STMicroelectronics M68AW127BL70MC1T 1mbit 128k x8, 3.0v asynchronous sram Datasheet

M68AW127B
1Mbit (128K x8), 3.0V Asynchronous SRAM
FEATURES SUMMARY
■ SUPPLY VOLTAGE: 2.7 to 3.6V
■
128K x 8 bits SRAM with OUTPUT ENABLE
■
EQUAL CYCLE and ACCESS TIMES: 70ns
■
LOW STANDBY CURRENT
■
■
LOW VCC DATA RETENTION: 1.5V
TRI-STATE COMMON I/O
■
LOW ACTIVE and STANDBY POWER
Figure 1. Packages
SO32 (MC)
TSOP32
8 x 20 mm
(N)
TSOP32
8 x 13.4 mm
(NK)
August 2003
1/20
M68AW127B
TABLE OF CONTENTS
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 5. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. SO Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. TSOP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 5. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 2. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 6. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 7. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. Address Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 9. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms. . . . . . . . . . . . . . . 9
Table 7. Read and Standby Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 11. Write Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 12. Chip Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 13. E1 Controlled, Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14. E2 Controlled, Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 9. Low VCC Data Retention Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
SO32 - 32 lead Plastic Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
SO32 - 32 lead Plastic Small Outline, Package Mechanical Data. . . . . . . . . . . . . . . . . . . . . . . . . . 15
TSOP32 - 32 lead Plastic Small Outline 8x20mm, Package Outline. . . . . . . . . . . . . . . . . . . . . . . . 16
TSOP32 - 32 lead Plastic Small Outline 8x20mm, Package Mechanical Data . . . . . . . . . . . . . . . . 16
TSOP32 - 32 lead Plastic Small Outline 8x13.4mm, Package Outline . . . . . . . . . . . . . . . . . . . . . . 17
TSOP32 - 32 lead Plastic Small Outline 8x13.4mm, Package Mechanical Data . . . . . . . . . . . . . . 17
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 13. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 14. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2/20
M68AW127B
SUMMARY DESCRIPTION
The M68AW127B is a 1Mbit (1,048,576 bit) CMOS
SRAM, organized as 131,072 words by 8 bits. The
device features fully static operation requiring no
external clocks or timing strobes, with equal address access and cycle times. It requires a single
2.7 to 3.6V supply.
This device has an automatic power-down feature,
reducing the power consumption by over 99%
when deselected.
The M68AW127B is available in SO32, TSOP32
8x20mm and TSOP32 8x13.4mm packages.
Figure 2. Logic Diagram
Table 1. Signal Names
VCC
17
8
A0-A16
DQ0-DQ7
A0-A16
Address Inputs
DQ0-DQ7
Data Input/Output
E1
Chip Enable
E2
Chip Enable
G
Output Enable
W
Write Enable
VCC
Supply Voltage
VSS
Ground
W
E1
M68AW127B
E2
G
VSS
AI05972b
3/20
M68AW127B
Figure 3. SO Connections
NC
A16
A14
A12
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
VSS
Figure 4. TSOP Connections
1
8
9
16
32
M68AW127B
25
24
17
AI05931b
4/20
VCC
A15
E2
W
A13
A8
A9
A11
G
A10
E1
DQ7
DQ6
DQ5
DQ4
DQ3
A11
A9
A8
A13
W
E2
A15
VCC
NC
A16
A14
A12
A7
A6
A5
A4
1
8
9
16
32
M68AW127B
25
24
17
AI05973c
G
A10
E1
DQ7
DQ6
DQ5
DQ4
DQ3
VSS
DQ2
DQ1
DQ0
A0
A1
A2
A3
M68AW127B
Figure 5. Block Diagram
A16
ROW
DECODER
MEMORY
ARRAY
A7
DQ7
I/O CIRCUITS
COLUMN
DECODER
DQ0
E1
Ex
E2
A0
A6
W
G
AI05471
MAXIMUM RATING
Stressing the device above the rating listed in the
“Absolute Maximum Ratings” table may cause
permanent damage to the device. These are
stress ratings only and operation of the device at
these or any other conditions above those indicated in the Operating sections of this specification is
not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability.
Refer
also
to
the
STMicroelectronics SURE Program and other relevant quality documents.
Table 2. Absolute Maximum Ratings
Symbol
IO
(1)
TA
Parameter
Output Current
Value
Unit
20
mA
Ambient Operating Temperature
–55 to 125
°C
TSTG
Storage Temperature
–65 to 150
°C
VCC
Supply Voltage
–0.3 to 4.6
V
–0.5 to VCC +0.5
V
1
W
VIO
(2)
PD
Input or Output Voltage
Power Dissipation
Note: 1. One output at a time, not to exceed 1 second duration.
2. Up to a maximum operating VCC of 3.6V only.
5/20
M68AW127B
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests performed under the Measure-
ment Conditions listed in the relevant tables. Designers should check that the operating conditions
in their projects match the measurement conditions when using the quoted parameters.
Table 3. Operating and AC Measurement Conditions
Parameter
M68AW127B
VCC Supply Voltage
2.7 to 3.6V
Range 1
0 to 70°C
Range 6
–40 to 85°C
Ambient Operating Temperature
Load Capacitance (CL)
100pF
Output Circuit Protection Resistance (R1)
3.0kΩ
Load Resistance (R2)
3.1kΩ
Input Rise and Fall Times
1ns/V
0 to VCC
Input Pulse Voltages
Input and Output Timing Ref. Voltages
VCC/2
Output Transition Timing Ref. Voltages
VRL = 0.3VCC; VRH = 0.7VCC
Figure 6. AC Measurement I/O Waveform
Figure 7. AC Measurement Load Circuit
VCC
I/O Timing Reference Voltage
R1
VCC
VCC/2
0V
DEVICE
UNDER
TEST
OUT
CL
Output Transition Timing Reference Voltage
VCC
0V
R2
0.7VCC
0.3VCC
AI04831
CL includes JIG capacitance
AI05814
6/20
M68AW127B
Table 4. Capacitance
CIN
COUT
Test
Condition
Parameter (1,2)
Symbol
Input Capacitance on all pins (except DQ)
Output Capacitance
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
8
pF
Note: 1. Sampled only, not 100% tested.
2. At TA = 25°C, f = 1MHz, VCC = 3.0V.
Table 5. DC Characteristics
Symbol
ICC1 (1,2)
Parameter
Supply Current
Operating Supply Current
ICC2 (3)
Operating Supply Current
(READ)
Operating Supply Current
(WRITE)
ILI
Input Leakage Current
ILO (4)
Output Leakage Current
ISB
Standby Supply Current
CMOS
VIH
Input High Voltage
VIL
Input Low Voltage
VOH
Output High Voltage
VOL
Note: 1.
2.
3.
4.
Output Low Voltage
Test Condition
VCC = 3.6V, f = 1/tAVAV,
IOUT = 0mA
VCC = 3.6V, f = 1MHz,
IOUT = 0mA
VCC = 3.6V, f = 1MHz,
IOUT = 0mA
Min
Typ
Max
Unit
70
6.0
15
mA
100
25
35
mA
2
mA
1.5
5
mA
10
15
mA
70
100
0V ≤ VIN ≤ VCC
–1
1
µA
0V ≤ VOUT ≤ VCC
–1
1
µA
VCC = 3.6V, E1 ≥ VCC – 0.2V,
E2 ≤ 0.2V, f = 0
IOH = –1mA
IOL = 2.1mA
70
2.5
15
µA
100
0.3
10
µA
2.2
VCC + 0.3
V
70
–0.3
0.8
V
100
–0.3
0.6
V
70
2.4
V
100
2.2
V
0.4
V
Average AC current, cycling at tAVAV minimum.
E1 = VIL, E2 = VIH, VIN = VIH or VIL.
E1 ≤ 0.2V or E2 ≥ VCC –0.2V, VIN ≤ 0.2V or VIN ≥ VCC –0.2V.
Output disabled.
7/20
M68AW127B
OPERATION
The M68AW127B has a Chip Enable power down
feature which invokes an automatic standby mode
whenever Chip Enable is de-asserted (E1 = High),
or Chip Select is asserted (E2 = Low). An Output
Enable (G) signal provides a high-speed, tri-state
control, allowing fast read/write cycles to be
achieved with the common I/O data bus. Operational modes are determined by device control inputs W and E1 as summarized in the Operating
Modes table (Table 6).
Table 6. Operating Modes
Operation
E1
E2
W
G
DQ0-DQ7
Power
Read
VIL
VIH
VIH
VIH
Hi-Z
Active (ICC)
Read
VIL
VIH
VIH
VIL
Data Output
Active (ICC)
Write
VIL
VIH
VIL
X
Data Input
Active (ICC)
Deselect
VIH
X
X
X
Hi-Z
Standby (ISB)
Deselect
X
VIL
X
X
Hi-Z
Standby (ISB)
Note: X = VIH or VIL.
Read Mode
The M68AW127B is in the Read mode whenever
Write Enable (W) is High with Output Enable (G)
Low, Chip Enable (E1) is asserted and Chip Select
(E2) is de-asserted. This provides access to data
from eight of the 1,048,576 locations in the static
memory array, specified by the 17 address inputs.
Valid data will be available at the eight output pins
within tAVQV after the last stable address, providing G is Low and E1 is Low. If Chip Enable or Output Enable access times are not met, data access
will be measured from the limiting parameter
(tELQV or tGLQV) rather than the address. Data out
may be indeterminate at tELQX and tGLQX, but data
lines will always be valid at tAVQV.
Figure 8. Address Controlled, Read Mode AC Waveforms
tAVAV
A0-A16
VALID
tAVQV
DQ0-DQ7
tAXQX
DATA VALID
AI05474
Note: E1 = Low, E2 = High, G = Low, W = High.
8/20
M68AW127B
Figure 9. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms.
tAVAV
VALID
A0-A16
tAVQV
tAXQX
tELQV
tEHQZ
E1
E2
tELQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ7
VALID
AI05476
Note: Write Enable (W) = High.
Figure 10. Chip Enable Controlled, Standby Mode AC Waveforms
E1
E2
ICC
ISB
tPU
tPD
50%
AI05477
9/20
M68AW127B
Table 7. Read and Standby Mode AC Characteristics
M68AW127B
Symbol
Parameter
Unit
70
100
tAVAV
Read Cycle Time
Min
70
100
ns
tAVQV
Address Valid to Output Valid
Max
70
100
ns
tAXQX (1)
Data hold from address change
Min
5
15
ns
tEHQZ (2,3)
Chip Enable High to Output Hi-Z
Max
25
30
ns
tELQV
Chip Enable Low to Output Valid
Max
70
100
ns
Chip Enable Low to Output Transition
Min
5
10
ns
tGHQZ (2,3)
Output Enable High to Output Hi-Z
Max
25
30
ns
tGLQV
Output Enable Low to Output Valid
Max
35
50
ns
Output Enable Low to Output Transition
Min
5
5
ns
tPD (4)
Chip Enable or UB/LB High to Power Down
Max
0
0
ns
tPU (4)
Chip Enable or UB/LB Low to Power Up
Min
70
100
ns
tELQX (1)
tGLQX (2)
Note: 1. Test conditions assume transition timing reference level = 0.3VCC or 0.7VCC.
2. At any given temperature and voltage condition, tGHQZ is less than tGLQX and tEHQZ is less than tELQX for any given device.
3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
4. Tested initially and after any design or process changes that may affect these parameters.
10/20
M68AW127B
Write Mode
The M68AW127B is in the Write mode whenever
the W and E1 pins are Low and the E2 pin is High.
Either the Chip Enable input (E1) or the Write Enable input (W) must be de-asserted during Address transitions for subsequent write cycles.
Write begins with the concurrence of E1 being active with W low. Therefore, address setup time is
referenced to Write Enable and Chip Enable as
tAVWL and tAVEH, respectively, and is determined
by the latter occurring edge.
The Write cycle can be terminated by the earlier
rising edge of E1, or W.
If the Output is enabled (E1 = Low, E2 = High and
G = Low), then W will return the outputs to high impedance within tWLQZ of its falling edge. Care must
be taken to avoid bus contention in this type of operation. Data input must be valid for tDVWH before
the rising edge of Write Enable, or for tDVEH before
the rising edge of E1, whichever occurs first, and
remain valid for tWHDX or tEHDX.
Figure 11. Write Enable Controlled, Write AC Waveforms
tAVAV
VALID
A0-A16
tAVWH
tELWH
tAVEL
tWHAX
E1
E2
tWLWH
tAVWL
W
tWLQZ
tWHQX
tWHDX
DQ0-DQ7
DATA INPUT
tDVWH
AI05478
11/20
M68AW127B
Figure 12. Chip Enable Controlled, Write AC Waveforms
tAVAV
VALID
A0-A16
tAVEH
tAVEL
tELEH
tEHAX
E1
E2
tAVWL
tWLEH
W
tEHDX
DQ0-DQ7
DATA INPUT
tDVEH
AI05479
12/20
M68AW127B
Table 8. Write Mode AC Characteristics
M68AW127B
Symbol
Parameter
Unit
70
100
tAVAV
Write Cycle Time
Min
70
100
ns
tAVEH
Address Valid to Chip Enable High
Min
60
80
ns
tAVEL
Address valid to Chip Enable Low
Min
0
0
ns
tAVWH
Address Valid to Write Enable High
Min
60
80
ns
tAVWL
Address Valid to Write Enable Low
Min
0
0
ns
tDVEH
Input Valid to Chip Enable High
Min
30
40
ns
tDVWH
Input Valid to Write Enable High
Min
30
40
ns
tEHAX
Chip Enable High to Address Transition
Min
0
0
ns
tEHDX
Chip enable High to Input Transition
Min
0
0
ns
tELEH
Chip Enable Low to Chip Enable High
Min
60
80
ns
tELWH
Chip Enable Low to Write Enable High
Min
60
80
ns
tWHAX
Write Enable High to Address Transition
Min
0
0
ns
tWHDX
Write Enable High to Input Transition
Min
0
0
ns
tWHQX (1)
Write Enable High to Output Transition
Min
5
5
ns
tWLEH
Write Enable Low to Chip Enable High
Min
60
70
ns
Write Enable Low to Output Hi-Z
Max
20
30
ns
Write Enable Low to Write Enable High
Min
60
70
ns
tWLQZ (1,2)
tWLWH
Note: 1. At any given temperature and voltage condition, tWLQZ is less than tWHQX for any given device.
2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
13/20
M68AW127B
Figure 13. E1 Controlled, Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
3.6V
VCC
2.7V
VDR > 1.5V (1)
tCDR
tR
E1 ≥ VDR – 0.2V
E1
AI05980
Note: 1. For 100ns speed class VDR ≥ 2.0V.
Figure 14. E2 Controlled, Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
3.6V
VCC
2.7V
VDR > 1.5V (1)
tCDR
tR
E2
E2 ≤ 0.2V
AI05957B
Note: 1. For 100ns speed class VDR ≥ 2.0V.
Table 9. Low VCC Data Retention Characteristics
Symbol
ICCDR (1)
Parameter
Supply Current
(Data Retention)
Test Condition
VCC = 1.5V, E1 ≥ VCC –0.2V or
E2 ≤ 0.2V, f = 0
Min
VDR (1)
Supply Voltage
(Data Retention)
E1 ≥ VCC –0.2V or
E2 ≤ 0.2V, f = 0
4.5
µA
5
µA
ns
70
tAVAV
ns
100
5
ms
70
1.5
V
100
2.0
V
Note: 1. All other Inputs at VIH ≥ VCC –0.2V or VIL ≤ 0.2V.
2. Tested initially and after any design or process that may affect these parameters. tAVAV is Read cycle time.
3. No input may exceed VCC +0.2V.
14/20
Unit
70
0
Operation Recovery Time
Max
100
Chip Deselected to Data
tCDR (1,2) Retention Time
tR (2)
Typ
M68AW127B
PACKAGE MECHANICAL
Figure 15. SO32 - 32 lead Plastic Small Outline, Package Outline
D
16
1
E
17
E1
32
A
A2
B
A1
e
C
CP
L
L1
SO-C
Note: Drawing is not to scale.
Table 10. SO32 - 32 lead Plastic Small Outline, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
2.997
Max
0.118
A1
0.102
A2
2.565
2.819
0.101
0.111
b
0.356
0.508
0.014
0.020
c
0.152
0.305
0.006
0.012
D
20.142
20.752
0.793
0.817
E
11.176
11.430
0.440
0.450
E1
13.868
14.376
0.546
0.566
–
–
–
–
L
0.584
0.991
0.023
0.039
L1
1.194
1.600
0.047
0.063
e
CP
1.270
0.004
0.10
0.050
0.004
15/20
M68AW127B
Figure 16. TSOP32 - 32 lead Plastic Small Outline 8x20mm, Package Outline
A2
1
N
e
E
B
N/2
D1
A
CP
D
DIE
C
A1
TSOP-a
α
L
Note: Drawing is not to scale.
Table 11. TSOP32 - 32 lead Plastic Small Outline 8x20mm, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Typ
Min
1.200
Max
0.0472
A1
0.050
0.150
0.0020
0.0059
A2
0.950
1.050
0.0374
0.0413
B
0.170
0.250
0.0067
0.0098
C
0.100
0.210
0.0039
0.0083
CP
0.100
0.0039
D
19.800
20.200
0.7795
0.7953
D1
18.300
18.500
0.7205
0.7283
E
7.900
8.100
0.3110
0.3189
–
–
–
–
L
0.500
0.700
0.0197
0.0276
α
0°
5°
0°
5°
N
32
e
16/20
Max
0.500
0.0197
32
M68AW127B
Figure 17. TSOP32 - 32 lead Plastic Small Outline 8x13.4mm, Package Outline
A2
1
N
e
E
B
N/2
D1
A
CP
D
DIE
C
A1
TSOP-a
α
L
Note: Drawing is not to scale.
Table 12. TSOP32 - 32 lead Plastic Small Outline 8x13.4mm, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.20
Max
0.0472
A1
0.05
0.15
0.0020
0.0059
A2
0.91
1.05
0.0358
0.0413
0.0039
0.0083
B
0.22
C
0.0087
0.10
0.21
D
13.40
–
–
0.5276
–
–
D1
11.80
–
–
0.4646
–
–
E
8.00
–
–
0.3150
–
–
e
0.50
–
–
0.0197
–
–
L
0.40
0.60
0.0157
0.0236
α
0
5
0
5
N
CP
32
32
0.10
0.0039
17/20
M68AW127B
PART NUMBERING
Table 13. Ordering Information Scheme
Example:
M68AW127
B
L
70
N
6
T
Device Type
M68
Mode
A = Asynchronous
Operating Voltage
W = 2.7 to 3.6V
Array Organization
127 = 1Mbit (128K x8)
Option 1
B = 2 Chip Enable
Option 2
L = L-Die
M = M-Die
Speed Class
70 = 70ns
10 = 100ns
Package
MC = SO32
N = TSOP32 (8 x 20 mm)
NK = TSOP32 (8 x 13.4 mm)
Operative Temperature
1 = 0 to 70°C
6 = –40 to 85 °C
Shipping
T = Tape & Reel Packing
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,
please contact the STMicroelectronics Sales Office nearest to you.
18/20
M68AW127B
REVISION HISTORY
Table 14. Document Revision History
Date
Version
Revision Details
January 2002
1.0
First Issue
09-May-2002
2.0
DC Characteristics table clarified (Table 5)
E1 Controlled, Low VCC Data Retention AC Waveforms clarified (Figure 13)
Low VCC Data Retention Characteristics table clarified (Table 9)
Ordering Information Scheme clarified (Table 13)
01-Jul-2002
3.0
70ns speed class added
SO32 and TSOP32 8x13.4mm package options added
11-Sep-2002
4.0
Commercial code clarified
02-Oct-2002
4.1
Title and header layout modified.
09-Oct-2002
4.2
Commercial code modified.
16-Apr-2003
4.3
Label corrected on “E2 Controlled, Low VCC Data Retention AC Waveforms” figure
21-Aug-2003
4.4
TSOP Package connections modified (Figure 5)
19/20
M68AW127B
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
© 2003 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
20/20
Similar pages