MC74LVX8053 Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS The MC74LVX8053 utilizes silicon−gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. This analog multiplexer/demultiplexer controls analog voltages that may vary across the complete power supply range (from VCC to GND). The LVX8053 is similar in pinout to the high−speed HC4053A, and the metal−gate MC14053B. The Channel−Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off. The Channel−Select and Enable inputs are compatible with standard CMOS outputs; with pull−up resistors they are compatible with LSTTL outputs. This device has been designed so that the ON resistance (Ron) is more linear over input voltage than Ron of metal−gate CMOS analog switches. http://onsemi.com MARKING DIAGRAMS 16 SOIC−16 D SUFFIX CASE 751B LVX8053 AWLYWW 1 16 LVX 8053 ALYW TSSOP−16 DT SUFFIX CASE 948F 1 Features • • • • • • • • • • Fast Switching and Propagation Speeds Low Crosstalk Between Switches Diode Protection on All Inputs/Outputs Analog Power Supply Range (VCC − GND) = 2.5 to 6.0 V Digital (Control) Power Supply Range (VCC − GND) = 2.5 to 6.0 V Improved Linearity and Lower ON Resistance Than Metal−Gate Counterparts Low Noise In Compliance With the Requirements of JEDEC Standard No. 7A Chip Complexity: LVX8053 − 156 FETs or 39 Equivalent Gates Pb−Free Packages are Available* 16 SOEIAJ−16 M SUFFIX CASE 966 LVX8053 ALYW 1 A WL or L Y WW or W = = = = Assembly Location Wafer Lot Year Work Week ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Semiconductor Components Industries, LLC, 2005 April, 2005 − Rev. 4 1 Publication Order Number: MC74LVX8053/D MC74LVX8053 12 X0 13 X1 X SWITCH 2 ANALOG INPUTS/OUTPUTS Y0 1 Y1 Y SWITCH 5 Z0 3 Z1 Z SWITCH 14 15 4 X Y Y X X1 X0 A B C 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 Y1 Y0 Z1 Z Z0 Enable NC GND PIN CONNECTION AND MARKING DIAGRAM (Top View) COMMON OUTPUTS/INPUTS Z 11 A 10 CHANNEL-SELECT B INPUTS 9 C 6 ENABLE VCC FUNCTION TABLE − MC74LVX8053 PIN 16 = VCC PIN 8 = GND Control Inputs NOTE: This device allows independent control of each switch. Channel−Select Input A controls the X−Switch, Input B controls the Y−Switch and Input C controls the Z−Switch LOGIC DIAGRAM Triple Single−Pole, Double−Position Plus Common Off Enable C L L L L L L L L H L L L L H H H H X Select B A L L H H L L H H X L H L H L H L H X ON Channels Z0 Z0 Z0 Z0 Z1 Z1 Z1 Z1 Y0 Y0 Y1 Y1 Y0 Y0 Y1 Y1 NONE X0 X1 X0 X1 X0 X1 X0 X1 X = Don’t Care ORDERING INFORMATION Package Shipping† MC74LVX8053DR2 SOIC−16 2500 Tape & Reel MC74LVX8053DR2G SOIC−16 (Pb−Free) 2500 Tape & Reel MC74LVX8053DTR2 TSSOP−16* 2500 Tape & Reel MC74LVX8053M SOEIAJ−16 50 Units / Rail MC74LVX8053MG SOEIAJ−16 (Pb−Free) 50 Units / Rail MC74LVX8053MEL SOEIAJ−16 2000 Tape & Reel MC74LVX8053MELG SOEIAJ−16 (Pb−Free) 2000 Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 2 MC74LVX8053 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ MAXIMUM RATINGS Symbol Parameter Value Unit – 0.5 to + 7.0 V Analog Input Voltage − 0.5 to VCC + 0.5 V Digital Input Voltage (Referenced to GND) – 0.5 to VCC + 0.5 V ± 20 mA 500 450 mW – 65 to + 150 C 260 C VCC Positive DC Supply Voltage VIS Vin I (Referenced to GND) DC Current, Into or Out of Any Pin PD Power Dissipation in Still Air, SOIC Package† TSSOP Package† Tstg Storage Temperature Range TL Lead Temperature, 1 mm from Case for 10 Seconds Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. †Derating — SOIC Package: – 7 mW/C from 65 to 125C TSSOP Package: − 6.1 mW/C from 65 to 125C ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ RECOMMENDED OPERATING CONDITIONS Symbol Parameter VCC Positive DC Supply Voltage (Referenced to GND) VIS Analog Input Voltage Vin Digital Input Voltage (Referenced to GND) VIO* Static or Dynamic Voltage Across Switch TA Operating Temperature Range, All Package Types tr, tf Input Rise/Fall Time (Channel Select or Enable Inputs) VCC = 3.3 V ± 0.3 V VCC = 5.0 V ± 0.5 V Min Max Unit 2.5 6.0 V 0.0 VCC V GND VCC V 1.2 V + 85 C – 55 ns/V 0 0 100 20 *For voltage drops across switch greater than 1.2 V (switch on), excessive VCC current may be drawn; i.e., the current out of the switch may contain both VCC and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. http://onsemi.com 3 This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND (Vin or Vout) VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V CC ). Unused outputs must be left open. MC74LVX8053 DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) Symbol Parameter Condition Guaranteed Limit VCC V −55 to 25°C ≤ 85°C ≤ 125°C Unit VIH Minimum High−Level Input Voltage, Channel−Select or Enable Inputs Ron = Per Spec 2.5 3.0 4.5 5.5 1.50 2.10 3.15 3.85 1.50 2.10 3.15 3.85 1.50 2.10 3.15 3.85 V VIL Maximum Low−Level Input Voltage, Channel−Select or Enable Inputs Ron = Per Spec 2.5 3.0 4.5 5.5 0.5 0.9 1.35 1.65 0.5 0.9 1.35 1.65 0.5 0.9 1.35 1.65 V Iin Maximum Input Leakage Current, Channel−Select or Enable Inputs Vin = VCC or GND, 5.5 ± 0.1 ± 1.0 ± 1.0 A ICC Maximum Quiescent Supply Current (per Package) Channel Select, Enable and VIS = VCC or GND; VIO = 0 V 5.5 4 40 160 A ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ DC ELECTRICAL CHARACTERISTICS Analog Section Symbol Ron Parameter Maximum “ON” Resistance Guaranteed Limit VCC V −55 to 25°C 85C ≤ 125°C Unit Vin = VIL or VIH VIS = VCC to GND |IS| 10.0 mA (Figures 1, 2) 3.0 4.5 5.5 40 30 25 45 32 28 50 37 30 Vin = VIL or VIH VIS = VCC or GND (Endpoints) |IS| 10.0 mA (Figures 1, 2) 3.0 4.5 5.5 30 25 20 35 28 25 40 35 30 Test Conditions Ron Maximum Difference in “ON” Resistance Between Any Two Channels in the Same Package Vin = VIL or VIH VIS = 1/2 (VCC − GND) |IS| 10.0 mA 3.0 4.5 5.5 15 8.0 8.0 20 12 12 25 15 15 Ioff Maximum Off−Channel Leakage Current, Any One Channel Vin = VIL or VIH; VIO = VCC or GND; Switch Off (Figure 3) 5.5 0.1 0.5 1.0 A Maximum Off−Channel Leakage Current, Common Channel Vin = VIL or VIH; VIO = VCC or GND; Switch Off (Figure 4) 5.5 0.1 1.0 2.0 Maximum On−Channel Leakage Current, Channel−to−Channel Vin = VIL or VIH; Switch−to−Switch = VCC or GND; (Figure 5) 5.5 0.1 1.0 2.0 Ion http://onsemi.com 4 A MC74LVX8053 AC CHARACTERISTICS (CL = 50 pF, Input tr = tf = 3 ns) Symbol Parameter Guaranteed Limit VCC V −55 to 25°C ≤ 85°C ≤ 125°C Unit tPLH, tPHL Maximum Propagation Delay, Channel−Select to Analog Output (Figure 9) 2.5 3.0 4.5 5.5 30 20 15 15 35 25 18 18 40 30 22 20 ns tPLH, tPHL Maximum Propagation Delay, Analog Input to Analog Output (Figure 10) 2.5 3.0 4.5 5.5 4.0 3.0 1.0 1.0 6.0 5.0 2.0 2.0 8.0 6.0 2.0 2.0 ns tPLZ, tPHZ Maximum Propagation Delay, Enable to Analog Output (Figure 11) 2.5 3.0 4.5 5.5 30 20 15 15 35 25 18 18 40 30 22 20 ns tPZL, tPZH Maximum Propagation Delay, Enable to Analog Output (Figure 11) 2.5 3.0 4.5 5.5 20 12 8.0 8.0 25 14 10 10 30 15 12 12 ns Cin Maximum Input Capacitance, Channel−Select or Enable Inputs 10 10 10 pF CI/O Maximum Capacitance Analog I/O 35 35 35 pF Common O/I 50 50 50 Feedthrough 1.0 1.0 1.0 (All Switches Off) Typical @ 25°C, VCC = 5.0 V CPD 45 Power Dissipation Capacitance (Figure 13)* * Used to determine the no−load dynamic power consumption: P D = CPD VCC2 f + ICC VCC . http://onsemi.com 5 pF MC74LVX8053 ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V) Symbol BW − Parameter VCC V Condition Maximum On−Channel Bandwidth or Minimum Mi i F Frequency R Response (Figure 6) fin = 1MHz Sine Wave; Adjust fin Voltage to Obtain 0dB att VOS; IIncrease fin Frequency 0dBm F Until U til dB Meter Reads −3dB; RL = 50, CL = 10pF Off−Channel Feedthrough Isolation (Figure 7) fin = Sine Wave; Adjust fin Voltage to Obtain 0dBm at VIS fin = 10kHz, RL = 600, CL = 50pF fin = 1.0MHz, RL = 50, CL = 10pF − Feedthrough Noise. Channel−Select Input to Common I/O (Figure 8) Vin ≤ 1MHz Square Wave (tr = tf = 6ns); Adjust RL at Setup so that IS = 0A; Enable = GND RL = 600, CL = 50pF RL = 10k, CL = 10pF − Crosstalk Between Any Two Switches (Figure 12) fin = Sine Wave; Adjust fin Voltage to Obtain 0dBm at VIS fin = 10kHz, RL = 600, CL = 50pF fin = 1.0MHz, RL = 50, CL = 10pF THD Total Harmonic Distortion (Figure 14) fin = 1kHz, RL = 10k, CL = 50pF THD = THDmeasured − THDsource VIS = 2.0VPP sine wave VIS = 4.0VPP sine wave VIS = 5.5VPP sine wave Ron , ON RESISTANCE (OHMS) 40 35 125°C 85°C 25°C 20 −55 °C 15 10 5 00 1.0 2.0 3.0 VIN, INPUT VOLTAGE (VOLTS) Figure 1a. Typical On Resistance, VCC = 3.0 V http://onsemi.com 6 Unit MHz 3.0 4.5 5.5 120 120 120 3.0 4.5 5.5 −50 −50 −50 3.0 4.5 5.5 −37 −37 −37 3.0 4.5 5.5 25 105 135 3.0 4.5 5.5 35 145 190 3.0 4.5 5.5 −50 −50 −50 3.0 4.5 5.5 −60 −60 −60 3.0 4.5 5.5 45 25 25°C dB mVPP dB % *Limits not tested. Determined by design and verified by qualification. 30 Limit* 4.0 0.10 0.08 0.05 MC74LVX8053 30 25 125°C 85°C 20 25°C 15 −55 °C Ron , ON RESISTANCE (OHMS) Ron , ON RESISTANCE (OHMS) 30 10 5 0 25 125°C 85°C 20 25°C −55 °C 15 10 5 0 1.0 2.0 3.0 4.0 0 5.0 0 1.0 2.0 VIN, INPUT VOLTAGE (VOLTS) Figure 1b. Typical On Resistance, VCC = 4.5 V 4.0 5.0 Figure 1c. Typical On Resistance, VCC = 5.5 V PLOTTER PROGRAMMABLE POWER SUPPLY − 3.0 VIN, INPUT VOLTAGE (VOLTS) MINI COMPUTER DC ANALYZER + VCC DEVICE UNDER TEST ANALOG IN COMMON OUT GND GND Figure 2. On Resistance Test Set−Up http://onsemi.com 7 6.0 MC74LVX8053 VCC VCC VCC 16 GND GND ANALOG I/O OFF A VCC VIH OFF VIH 6 8 Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set−Up VCC Figure 4. Maximum Off Channel Leakage Current, Common Channel, Test Set−Up VCC VCC 16 A fin dB METER ON N/C COMMON O/I OFF VOS 16 0.1F ON VCC COMMON O/I 6 8 GND OFF VCC COMMON O/I OFF NC VCC 16 RL CL* ANALOG I/O VIL 6 6 8 8 *Includes all probe and jig capacitance Figure 5. Maximum On Channel Leakage Current, Channel to Channel, Test Set−Up VCC VIS VCC VOS 16 0.1F fin dB METER OFF RL Figure 6. Maximum On Channel Bandwidth, Test Set−Up CL* 16 RL COMMON O/I ON/OFF ANALOG I/O RL OFF/ON RL RL 6 6 8 VIL or VIH VCC GND CHANNEL SELECT Vin ≤ 1 MHz tr = tf = 3 ns 8 CL* TEST POINT VCC 11 CHANNEL SELECT *Includes all probe and jig capacitance *Includes all probe and jig capacitance Figure 7. Off Channel Feedthrough Isolation, Test Set−Up Figure 8. Feedthrough Noise, Channel Select to Common Out, Test Set−Up http://onsemi.com 8 MC74LVX8053 VCC VCC 16 VCC CHANNEL SELECT COMMON O/I ON/OFF 50% ANALOG I/O OFF/ON GND tPLH CL* TEST POINT tPHL 6 ANALOG OUT 50% 8 CHANNEL SELECT *Includes all probe and jig capacitance Figure 9a. Propagation Delays, Channel Select to Analog Out Figure 9b. Propagation Delay, Test Set−Up Channel Select to Analog Out VCC 16 VCC ANALOG IN COMMON O/I ANALOG I/O ON 50% CL* TEST POINT GND tPLH tPHL ANALOG OUT 6 8 50% *Includes all probe and jig capacitance Figure 10a. Propagation Delays, Analog In to Analog Out tf tr 90% 50% 10% ENABLE tPZL ANALOG OUT tPLZ 1 VCC GND VCC VCC HIGH IMPEDANCE 10% POSITION 1 WHEN TESTING tPHZ AND tPZH POSITION 2 WHEN TESTING tPLZ AND tPZL 2 16 1 ON/OFF CL* VOL tPHZ ENABLE 90% 1k ANALOG I/O 2 50% tPZH ANALOG OUT Figure 10b. Propagation Delay, Test Set−Up Analog In to Analog Out VOH 50% 8 HIGH IMPEDANCE Figure 11a. Propagation Delays, Enable to Analog Out 6 Figure 11b. Propagation Delay, Test Set−Up Enable to Analog Out http://onsemi.com 9 TEST POINT MC74LVX8053 VCC VIS A VCC 16 RL fin 16 VOS ON COMMON O/I ON/OFF NC ANALOG I/O 0.1F OFF/ON OFF RL RL CL* RL CL* VCC 6 6 8 8 CHANNEL SELECT 11 *Includes all probe and jig capacitance Figure 12. Crosstalk Between Any Two Switches, Test Set−Up Figure 13. Power Dissipation Capacitance, Test Set−Up 0 VIS VCC −10 VOS 16 0.1F fin ON CL* TO DISTORTION METER −30 −40 dB RL FUNDAMENTAL FREQUENCY −20 −50 DEVICE −60 6 SOURCE −70 8 −80 −90 *Includes all probe and jig capacitance − 100 1.0 2.0 3.125 FREQUENCY (kHz) Figure 14a. Total Harmonic Distortion, Test Set−Up Figure 14b. Plot, Harmonic Distortion APPLICATIONS INFORMATION The Channel Select and Enable control pins should be at VCC or GND logic levels. VCC being recognized as a logic high and GND being recognized as a logic low. In this example: VCC = +5V = logic high GND = 0V = logic low The maximum analog voltage swing is determined by the supply voltages VCC. The positive peak analog voltage should not exceed VCC. Similarly, the negative peak analog voltage should not go below GND. In this example, the difference between VCC and GND is five volts. Therefore, using the configuration of Figure 15, a maximum analog signal of five volts peak−to−peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and outputs to VCC or GND through a low value resistor helps minimize crosstalk and feedthrough noise that may be picked up by an unused switch. Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that: VCC − GND = 2 to 6 volts When voltage transients above VCC and/or below GND are anticipated on the analog channels, external Germanium or Schottky diodes (Dx) are recommended as shown in Figure 16. These diodes should be able to absorb the maximum anticipated current surges during clipping. http://onsemi.com 10 MC74LVX8053 VCC +5V +5V 16 ANALOG SIGNAL 0V ON 6 8 Dx +5V ANALOG SIGNAL VCC 16 Dx Dx VEE VEE 8 Figure 15. Application Example Figure 16. External Germanium or Schottky Clipping Diodes +5V +5V 16 ANALOG SIGNAL GND ON/OFF 6 8 Dx ON/OFF 0V TO EXTERNAL CMOS CIRCUITRY 0 to 5V DIGITAL SIGNALS 11 10 9 VCC +5V ANALOG SIGNAL +5V * R R 11 10 9 +5V +5V GND GND 16 ANALOG SIGNAL ON/OFF +5V ANALOG SIGNAL R GND +5V 6 LSTTL/NMOS CIRCUITRY 8 * 2K ≤ R ≤ 10K 11 10 9 LSTTL/NMOS CIRCUITRY VHC1GT50 BUFFERS a. Using Pull−Up Resistors b. Using HCT Interface Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs A 11 13 LEVEL SHIFTER 12 14 B 10 1 LEVEL SHIFTER 2 15 C 9 3 LEVEL SHIFTER 5 4 ENABLE 6 LEVEL SHIFTER Figure 18. Function Diagram, LVX8053 http://onsemi.com 11 X1 X0 X Y1 Y0 Y Z1 Z0 Z MC74LVX8053 PACKAGE DIMENSIONS SOIC−16 D SUFFIX CASE 751B−05 ISSUE J NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. −A− 16 9 −B− 1 P 8 PL 0.25 (0.010) 8 B M S G R K DIM A B C D F G J K M P R F X 45 C −T− SEATING PLANE J M D 16 PL 0.25 (0.010) M T B S A MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0 7 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0 7 0.229 0.244 0.010 0.019 S TSSOP−16 DT SUFFIX CASE 948F−01 ISSUE A 16X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S K ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ K1 2X L/2 16 9 J1 B −U− L SECTION N−N J PIN 1 IDENT. 8 1 N 0.25 (0.010) 0.15 (0.006) T U S A −V− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. M N F DETAIL E −W− C 0.10 (0.004) −T− SEATING PLANE H D DETAIL E G http://onsemi.com 12 DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.18 0.28 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0 8 INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.007 0.011 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0 8 MC74LVX8053 SOEIAJ−16 M SUFFIX CASE 966−01 ISSUE O 16 LE 9 Q1 M E HE 1 8 L DETAIL P Z D e VIEW P A DIM A A1 b c D E e HE L LE M Q1 Z A1 b 0.13 (0.005) c M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018). 0.10 (0.004) http://onsemi.com 13 MILLIMETERS MIN MAX −−− 2.05 0.05 0.20 0.35 0.50 0.18 0.27 9.90 10.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 10 0 0.70 0.90 −−− 0.78 INCHES MIN MAX −−− 0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.390 0.413 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 10 0 0.028 0.035 −−− 0.031 MC74LVX8053 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 14 For additional information, please contact your local Sales Representative. MC74LVX8053/D