 — mJ and diode reverse recovery 0.64 0.96 See Fig. 9,10,14 — — µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 50Ω , VCPK < 500V 51 — TJ = 150°C, See Fig. 10,11,14 37 — IC = 9.0A, VCC = 480V ns 220 — VGE = 15V, RG = 50Ω 160 — Energy losses include "tail" 0.85 — mJ and diode reverse recovery 7.5 — nH Measured 5mm from package 450 — VGE = 0V 61 — pF VCC = 30V See Fig. 7 14 — ƒ = 1.0MHz 37 55 ns TJ = 25°C See Fig. 55 90 TJ = 125°C 14 IF = 8.0A 3.5 5.0 A TJ = 25°C See Fig. 4.5 8.0 TJ = 125°C 15 VR = 200V 65 138 nC TJ = 25°C See Fig. 124 360 TJ = 125°C 16 di/dt = 200Aµs 240 — A/µs TJ = 25°C See Fig. 210 — TJ = 125°C 17 www.irf.com IRG4IBC20KD 8 For both: LOAD CURRENT (A) 7 D uty cy cle: 50% TJ = 125°C T s ink = 90°C G ate drive as specified 6 P ow e r Dis sip ation = 9.5 W 5 S q u a re w a v e : 6 0% of rate d volta ge 4 3 I 2 Id e a l d io d e s 1 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) I C, Collector-to-Emitter Current (A) TJ = 25 o C TJ = 150 o C 10 V = 15V 20µs PULSE WIDTH GE 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) 100 100 10 TJ = 150 o C TJ = 25 oC V = 50V 5µs PULSE WIDTH CC 1 5 10 15 20 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4IBC20KD 5.0 V = 15V 80 us PULSE WIDTH GE VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 12 10 8 6 4 2 0 25 50 75 100 125 3.0 IC = 9.0A 9A IC = 4.5 A 2.0 1.0 -60 -40 -20 150 TC , Case Temperature ( °C) Fig. 4 - Maximum Collector Current vs. Case Temperature IC = 18 A 4.0 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 P DM 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4IBC20KD C, Capacitance (pF) VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 600 Cies 400 200 C oes 20 VGE , Gate-to-Emitter Voltage (V) 800 VCC = 400V I C = 9.0A 16 12 8 4 C res 0 1 10 0 100 0 VCE , Collector-to-Emitter Voltage (V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 10 V CC = 480V V GE = 15V TJ = 25 ° C I C = 9.0A 0.7 0.6 0.5 0 10 20 30 40 RRGG ,, Gate Resistance( Ω (Ohm) Gate Resistance ) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 20 30 40 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) 0.8 10 QG , Total Gate Charge (nC) 50 RG 50 = Ohm Ω VGE = 15V VCC = 480V IC = 18 A IC = 9.0A 9A 1 IC = 4.5 A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4IBC20KD 100 Ω = 50 Ohm = 150° C = 480V = 15V I C, Collector Current (A) RG TJ VCC VGE 2.0 1.0 VGE = 20V T J = 125 o C 10 SAFE OPERATING AREA 0.0 0 4 8 12 16 1 20 1 I C , Collector-to-emitter Current (A) 10 100 1000 VCE, Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 Instantan eou s Forwa rd C urre nt - I F (A ) Total Switching Losses (mJ) 3.0 10 TJ = 15 0°C TJ = 12 5°C TJ = 2 5°C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 Fo rwa rd V oltage D rop - V FM (V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4IBC20KD 100 100 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 80 I F = 8 .0A I IR R M - (A ) t rr - (ns) IF = 16 A 60 I F = 1 6A 10 IF = 8 .0 A 40 I F = 4.0 A I F = 4 .0 A 20 0 100 1 100 1000 d i f /d t - (A /µ s) 1000 di f /dt - (A /µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 10000 500 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C d i(re c)M /d t - (A /µs) Q R R - (n C ) 400 300 I F = 16 A 200 I F = 8 .0A I F = 4 .0A 1000 I F = 8.0 A I F = 16 A 100 IF = 4.0 A 0 100 di f /dt - (A /µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 1000 di f /dt - (A /µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4IBC20KD 90% Vge Same ty pe device as D .U.T. +Vge V ce 430µF 80% of Vce D .U .T. Ic 9 0 % Ic 10% Vce Ic 5 % Ic td (o ff) tf E o ff = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 ∫ t1 + 5 µ S V c e icIcd tdt Vce t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id t Ic ddt tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt Vce E on = V t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 VVc d idIcd t dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4IBC20KD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µ F 100 V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4IBC20KD Notes: Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG= 50Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot. Case Outline TO-220 FULLPAK 1 0 .6 0 (.4 1 7 ) 1 0 .4 0 (.4 0 9 ) ø 3 .4 0 (.1 3 3 ) 3 .1 0 (.1 2 3 ) 4 .8 0 (.1 8 9 ) 4 .6 0 (.1 8 1 ) -A 3 .7 0 (.1 4 5 ) 3 .2 0 (.1 2 6 ) 1 6 .0 0 (.6 3 0 ) 1 5 .8 0 (.6 2 2 ) 2 .8 0 (.1 1 0 ) 2 .6 0 (.1 0 2 ) L E A D A S S IG N M E N T S LEAD ASSIGMENTS 1 - GA TE 1- GATE 2 - D R A IN 2- COLLECTOR 3 - SOURCE 3- EMITTER 7 .1 0 (.2 8 0 ) 6 .7 0 (.2 6 3 ) 1 .1 5 (.0 4 5) M IN . NOTES : 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4.5 M , 1 9 8 2 1 2 3 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 .3 0 (.1 3 0 ) 3 .1 0 (.1 2 2 ) -B - 1 3 .7 0 (.5 4 0 ) 1 3 .5 0 (.5 3 0 ) C A 1 .4 0 (.0 5 5 ) 3X 1 .0 5 (.0 4 2 ) 0 .9 0 (.0 35 ) 3 X 0 .7 0 (.0 28 ) 0 .2 5 (.0 1 0 ) 2 .5 4 (.1 0 0 ) 2X 3X M A M B 0 .4 8 (.0 1 9 ) 0 .4 4 (.0 1 7 ) 2 .8 5 (.1 1 2 ) 2 .6 5 (.1 0 4 ) D B M IN IM U M C R E E P A G E D IS T A N C E B E T W E E N A -B -C -D = 4 .8 0 (.1 89 ) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 10/00 10 www.irf.com