Cypress MB9BF305RAPMC-G-JNE2 32-bit armâ® cortexâ®-m3 fm3 microcontroller Datasheet

MB9B300B Series
32-bit Arm® Cortex®-M3
FM3 Microcontroller
The MB9B300B Series are a highly integrated 32-bit microcontroller that target for high-performance and cost-sensitive embedded
control applications.
The MB9B300B Series are based on the Arm® Cortex®-M3 Processor and on-chip Flash memory and SRAM, and peripheral
functions, including Motor Control Timers, ADCs and Communication Interfaces (USB, UART, CSIO, I2C, LIN).
The products which are described in this datasheet are placed into TYPE0 product categories in FM3 Family Peripheral Manual.
Features
32-bit Arm® Cortex®-M3 Core
[USB host]
 Processor version: r2p0
 USB2.0 Full/Low-speed supported
 Up to 80 MHz Frequency Operation
 Bulk-transfer and interrupt-transfer and Isochronous-transfer
 Memory Protection Unit (MPU): improve the reliability of an
embedded system
 Integrated Nested Vectored Interrupt Controller (NVIC): 1
NMI (non-maskable interrupt) and 48 peripheral interrupts
and 16 priority levels
 24-bit System timer (Sys Tick): System timer for OS task
management
support
 USB Device connected/dis-connected automatically detect
 IN/OUT token handshake packet automatically
 Max 256-byte packet-length supported
 Wake-up function supported
Multi-function Serial Interface (Max. 8 channels)
On-chip Memories
 4 channels with 16steps × 9bit FIFO (ch.4-ch.7), 4 channels
without FIFO (ch.0-ch.3)
[Flash memory]
 Operation mode is selectable from the followings for each
 Up to 512 KB
 Read cycle: 0 wait-cycle @ up to 60 MHz, 2 wait-cycle[1]
above
[1]: Instruction pre-fetch buffer is included. So when CPU
access continuously, it becomes 0 wait-cycle
channel.
 UART
 CSIO
 LIN
 I2 C
 Security function for code protection
[UART]
[SRAM]
 Full-duplex double buffer
This series contain a total of up to 64 KB on-chip SRAM. This
is composed of two independent SRAM (SRAM0, SRAM1).
SRAM0 is connected to I-code bus and D-code bus of CortexM3 core. SRAM1 is connected to System bus.
 SRAM0: Up to 32 KB
 Selection with or without parity supported
 Built-in dedicated baud rate generator
 External clock available as a serial clock
 Hardware Flow control: Automatically control the
 SRAM1: Up to 32 KB
transmission by CTS/RTS (only ch.4)
USB Interface
 Various error detect functions available (parity errors,
The USB interface is composed of Device and Host.
PLL for USB is built-in, USB clock can be generated by
multiplication of Main clock.
[CSIO]
[USB Device]
 Overrun error detect function available
 Max 6 EndPoint supported
 EndPoint
transfer
 Full-duplex double buffer
 Built-in dedicated baud rate generator
 USB2.0 Full-Speed supported
 EndPoint
framing errors, and overrun errors)
0 is control transfer
1 - 5 can be selected bulk-transfer or interrupt-
 Endpoint1-5
is comprised Double Buffers.
Cypress Semiconductor Corporation
Document Number: 002-05612 Rev. *D
•
198 Champion Court
•
San Jose , CA 95134-1709
•
408-943-2600
Revised October 24, 2017
MB9B300B Series
[LIN]
Base Timer (Max. 8 channels)
 LIN protocol Rev.2.1 supported
Operation mode is selectable from the followings for each
channel.
 Full duplex double buffer
 16-bit PWM timer
 Master/Slave mode supported
 16-bit PPG timer
 LIN break field generate (can be changed 13-16 bit length)
 16-/32-bit reload timer
 LIN break delimiter generate (can be changed 1- 4 bit
 16-/32-bit PWC timer
 Various error detect functions available (parity errors,
Multi-function Timer (Max. 2 units)
length)
framing errors, and overrun errors)
[I2C]
Standard-mode (Max.100 kbps) / Fast-mode (Max 400 kbps)
supported
External Bus Interface
 Supports SRAM, NOR& NAND Flash device
 Up to 8 chip selects
 8-/16-bit Data width
 Up to 25-bit Address bit
 Maximum area size: Up to 256 MB
DMA Controller (8 channels)
DMA Controller has an independent bus for CPU, so CPU and
DMA Controller can process simultaneously.
The Multi-function timer is composed of the following blocks.
 16-bit free-run timer × 3ch/unit
 Input capture × 4ch/unit
 Output compare × 6ch/unit
 A/D activation compare × 3ch/unit
 Waveform generator × 3ch/unit
 16-bit PPG timer × 3ch/unit
The following function can be used to achieve the motor
control.
 PWM signal output function
 DC chopper waveform output function
 Dead time function
 8 independently configured and operated channels
 Input capture function
 Transfer can be started by software or request from the built-
 A/D convertor activate function
in peripherals
 Transfer address area: 32 bit (4GB)
 DTIF (Motor emergency stop) interrupt function
 Transfer mode: Block transfer/Burst transfer/Demand
Quadrature Position/Revolution Counter (QPRC)
(Max. 2 units)
 Transfer data type: byte/half-word/word
 Transfer block count: 1 to 16
The Quadrature Position/Revolution Counter (QPRC) is used
to measure the position of the position encoder. Moreover, it is
possible to use up/down counter.
 Number of transfers: 1 to 65536
 The detection edge of the three external event input pins
A/D Converter (Max. 16 channels)
 16-bit position counter
[12-bit A/D Converter]
 16-bit revolution counter
 Successive Approximation Register type
 Two 16-bit compare registers
 Built-in 3unit
Dual Timer (Two 32/16-bit Down Counter)
 Conversion time: 1.0 μs @ 5 V
 Scanning conversion mode
The Dual Timer consists of two programmable 32/16-bit down
counters.
Operation mode is selectable from the followings for each
channel.
 Built-in FIFO for conversion data storage (for SCAN
 Free-running
transfer
 Priority conversion available (priority at 2 levels)
conversion: 16 steps, for Priority conversion: 4steps)
AIN, BIN and ZIN is configurable.
 Periodic (=Reload)
 One-shot
Document Number: 002-05612 Rev. *D
Page 2 of 112
MB9B300B Series
Watch Counter
[Resets]
The Watch counter is used for wake up from sleep mode.
Interval timer: up to 64 s (Max.) @ Sub Clock: 32.768 kHz
 Reset requests from INITX pins
 Power-on reset
Watch dog Timer (2 channels)
 Software reset
A watchdog timer can generate interrupts or a reset when a
time-out value is reached.
 Watchdog timers reset
This series consists of two different watchdogs, a "Hardware"
watchdog and a "Software" watchdog.
"Hardware" watchdog timer is clocked by the built-in lowspeed CR oscillator. Therefore, “Hardware" watchdog is active
in any low-power consumption modes except STOP mode.
External Interrupt Controller Unit
 Low-voltage detector reset
 Clock supervisor reset
Clock Super Visor (CSV)
Clocks generated by CR oscillators are used to supervise
abnormality of the external clocks.
 External OSC clock failure (clock stop) is detected, reset is
asserted.
 Up to 16 external vectors
 Include one non-maskable interrupt(NMI)
General Purpose I/O Port
 External OSC frequency anomaly is detected, interrupt or
reset is asserted.
This series can use its pins as general-purpose I/O ports when
they are not used for external bus or peripherals. Moreover,
the port relocate function is built in. It can set which I/O port
the peripheral function can be allocated.
Low Voltage Detector (LVD)
 Capable of pull-up control per pin
 LVD1: error reporting via interrupt
 Capable of reading pin level directly
 LVD2: auto-reset operation
 Built-in the port relocate function
Low-Power Consumption Mode
 Up to 100 high-speed general-purpose I/O Ports @ 120pin
Package
This series include 2-stage monitoring of voltage on the VCC.
When the voltage falls below the voltage has been set, Low
Voltage Detector generates an interrupt or reset.
Three low-power consumption modes supported.
 SLEEP
CRC (Cyclic Redundancy Check) Accelerator
 TIMER
The CRC accelerator helps a verify data transmission or
storage integrity.
 STOP
CCITT CRC16 and IEEE-802.3 CRC32 are supported.
Debug
 CCITT CRC16 Generator Polynomial: 0x1021
 Serial Wire JTAG Debug Port (SWJ-DP)
 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7
 Embedded Trace Macrocells (ETM) provide comprehensive
debug and trace facilities.
Clock and Reset
[Clocks]
Power Supply
Five clock sources (2 ext. osc, 2 CR osc, and Main PLL) that
are dynamically selectable.
 VCC
= 2.7 V to 5.5 V: Correspond to the wide
range voltage.
 USBVCC
= 3.0 V to 3.6 V: for USB I/O voltage, when
USB is used.
 Main Clock
: 4 MHz to 48 MHz
 Sub Clock
: 32.768 kHz
 Built-in high-speed CR Clock
: 4 MHz
 Built-in low-speed CR Clock
: 100 kHz
Two Power Supplies
= 2.7 V to 5.5 V: when GPIO is used.[1]
 Main PLL Clock
Document Number: 002-05612 Rev. *D
Page 3 of 112
MB9B300B Series
Contents
1. Product Lineup .................................................................................................................................................................. 6
2. Packages ........................................................................................................................................................................... 7
3. Pin Assignment ................................................................................................................................................................. 8
4. List of Pin Functions....................................................................................................................................................... 11
5. I/O Circuit Type................................................................................................................................................................ 38
6. Handling Precautions ..................................................................................................................................................... 42
6.1
Precautions for Product Design ................................................................................................................................... 42
6.2
Precautions for Package Mounting .............................................................................................................................. 43
6.3
Precautions for Use Environment ................................................................................................................................ 44
7. Handling Devices ............................................................................................................................................................ 45
8. Block Diagram ................................................................................................................................................................. 47
9. Memory Size .................................................................................................................................................................... 48
10. Memory Map .................................................................................................................................................................... 48
11. Pin Status in Each CPU State ........................................................................................................................................ 51
12. Electrical Characteristics ............................................................................................................................................... 55
12.1 Absolute Maximum Ratings ......................................................................................................................................... 55
12.2 Recommended Operating Conditions.......................................................................................................................... 57
12.3 DC Characteristics....................................................................................................................................................... 58
12.3.1 Current Rating .............................................................................................................................................................. 58
12.3.2 Pin Characteristics ....................................................................................................................................................... 60
12.4 AC Characteristics ....................................................................................................................................................... 61
12.4.1 Main Clock Input Characteristics .................................................................................................................................. 61
12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 62
12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 63
12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL) ................................... 64
12.4.5 Operating Conditions of Main PLL (In the case of using built-in high speed CR) ......................................................... 64
12.4.6 Reset Input Characteristics .......................................................................................................................................... 66
12.4.7 Power-on Reset Timing................................................................................................................................................ 66
12.4.8 External Bus Timing ..................................................................................................................................................... 67
12.4.9 Base Timer Input Timing .............................................................................................................................................. 71
12.4.10 CSIO/UART Timing .................................................................................................................................................. 72
12.4.11 External Input Timing ................................................................................................................................................ 80
12.4.12 Quadrature Position/Revolution Counter timing ........................................................................................................ 81
12.4.13 I2C Timing ................................................................................................................................................................. 83
12.4.14 ETM Timing .............................................................................................................................................................. 84
12.4.15 JTAG Timing ............................................................................................................................................................. 85
12.5 12-bit A/D Converter .................................................................................................................................................... 86
12.6 USB Characteristics .................................................................................................................................................... 89
12.7 Low-Voltage Detection Characteristics ........................................................................................................................ 93
12.7.1 Low-Voltage Detection Reset ....................................................................................................................................... 93
12.7.2 Interrupt of Low-Voltage Detection ............................................................................................................................... 93
12.8 Flash Memory Write/Erase Characteristics ................................................................................................................. 94
12.8.1 Write / Erase time......................................................................................................................................................... 94
12.8.2 Erase/write cycles and data hold time .......................................................................................................................... 94
12.9 Return Time from Low-Power Consumption Mode ...................................................................................................... 95
12.9.1 Return Factor: Interrupt ................................................................................................................................................ 95
12.9.2 Return Factor: Reset .................................................................................................................................................... 97
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 4 of 112
MB9B300B Series
13. Example of Characteristic .............................................................................................................................................. 99
14. Ordering Information .................................................................................................................................................... 101
15. Package Dimensions .................................................................................................................................................... 102
16. Errata.............................................................................................................................................................................. 105
16.1 Part Numbers Affected .............................................................................................................................................. 105
16.2 Qualification Status.................................................................................................................................................... 105
16.3 Errata Summary ........................................................................................................................................................ 105
16.4 Errata Detail .............................................................................................................................................................. 105
16.4.1 Timer and stop mode issue ........................................................................................................................................ 105
16.4.2 USB HOST issue ....................................................................................................................................................... 106
16.4.3 Gap Between Watch Counter Value and Real Time at Return in Timer Mode ........................................................... 106
17. Major Changes .............................................................................................................................................................. 108
Document History ............................................................................................................................................................... 110
Sales, Solutions, and Legal Information........................................................................................................................... 112
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 5 of 112
MB9B300B Series
1. Product Lineup
Memory Size
Product device
On-chip Flash memory
On-chip SRAM
MB9BF304NB/RB
MB9BF305NB/RB
256 KB
32 KB
MB9BF306NB/RB
384 KB
48 KB
512 KB
64 KB
Function
MB9BF304NB
MB9BF305NB
MB9BF306NB
Product device
Pin count
100
Cortex-M3
80 MHz
2.7 V to 5.5 V
1 ch
8 ch
Addr: 25-bit (Max.)
Data:8-/16-bit
CS: 5 (Max.)
Support: SRAM, NOR Flash
CPU
Freq.
Power supply voltage range
USB2.0 (Device/Host)
DMAC
External Bus Interface
Multi-function Serial Interface
(UART/CSIO/LIN/I2C)
Base Timer
(PWC/ Reload timer/PWM/PPG)
A/D activation compare
Input capture
Free-run timer
MFTimer
Output compare
Waveform generator
PPG
QPRC
Dual Timer
Watch Counter
CRC Accelerator
Watchdog timer
External Interrupts
I/O ports
12 bit A/D converter
CSV (Clock Super Visor)
LVD (Low Voltage Detector)
High-speed
Built-in CR
Low-speed
Debug Function
MB9BF304RB
MB9BF305RB
MB9BF306RB
120
Addr: 25-bit (Max.)
Data:8-/16-bit
CS: 8 (Max.)
Support: SRAM, NOR & NAND Flash
8 ch (Max.)
8 ch (Max.)
3 ch.
4 ch.
3 ch.
6 ch.
3 ch.
3 ch.
2 units (Max.)
2 ch (Max.)
1 unit
1 unit
Yes
1ch(SW) + 1ch(HW)
16 pins (Max.) + NMI × 1
80 pins (Max.)
16 ch (3 units)
Yes
2 ch
4 MHz
100 kHz
SWJ-DP/ETM
100 pins (Max.)
Note:
−
All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
It is necessary to use the port relocate function of the General I/O port according to your function use.
See "12. Electrical Characteristics 12.4. AC Characteristics 12.4.3. Built-in CR Oscillation Characteristics” for accuracy of
built-in CR.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 6 of 112
MB9B300B Series
2. Packages
Product name
Package
MB9BF304NB
MB9BF305NB
MB9BF306NB
MB9BF304RB
MB9BF305RB
MB9BF306RB
LQFP : LQI100 (0.5 mm pitch)

-
LQFP: LQM120 (0.5 mm pitch)
-
FBGA: LBC112 (0.8 mm pitch)


-
: Supported
Note:
−
Refer to “15. Package Dimensions” for detailed information on each package.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 7 of 112
MB9B300B Series
3. Pin Assignment
LQI100
P03/TMS/SWDIO
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
VCC
80
79
78
77
76
P05/TRACED0/TIOA5_2/SIN4_2/INT00_1
P04/TDO/SWO
82
81
P07/TRACED2/ADTG_0/SCK4_2
P06/TRACED1/TIOB5_2/SOT4_2/INT01_1
85
84
83
P0A/SIN4_0/INT00_2/FRCK1_0/MAD07
P09/TRACECLK/TIOB0_2/RTS4_2
87
86
P08/TRACED3/TIOA0_2/CTS4_2
P0C/SCK4_0/TIOA6_1/IC11_0/MAD05
P0B/SOT4_0/TIOB6_1/IC10_0/MAD06
89
88
P0E/CTS4_0/TIOB3_2/IC13_0/MAD03
P0D/RTS4_0/TIOA3_2/IC12_0/MAD04
92
91
90
P62/SCK5_0/ADTG_3/MAD00
P63/INT03_0/MAD01
94
93
P0F/NMIX/MAD02
P60/SIN5_0/TIOA2_2/INT15_1
P61/SOT5_0/TIOB2_2/UHCONX
96
95
P80/UDM0
USBVCC
98
99
97
VSS
P81/UDP0
100
(TOP VIEW)
VCC
1
75
VSS
P50/INT00_0/AIN0_2/SIN3_1/RTO10_0/MDATA0
2
74
P20/INT05_0/CROUT/AIN1_1
P51/INT01_0/BIN0_2/SOT3_1/RTO11_0/MDATA1
3
73
P21/SIN0_0/INT06_1/BIN1_1
P52/INT02_0/ZIN0_2/SCK3_1/RTO12_0/MDATA2
4
72
P22/SOT0_0/TIOB7_1/ZIN1_1
P53/SIN6_0/TIOA1_2/INT07_2/RTO13_0/MDATA3
5
71
P23/SCK0_0/TIOA7_1/RTO00_1
P54/SOT6_0/TIOB1_2/RTO14_0/MDATA4
6
70
P1F/AN15/ADTG_5/FRCK0_1/MDATA15
P55/SCK6_0/ADTG_1/RTO15_0/MDATA5
7
69
P1E/AN14/RTS4_1/DTTI0X_1/MDATA14
P56/INT08_2/DTTI1X_0/MCSX7
8
68
P1D/AN13/CTS4_1/IC03_1/MDATA13
P30/AIN0_0/TIOB0_1/INT03_2/MDATA6
9
67
P1C/AN12/SCK4_1/IC02_1/MDATA12
P31/BIN0_0/TIOB1_1/SCK6_1/INT04_2/MDATA7
10
66
P1B/AN11/SOT4_1/IC01_1/MDATA11
P32/ZIN0_0/TIOB2_1/SOT6_1/INT05_2/MDQM0
11
65
P1A/AN10/SIN4_1/INT05_1/IC00_1/MDATA10
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MDQM1
12
64
P19/AN09/SCK2_2/MDATA9
P34/FRCK0_0/TIOB4_1/MAD24
13
63
P18/AN08/SOT2_2/MDATA8
P35/IC03_0/TIOB5_1/INT08_1/MAD23
14
62
AVSS
P36/IC02_0/SIN5_2/INT09_1/MCSX3
15
61
AVRH
P37/IC01_0/SOT5_2/INT10_1/MCSX2
16
60
AVCC
P38/IC00_0/SCK5_2/INT11_1
17
59
P17/AN07/SIN2_2/INT04_1/MWEX
P39/DTTI0X_0/ADTG_2
18
58
P16/AN06/SCK0_1/MOEX
P3A/RTO00_0/TIOA0_1
19
57
P15/AN05/SOT0_1/MCSX0
P3B/RTO01_0/TIOA1_1
20
56
P14/AN04/SIN0_1/INT03_1/MCSX1
P3C/RTO02_0/TIOA2_1
21
55
P13/AN03/SCK1_1/MAD08
P3D/RTO03_0/TIOA3_1
22
54
P12/AN02/SOT1_1/MAD09
P3E/RTO04_0/TIOA4_1
23
53
P11/AN01/SIN1_1/INT02_1
P3F/RTO05_0/TIOA5_1
24
52
P10/AN00
VSS
25
51
VCC
48
49
50
X1
X0
VSS
46
47
MD1
P4E/TIOB5_0/INT06_2/SIN7_1/ZIN1_2/MAD10
MD0
44
45
P4D/TIOB4_0/FRCK1_1/SOT7_1/BIN1_2/MAD11
41
42
43
P4B/TIOB2_0/IC12_1/ZIN0_1/MAD13
P4C/TIOB3_0/IC13_1/SCK7_1/AIN1_2/MAD12
39
40
P48/DTTI1X_1/INT14_1/SIN3_2/MAD16
P49/TIOB0_0/IC10_1/AIN0_1/SOT3_2/MAD15
INITX
P4A/TIOB1_0/IC11_1/BIN0_1/SCK3_2/MAD14
37
38
P47/X1A
34
35
36
VCC
P46/X0A
32
33
C
P45/TIOA5_0/RTO15_1/MAD17
VSS
30
31
P44/TIOA4_0/RTO14_1/MAD18
P42/TIOA2_0/RTO12_1/MAD20
P43/TIOA3_0/RTO13_1/ADTG_7/MAD19
28
29
P41/TIOA1_0/RTO11_1/INT13_1/MAD21
26
27
VCC
P40/TIOA0_0/RTO10_1/INT12_1/MAD22
LQ FP - 100
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 8 of 112
MB9B300B Series
LQM120
VCC
91
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
94
93
92
P05/TRACED0/TIOA5_2/SIN4_2/INT00_1
P04/TDO/SWO
P03/TMS/SWDIO
97
96
95
P08/TRACED3/TIOA0_2/CTS4_2
P07/TRACED2/ADTG_0/SCK4_2
P06/TRACED1/TIOB5_2/SOT4_2/INT01_1
99
101
100
98
P0B/SOT4_0/TIOB6_1/IC10_0/MAD06
P0A/SIN4_0/INT00_2/FRCK1_0/MAD07
P09/TRACECLK/TIOB0_2/RTS4_2
103
102
P0E/CTS4_0/TIOB3_2/IC13_0/MAD03
P0D/RTS4_0/TIOA3_2/IC12_0/MAD04
P0C/SCK4_0/TIOA6_1/IC11_0/MAD05
106
105
104
P68/SCK3_0/TIOB7_2/INT12_2
P0F/NMIX/MAD02
108
107
P65/TIOB7_0/SCK5_1
P66/SIN3_0/ADTG_8/INT11_2
P67/SOT3_0/TIOA7_2
111
110
109
P62/SCK5_0/ADTG_3/MAD00
P63/INT03_0/SIN5_1/MAD01
P64/TIOA7_0/SOT5_1/INT10_2
114
113
112
USBVCC
P60/SIN5_0/TIOA2_2/INT15_1
P61/SOT5_0/TIOB2_2/UHCONX
115
118
117
116
VSS
P81/UDP0
P80/UDM0
120
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
VSS
57
58
MD0
59
MD1
X0
P74/SCK2_0
X1
54
55
56
P73/SOT2_0/INT15_2
53
P72/SIN2_0/INT14_2
50
51
52
P70/TIOA4_2
P71/INT13_2/TIOB4_2
48
49
P4C/TIOB3_0/IC13_1/SCK7_1/AIN1_2/MAD12
P4E/TIOB5_0/INT06_2/SIN7_1/ZIN1_2/MAD10
P4B/TIOB2_0/IC12_1/ZIN0_1/MAD13
P4D/TIOB4_0/FRCK1_1/SOT7_1/BIN1_2/MAD11
45
46
47
P49/TIOB0_0/IC10_1/AIN0_1/SOT3_2/MAD15
P4A/TIOB1_0/IC11_1/BIN0_1/SCK3_2/MAD14
43
44
INITX
P48/DTTI1X_1/INT14_1/SIN3_2/MAD16
40
41
42
VCC
P46/X0A
P47/X1A
37
38
39
C
P45/TIOA5_0/RTO15_1/MAD17
VSS
36
P44/TIOA4_0/RTO14_1/MAD18
33
34
35
P42/TIOA2_0/RTO12_1/MAD20
P43/TIOA3_0/RTO13_1/ADTG_7/MAD19
31
32
VCC
P40/TIOA0_0/RTO10_1/INT12_1/MAD22
LQFP - 120
P41/TIOA1_0/RTO11_1/INT13_1/MAD21
VCC
P50/INT00_0/AIN0_2/SIN3_1/RTO10_0/MDATA0
P51/INT01_0/BIN0_2/SOT3_1/RTO11_0/MDATA1
P52/INT02_0/ZIN0_2/SCK3_1/RTO12_0/MDATA2
P53/SIN6_0/TIOA1_2/INT07_2/RTO13_0/MDATA3
P54/SOT6_0/TIOB1_2/RTO14_0/MDATA4
P55/SCK6_0/ADTG_1/RTO15_0/MDATA5
P56/SIN1_0/INT08_2/DTTI1X_0/MCSX7
P57/SOT1_0/MNALE
P58/SCK1_0/MNCLE
P59/SIN7_0/INT09_2/MNWEX
P5A/SOT7_0/MNREX
P5B/SCK7_0
P30/AIN0_0/TIOB0_1/INT03_2/MDATA6
P31/BIN0_0/TIOB1_1/SCK6_1/INT04_2/MDATA7
P32/ZIN0_0/TIOB2_1/SOT6_1/INT05_2/MDQM0
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MDQM1
P34/FRCK0_0/TIOB4_1/MAD24
P35/IC03_0/TIOB5_1/INT08_1/MAD23
P36/IC02_0/SIN5_2/INT09_1/MCSX3
P37/IC01_0/SOT5_2/INT10_1/MCSX2
P38/IC00_0/SCK5_2/INT11_1
P39/DTTI0X_0/ADTG_2
P3A/RTO00_0/TIOA0_1
P3B/RTO01_0/TIOA1_1
P3C/RTO02_0/TIOA2_1
P3D/RTO03_0/TIOA3_1
P3E/RTO04_0/TIOA4_1
P3F/RTO05_0/TIOA5_1
VSS
119
(TOP VIEW)
VSS
P20/INT05_0/CROUT/AIN1_1
P21/SIN0_0/INT06_1/BIN1_1
P22/SOT0_0/TIOB7_1/ZIN1_1
P23/SCK0_0/TIOA7_1/RTO00_1
P24/SIN2_1/INT01_2/RTO01_1
P25/SOT2_1/RTO02_1
P26/SCK2_1/RTO03_1/MCSX4
P27/INT02_2/RTO04_1/MCSX5
P28/ADTG_4/RTO05_1/MCSX6
P1F/AN15/ADTG_5/FRCK0_1/MDATA15
P1E/AN14/RTS4_1/DTTI0X_1/MDATA14
P1D/AN13/CTS4_1/IC03_1/MDATA13
P1C/AN12/SCK4_1/IC02_1/MDATA12
P1B/AN11/SOT4_1/IC01_1/MDATA11
P1A/AN10/SIN4_1/INT05_1/IC00_1/MDATA10
P19/AN09/SCK2_2/MDATA9
P18/AN08/SOT2_2/MDATA8
AVSS
AVRH
AVCC
P17/AN07/SIN2_2/INT04_1/MWEX
P16/AN06/SCK0_1/MOEX
P15/AN05/SOT0_1/MCSX0
P14/AN04/SIN0_1/INT03_1/MCSX1
P13/AN03/SCK1_1/MAD08
P12/AN02/SOT1_1/MAD09
P11/AN01/SIN1_1/INT02_1
P10/AN00
VCC
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 9 of 112
MB9B300B Series
LBC112
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 10 of 112
MB9B300B Series
4. List of Pin Functions
List of pin numbers
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR)
to select the pin.
Pin no.
BGA-112
LQFP-100
1
B1
1
I/O circuit
type
Pin name
LQFP-120
VCC
Pin state
type
-
P50
INT00_0
AIN0_2
2
C1
2
SIN3_1
E
H
E
H
E
H
E
H
E
I
RTO10_0
(PPG10_0)
MDATA0
P51
INT01_0
BIN0_2
3
C2
3
SOT3_1
(SDA3_1)
RTO11_0
(PPG10_0)
MDATA1
P52
INT02_0
ZIN0_2
4
B3
4
SCK3_1
(SCL3_1)
RTO12_0
(PPG12_0)
MDATA2
P53
SIN6_0
TIOA1_2
5
D1
5
INT07_2
RTO13_0
(PPG12_0)
MDATA3
P54
SOT6_0
(SDA6_0)
6
D2
6
TIOB1_2
RTO14_0
(PPG14_0)
MDATA4
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 11 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P55
SCK6_0
(SCL6_0)
7
D3
7
ADTG_1
E
I
E
H
E
I
E
I
E
H
E
I
E
I
E
H
RTO15_0
(PPG14_0)
MDATA5
P56
SIN1_0
(120pin only)
8
D5
8
INT08_2
DTTI1X_0
MCSX7
P57
-
-
9
SOT1_0
(SDA1_0)
MNALE
P58
-
-
10
SCK1_0
(SCL1_0)
MNCLE
P59
SIN7_0
-
-
11
INT09_2
MNWEX
P5A
-
-
12
SOT7_0
(SDA7_0)
MNREX
P5B
-
-
13
SCK7_0
(SCL7_0)
P30
AIN0_0
9
E1
14
TIOB0_1
INT03_2
MDATA6
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 12 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P31
BIN0_0
TIOB1_1
10
E2
15
SCK6_1
(SCL6_1)
E
H
E
H
E
H
E
I
E
H
E
H
E
H
E
H
INT04_2
MDATA7
P32
ZIN0_0
TIOB2_1
11
E3
16
SOT6_1
(SDA6_1)
INT05_2
MDQM0
P33
INT04_0
12
E4
17
TIOB3_1
SIN6_1
ADTG_6
MDQM1
P34
13
F1
18
FRCK0_0
TIOB4_1
MAD24
P35
IC03_0
14
F2
19
TIOB5_1
INT08_1
MAD23
P36
IC02_0
15
F3
20
SIN5_2
INT09_1
MCSX3
P37
IC01_0
16
G1
21
SOT5_2
(SDA5_2)
INT10_1
MCSX2
P38
IC00_0
17
G2
22
SCK5_2
(SCL5_2)
INT11_1
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 13 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P39
18
F4
23
DTTI0X_0
E
I
G
I
ADTG_2
P3A
19
G3
24
-
B2
-
RTO00_0
(PPG00_0)
TIOA0_1
VSS
-
P3B
20
H1
25
RTO01_0
(PPG00_0)
G
I
G
I
G
I
G
I
G
I
TIOA1_1
P3C
21
H2
26
RTO02_0
(PPG02_0)
TIOA2_1
P3D
22
G4
27
RTO03_0
(PPG02_0)
TIOA3_1
P3E
23
H3
28
RTO04_0
(PPG04_0)
TIOA4_1
P3F
RTO05_0
(PPG04_0)
24
J2
29
25
L1
30
VSS
-
26
J1
31
VCC
-
TIOA5_1
P40
TIOA0_0
27
J4
32
RTO10_1
(PPG10_1)
G
H
G
H
INT12_1
MAD22
P41
TIOA1_0
28
L5
33
RTO11_1
(PPG10_1)
INT13_1
MAD21
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 14 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P42
TIOA2_0
29
K5
34
RTO12_1
(PPG12_1)
G
I
G
I
MAD20
P43
TIOA3_0
30
J5
35
RTO13_1
(PPG12_1)
ADTG_7
MAD19
-
K2
-
VSS
-
-
J3
-
VSS
-
-
H4
-
VSS
-
P44
TIOA4_0
31
H5
36
RTO14_1
(PPG14_1)
G
I
G
I
MAD18
P45
TIOA5_0
32
L6
37
33
L2
38
C
-
34
L4
39
VSS
-
35
K1
40
VCC
-
RTO15_1
(PPG14_1)
MAD17
36
L3
41
37
K3
42
38
K4
43
P46
X0A
P47
X1A
INITX
D
M
D
N
B
C
E
H
E
I
P48
DTTI1X_1
39
K6
44
INT14_1
SIN3_2
MAD16
P49
TIOB0_0
IC10_1
40
J6
45
AIN0_1
SOT3_2
(SDA3_2)
MAD15
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 15 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P4A
TIOB1_0
IC11_1
41
L7
46
BIN0_1
E
I
E
I
E
I
E
I
E
H
E
I
E
H
E
H
SCK3_2
(SCL3_2)
MAD14
P4B
TIOB2_0
42
K7
47
IC12_1
ZIN0_1
MAD13
P4C
TIOB3_0
IC13_1
43
H6
48
SCK7_1
(SCL7_1)
AIN1_2
MAD12
P4D
TIOB4_0
FRCK1_1
44
J7
49
SOT7_1
(SDA7_1)
BIN1_2
MAD11
P4E
TIOB5_0
45
K8
50
INT06_2
SIN7_1
ZIN1_2
MAD10
-
-
51
-
-
52
P70
TIOA4_2
P71
INT13_2
TIOB4_2
P72
-
-
53
SIN2_0
INT14_2
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 16 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P73
-
-
54
SOT2_0
(SDA2_0)
E
H
INT15_2
P74
-
-
55
SCK2_0
(SCL2_0)
E
I
46
K9
56
MD1
C
D
47
L8
57
MD0
C
D
48
L9
58
X0
A
A
49
L10
59
X1
A
B
50
L11
60
VSS
-
51
K11
61
VCC
-
52
J11
62
P10
AN00
F
K
F
L
P11
53
J10
63
AN01
SIN1_1
INT02_1
-
K10
-
VSS
-
-
J9
-
VSS
-
P12
AN02
54
J8
64
SOT1_1
(SDA1_1)
F
K
F
K
F
L
F
K
MAD09
P13
AN03
55
H10
65
SCK1_1
(SCL1_1)
MAD08
P14
AN04
56
H9
66
SIN0_1
INT03_1
MCSX1
P15
AN05
57
H7
67
SOT0_1
(SDA0_1)
MCSX0
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 17 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P16
AN06
58
G10
68
SCK0_1
(SCL0_1)
F
K
F
L
MOEX
P17
AN07
59
G9
69
SIN2_2
INT04_1
MWEX
60
H11
70
AVCC
-
61
F11
71
AVRH
-
62
G11
72
AVSS
-
P18
AN08
63
G8
73
SOT2_2
(SDA2_2)
F
K
F
K
F
L
MDATA8
P19
AN09
64
F10
74
SCK2_2
(SCL2_2)
MDATA9
P1A
AN10
65
F9
75
SIN4_1
INT05_1
IC00_1
MDATA10
-
H8
-
VSS
-
P1B
AN11
66
E11
76
SOT4_1
(SDA4_1)
F
K
F
K
IC01_1
MDATA11
P1C
AN12
67
E10
77
SCK4_1
(SCL4_1)
IC02_1
MDATA12
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 18 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P1D
AN13
68
F8
78
CTS4_1
F
K
F
K
F
K
E
I
E
H
E
I
E
I
IC03_1
MDATA13
P1E
AN14
69
E9
79
RTS4_1
DTTI0X_1
MDATA14
P1F
AN15
70
D11
80
ADTG_5
FRCK0_1
MDATA15
P28
ADTG_4
-
-
81
RTO05_1
(PPG04_1)
MCSX6
P27
INT02_2
-
-
82
RTO04_1
(PPG04_1)
MCSX5
P26
-
-
83
SCK2_1
(SCL2_1)
RTO03_1
(PPG02_1)
MCSX4
P25
-
-
84
SOT2_1
(SDA2_1)
RTO02_1
(PPG02_1)
-
B10
-
VSS
-
-
C9
-
VSS
-
P24
SIN2_1
-
-
85
INT01_2
E
H
RTO01_1
(PPG00_1)
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 19 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P23
SCK0_0
(SCL0_0)
71
D10
86
TIOA7_1
E
I
E
I
E
H
E
H
RTO00_1
(PPG00_1)
P22
72
E8
87
SOT0_0
(SDA0_0)
TIOB7_1
ZIN1_1
P21
73
C11
88
SIN0_0
INT06_1
BIN1_1
P20
INT05_0
74
C10
89
75
A11
90
VSS
-
76
A10
91
VCC
-
77
A9
92
78
B9
93
CROUT
AIN1_1
P00
TRSTX
E
E
E
E
E
E
E
E
E
E
E
F
P01
TCK
SWCLK
79
B11
94
80
A8
95
P02
TDI
P03
TMS
SWDIO
P04
81
B8
96
TDO
SWO
P05
TRACED0
82
C8
97
TIOA5_2
SIN4_2
INT00_1
-
D8
Document Number: 002-05612 Rev. *D
-
VSS
October 23, 2017
-
Page 20 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P06
TRACED1
83
D9
98
TIOB5_2
SOT4_2
(SDA4_2)
E
F
E
G
E
G
E
G
E
H
E
I
E
I
E
I
INT01_1
P07
TRACED2
84
A7
99
ADTG_0
SCK4_2
(SCL4_2)
P08
85
B7
100
TRACED3
TIOA0_2
CTS4_2
P09
86
C7
101
TRACECLK
TIOB0_2
RTS4_2
P0A
SIN4_0
87
D7
102
INT00_2
FRCK1_0
MAD07
P0B
SOT4_0
(SDA4_0)
88
A6
103
TIOB6_1
IC10_0
MAD06
P0C
89
B6
104
SCK4_0
(SCL4_0)
TIOA6_1
IC11_0
MAD05
P0D
RTS4_0
90
C6
105
TIOA3_2
IC12_0
MAD04
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 21 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
typet
P0E
CTS4_0
91
A5
106
TIOB3_2
E
I
IC13_0
MAD03
-
D4
-
VSS
-
-
C3
-
VSS
-
P0F
92
B5
107
NMIX
E
J
E
H
E
I
E
H
E
I
E
H
E
H
E
I
E
I
MAD02
P68
-
-
108
SCK3_0
(SCL3_0)
TIOB7_2
INT12_2
P67
-
-
109
SOT3_0
(SDA3_0)
TIOA7_2
P66
-
-
110
SIN3_0
ADTG_8
INT11_2
P65
-
-
111
TIOB7_0
SCK5_1
(SCL5_1)
P64
TIOA7_0
-
-
112
SOT5_1
(SDA5_1)
INT10_2
P63
93
-
D6
113
-
INT03_0
MAD01
SIN5_1
P62
94
C5
114
SCK5_0
(SCL5_0)
ADTG_3
MAD00
P61
95
B4
115
SOT5_0
(SDA5_0)
TIOB2_2
UHCONX
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 22 of 112
MB9B300B Series
Pin no.
BGA-112
LQFP-100
I/O circuit
type
Pin name
LQFP-120
Pin state
type
P60
96
C4
116
97
A4
117
98
A3
118
99
A2
119
100
A1
120
SIN5_0
TIOA2_2
E
H
INT15_1
Document Number: 002-05612 Rev. *D
USBVCC
P80
UDM0
P81
UDP0
VSS
October 23, 2017
H
O
H
O
-
Page 23 of 112
MB9B300B Series
List of pin functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR)
to select the pin.
Module
ADC
Base Timer
0
Base Timer
1
Base Timer
2
Pin name
ADTG_0
ADTG_1
ADTG_2
ADTG_3
ADTG_4
ADTG_5
ADTG_6
ADTG_7
ADTG_8
AN00
AN01
AN02
AN03
AN04
AN05
AN06
AN07
AN08
AN09
AN10
AN11
AN12
AN13
AN14
AN15
TIOA0_0
TIOA0_1
TIOA0_2
TIOB0_0
TIOB0_1
TIOB0_2
TIOA1_0
TIOA1_1
TIOA1_2
TIOB1_0
TIOB1_1
TIOB1_2
TIOA2_0
TIOA2_1
TIOA2_2
TIOB2_0
TIOB2_1
TIOB2_2
Document Number: 002-05612 Rev. *D
Function
A/D converter external trigger input pin.
A/D converter analog input pin.
ANxx describes ADC ch.xx.
Base timer ch.0 TIOA pin.
Base timer ch.0 TIOB pin.
Base timer ch.1 TIOA pin.
Base timer ch.1 TIOB pin.
Base timer ch.2 TIOA pin.
Base timer ch.2 TIOB pin.
October 23, 2017
LQFP-100
84
7
18
94
70
12
30
52
53
54
55
56
57
58
59
63
64
65
66
67
68
69
70
27
19
85
40
9
86
28
20
5
41
10
6
29
21
96
42
11
95
Pin No.
BGA-112
A7
D3
F4
C5
D11
E4
J5
J11
J10
J8
H10
H9
H7
G10
G9
G8
F10
F9
E11
E10
F8
E9
D11
J4
G3
B7
J6
E1
C7
L5
H1
D1
L7
E2
D2
K5
H2
C4
K7
E3
B4
LQFP-120
99
7
23
114
81
80
17
35
110
62
63
64
65
66
67
68
69
73
74
75
76
77
78
79
80
32
24
100
45
14
101
33
25
5
46
15
6
34
26
116
47
16
115
Page 24 of 112
MB9B300B Series
Module
Base Timer
3
Pin name
Function
TIOA3_0
TIOA3_1
J5
35
22
G4
27
90
C6
105
TIOB3_0
43
H6
48
12
E4
17
91
A5
106
31
H5
36
23
H3
28
TIOA4_2
-
-
51
TIOB4_0
44
J7
49
13
F1
18
TIOB4_2
-
-
52
TIOA5_0
32
L6
37
24
J2
29
TIOA5_2
82
C8
97
TIOB5_0
45
K8
50
14
F2
19
83
D9
98
Base timer ch.3 TIOA pin.
Base timer ch.3 TIOB pin.
TIOB3_2
TIOA4_0
TIOA4_1
TIOB4_1
Base Timer
5
LQFP-120
30
TIOA3_2
TIOB3_1
Base Timer
4
Pin No.
BGA-112
LQFP-100
TIOA5_1
TIOB5_1
Base timer ch.4 TIOA pin.
Base timer ch.4 TIOB pin.
Base timer ch.5 TIOA pin.
Base timer ch.5 TIOB pin.
TIOB5_2
Base Timer
6
TIOA6_1
Base timer ch.6 TIOA pin.
89
B6
104
TIOB6_1
Base timer ch.6 TIOB pin.
88
A6
103
Base Timer
7
TIOA7_0
-
-
112
71
D10
86
TIOA7_2
-
-
109
TIOB7_0
-
-
111
72
E8
87
TIOA7_1
TIOB7_1
Base timer ch.7 TIOA pin.
Base timer ch.7 TIOB pin.
TIOB7_2
Debugger
-
-
108
SWCLK
Serial wire debug interface clock input.
78
B9
93
SWDIO
Serial wire debug interface data input / output.
80
A8
95
SWO
Serial wire viewer output.
81
B8
96
TCK
JTAG test clock input.
78
B9
93
TDI
JTAG test data input.
79
B11
94
TDO
JTAG debug data output.
81
B8
96
TMS
JTAG test mode state input/output.
80
A8
95
TRACECLK
Trace CLK output of ETM.
86
C7
101
TRACED0
82
C8
97
TRACED1
83
D9
98
84
A7
99
85
B7
100
77
A9
92
TRACED2
Trace data output of ETM.
TRACED3
TRSTX
Document Number: 002-05612 Rev. *D
JTAG test reset Input.
October 23, 2017
Page 25 of 112
MB9B300B Series
Module
External
Bus
Pin name
MAD00
MAD01
MAD02
MAD03
MAD04
MAD05
MAD06
MAD07
MAD08
MAD09
MAD10
MAD11
MAD12
MAD13
MAD14
MAD15
MAD16
MAD17
MAD18
MAD19
MAD20
MAD21
MAD22
MAD23
MAD24
MCSX0
MCSX1
MCSX2
MCSX3
MCSX4
MCSX5
MCSX6
MCSX7
MDATA0
MDATA1
MDATA2
MDATA3
MDATA4
MDATA5
MDATA6
MDATA7
MDATA8
MDATA9
MDATA10
MDATA11
MDATA12
MDATA13
MDATA14
MDATA15
MDQM0
MDQM1
Document Number: 002-05612 Rev. *D
Function
External bus interface address bus.
External bus interface chip select output pin.
External bus interface data bus.
External bus interface byte mask signal output.
October 23, 2017
LQFP-100
94
93
92
91
90
89
88
87
55
54
45
44
43
42
41
40
39
32
31
30
29
28
27
14
13
57
56
16
15
8
2
3
4
5
6
7
9
10
63
64
65
66
67
68
69
70
11
12
Pin No.
BGA-112
C5
D6
B5
A5
C6
B6
A6
D7
H10
J8
K8
J7
H6
K7
L7
J6
K6
L6
H5
J5
K5
L5
J4
F2
F1
H7
H9
G1
F3
D5
C1
C2
B3
D1
D2
D3
E1
E2
G8
F10
F9
E11
E10
F8
E9
D11
E3
E4
LQFP-120
114
113
107
106
105
104
103
102
65
64
50
49
48
47
46
45
44
37
36
35
34
33
32
19
18
67
66
21
20
83
82
81
8
2
3
4
5
6
7
14
15
73
74
75
76
77
78
79
80
16
17
Page 26 of 112
MB9B300B Series
Module
External
Bus
Pin name
MNALE
MNCLE
MNREX
MNWEX
MOEX
MWEX
Document Number: 002-05612 Rev. *D
Function
External bus interface ALE signal to control NAND Flash
output pin.
External bus interface CLE signal to control NAND Flash
output pin.
External bus interface read enable signal to control NAND
Flash.
External bus interface write enable signal to control NAND
Flash.
External bus interface read enable signal for SRAM.
External bus interface write enable signal for SRAM.
October 23, 2017
Pin No.
BGA-112
LQFP-100
LQFP-120
-
-
9
-
-
10
-
-
12
-
-
11
58
59
G10
G9
68
69
Page 27 of 112
MB9B300B Series
Module
External
Interrupt
Pin name
INT00_0
INT00_1
INT00_2
INT01_0
INT01_1
INT01_2
INT02_0
INT02_1
INT02_2
INT03_0
INT03_1
INT03_2
INT04_0
INT04_1
INT04_2
INT05_0
INT05_1
INT05_2
INT06_1
INT06_2
INT07_2
INT08_1
INT08_2
INT09_1
INT09_2
INT10_1
INT10_2
INT11_1
INT11_2
INT12_1
INT12_2
INT13_1
INT13_2
INT14_1
INT14_2
INT15_1
INT15_2
NMIX
Document Number: 002-05612 Rev. *D
Function
External interrupt request 00 input pin.
External interrupt request 01 input pin.
External interrupt request 02 input pin.
External interrupt request 03 input pin.
External interrupt request 04 input pin.
External interrupt request 05 input pin.
External interrupt request 06 input pin.
External interrupt request 07 input pin.
External interrupt request 08 input pin.
External interrupt request 09 input pin.
External interrupt request 10 input pin.
External interrupt request 11 input pin.
External interrupt request 12 input pin.
External interrupt request 13 input pin.
External interrupt request 14 input pin.
External interrupt request 15 input pin.
Non-Maskable Interrupt input.
October 23, 2017
LQFP-100
2
82
87
3
83
4
53
93
56
9
12
59
10
74
65
11
73
45
5
14
8
15
16
17
27
28
39
96
92
Pin No.
BGA-112
C1
C8
D7
C2
D9
B3
J10
D6
H9
E1
E4
G9
E2
C10
F9
E3
C11
K8
D1
F2
D5
F3
G1
G2
J4
L5
K6
C4
B5
LQFP-120
2
97
102
3
98
85
4
63
82
113
66
14
17
69
15
89
75
16
88
50
5
19
8
20
11
21
112
22
110
32
108
33
52
44
53
116
54
107
Page 28 of 112
MB9B300B Series
Module
GPIO
Pin name
P00
P01
P02
P03
P04
P05
P06
P07
P08
P09
P0A
P0B
P0C
P0D
P0E
P0F
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P1A
P1B
P1C
P1D
P1E
P1F
P20
P21
P22
P23
P24
P25
P26
P27
P28
Document Number: 002-05612 Rev. *D
Function
LQFP-100
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
52
53
54
55
56
57
58
59
63
64
65
66
67
68
69
70
74
73
72
71
-
General-purpose I/O port 0.
General-purpose I/O port 1.
General-purpose I/O port 2.
October 23, 2017
Pin No.
BGA-112
A9
B9
B11
A8
B8
C8
D9
A7
B7
C7
D7
A6
B6
C6
A5
B5
J11
J10
J8
H10
H9
H7
G10
G9
G8
F10
F9
E11
E10
F8
E9
D11
C10
C11
E8
D10
-
LQFP-120
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
62
63
64
65
66
67
68
69
73
74
75
76
77
78
79
80
89
88
87
86
85
84
83
82
81
Page 29 of 112
MB9B300B Series
Module
GPIO
Pin name
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P3A
P3B
P3C
P3D
P3E
P3F
P40
P41
P42
P43
P44
P45
P46
P47
P48
P49
P4A
P4B
P4C
P4D
P4E
P50
P51
P52
P53
P54
P55
P56
P57
P58
P59
P5A
P5B
Document Number: 002-05612 Rev. *D
Function
LQFP-100
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
27
28
29
30
31
32
36
37
39
40
41
42
43
44
45
2
3
4
5
6
7
8
-
General-purpose I/O port 3.
General-purpose I/O port 4.
General-purpose I/O port 5.
October 23, 2017
Pin No.
BGA-112
E1
E2
E3
E4
F1
F2
F3
G1
G2
F4
G3
H1
H2
G4
H3
J2
J4
L5
K5
J5
H5
L6
L3
K3
K6
J6
L7
K7
H6
J7
K8
C1
C2
B3
D1
D2
D3
D5
-
LQFP-120
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
32
33
34
35
36
37
41
42
44
45
46
47
48
49
50
2
3
4
5
6
7
8
9
10
11
12
13
Page 30 of 112
MB9B300B Series
Module
GPIO
Multi Function
Serial
0
Pin name
P60
P61
P62
P63
P64
P65
P66
P67
P68
P70
P71
P72
P73
P74
P80
P81
SIN0_0
SIN0_1
SOT0_0
(SDA0_0)
SOT0_1
(SDA0_1)
SCK0_0
(SCL0_0)
Multi Function
Serial
1
SCK0_1
(SCL0_1)
SIN1_0
SIN1_1
SOT1_0
(SDA1_0)
SOT1_1
(SDA1_1)
SCK1_0
(SCL1_0)
Multi Function
Serial
2
SCK1_1
(SCL1_1)
SIN2_0
SIN2_1
SIN2_2
SOT2_0
(SDA2_0)
SOT2_1
(SDA2_1)
SOT2_2
(SDA2_2)
SCK2_0
(SCL2_0)
SCK2_1
(SCL2_1)
SCK2_2
(SCL2_2)
Document Number: 002-05612 Rev. *D
Function
Pin No.
BGA-112
LQFP-100
LQFP-120
96
95
94
93
98
99
73
56
C4
B4
C5
D6
A3
A2
C11
H9
116
115
114
113
112
111
110
109
108
51
52
53
54
55
118
119
88
66
Multifunction serial interface ch.0 output pin.
This pin operates as SOT0 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA0
when it is used in an I2C (operation mode 4).
72
E8
87
57
H7
67
Multifunction serial interface ch.0 clock I/O pin.
This pin operates as SCK0 when it is used in a UART/CSIO
(operation modes 0 to 2) and as SCL0 when it is used in an
I2C (operation mode 4).
71
D10
86
58
G10
68
53
J10
8
63
Multifunction serial interface ch.1 output pin.
This pin operates as SOT1 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA1
when it is used in an I2C (operation mode 4).
-
-
9
54
J8
64
Multifunction serial interface ch.1 clock I/O pin.
This pin operates as SCK1 when it is used in a UART/CSIO
(operation modes 0 to 2) and as SCL1 when it is used in an
I2C (operation mode 4).
-
-
10
55
H10
65
59
G9
53
85
69
-
-
54
-
-
84
63
G8
73
-
-
55
-
-
83
64
F10
74
General-purpose I/O port 6.
General-purpose I/O port 7.
General-purpose I/O port 8.
Multifunction serial interface ch.0 input pin.
Multifunction serial interface ch.1 input pin.
Multifunction serial interface ch.2 input pin.
Multifunction serial interface ch.2 output pin.
This pin operates as SOT2 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA2
when it is used in an I2C (operation mode 4).
Multifunction serial interface ch.2 clock I/O pin.
This pin operates as SCK2 when it is used in a UART/CSIO
(operation modes 0 to 2) and as SCL2 when it is used in an
I2C (operation mode 4).
October 23, 2017
Page 31 of 112
MB9B300B Series
Module
Multi Function
Serial
3
Multi Function
Serial
4
Multi Function
Serial
5
Pin name
Function
SIN3_0
SIN3_1
SIN3_2
SOT3_0
(SDA3_0)
SOT3_1
(SDA3_1)
SOT3_2
(SDA3_2)
SCK3_0
(SCL3_0)
SCK3_1
(SCL3_1)
SCK3_2
(SCL3_2)
SIN4_0
SIN4_1
SIN4_2
SOT4_0
(SDA4_0)
SOT4_1
(SDA4_1)
SOT4_2
(SDA4_2)
SCK4_0
(SCL4_0)
SCK4_1
(SCL4_1)
SCK4_2
(SCL4_2)
RTS4_0
RTS4_1
RTS4_2
CTS4_0
CTS4_1
CTS4_2
SIN5_0
SIN5_1
SIN5_2
SOT5_0
(SDA5_0)
SOT5_1
(SDA5_1)
SOT5_2
(SDA5_2)
SCK5_0
(SCL5_0)
SCK5_1
(SCL5_1)
SCK5_2
(SCL5_2)
Document Number: 002-05612 Rev. *D
Multifunction serial interface ch.3 input pin.
Multifunction serial interface ch.3 output pin.
This pin operates as SOT3 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA3
when it is used in an I2C (operation mode 4).
Multifunction serial interface ch.3 clock I/O pin.
This pin operates as SCK3 when it is used in a UART/CSIO
(operation modes 0 to 2) and as SCL3 when it is used in an
I2C (operation mode 4).
Multifunction serial interface ch.4 input pin.
Multifunction serial interface ch.4 output pin.
This pin operates as SOT4 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA4
when it is used in an I2C (operation mode 4).
Multifunction serial interface ch.4 clock I/O pin.
This pin operates as SCK4 when it is used in a UART/CSIO
(operation modes 0 to 2) and as SCL4 when it is used in an
I2C (operation mode 4).
Multifunction serial interface ch.4 RTS output pin.
Multifunction serial interface ch.4 CTS input pin.
Multifunction serial interface ch.5 input pin.
Multifunction serial interface ch.5 output pin.
This pin operates as SOT5 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA5
when it is used in an I2C (operation mode 4).
Multifunction serial interface ch.5 clock I/O pin.
This pin operates as SCK5 when it is used in a UART/CSIO
(operation modes 0 to 2) and as SCL5 when it is used in an
I2C (operation mode 4).
October 23, 2017
Pin No.
BGA-112
LQFP-100
LQFP-120
-
-
110
2
C1
2
39
K6
44
-
-
109
3
C2
3
40
J6
45
-
-
108
4
B3
4
41
L7
46
87
65
82
D7
F9
C8
102
75
97
88
A6
103
66
E11
76
83
D9
98
89
B6
104
67
E10
77
84
A7
99
90
69
86
91
68
85
96
15
C6
E9
C7
A5
F8
B7
C4
F3
105
79
101
106
78
100
116
113
20
95
B4
115
-
-
112
16
G1
21
94
C5
114
-
-
111
17
G2
22
Page 32 of 112
MB9B300B Series
Module
Multi Function
Serial
6
Multi Function
Serial
7
Pin name
SIN6_0
SIN6_1
SOT6_0
(SDA6_0)
SOT6_1
(SDA6_1)
SCK6_0
(SCL6_0)
SCK6_1
(SCL6_1)
SIN7_0
SIN7_1
SOT7_0
(SDA7_0)
SOT7_1
(SDA7_1)
SCK7_0
(SCL7_0)
SCK7_1
(SCL7_1)
Document Number: 002-05612 Rev. *D
Function
Pin No.
BGA-112
LQFP-100
LQFP-120
5
12
D1
E4
5
17
6
D2
6
11
E3
16
7
D3
7
10
E2
15
45
K8
11
50
Multifunction serial interface ch.7 output pin.
This pin operates as SOT7 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA7
when it is used in an I2C (operation mode 4).
-
-
12
44
J7
49
Multifunction serial interface ch.7 clock I/O pin.
This pin operates as SCK7 when it is used in a UART/CSIO
(operation modes 0 to 2) and as SCL7 when it is used in an
I2C (operation mode 4).
-
-
13
43
H6
48
Multifunction serial interface ch.6 input pin.
Multifunction serial interface ch.6 output pin.
This pin operates as SOT6 when it is used in a
UART/CSIO/LIN (operation modes 0 to 3) and as SDA6
when it is used in an I2C (operation mode 4).
Multifunction serial interface ch.6 clock I/O pin.
This pin operates as SCK6 when it is used in a UART/CSIO
(operation modes 0 to 2) and as SCL6 when it is used in an
I2C (operation mode 4).
Multifunction serial interface ch.7 input pin.
October 23, 2017
Page 33 of 112
MB9B300B Series
Module
Multi Function
Timer
0
Pin name
DTTI0X_0
DTTI0X_1
FRCK0_0
FRCK0_1
IC00_0
IC00_1
IC01_0
IC01_1
IC02_0
IC02_1
IC03_0
IC03_1
RTO00_0
(PPG00_0)
RTO00_1
(PPG00_1)
RTO01_0
(PPG00_0)
RTO01_1
(PPG00_1)
RTO02_0
(PPG02_0)
RTO02_1
(PPG02_1)
RTO03_0
(PPG02_0)
RTO03_1
(PPG02_1)
RTO04_0
(PPG04_0)
RTO04_1
(PPG04_1)
RTO05_0
(PPG04_0)
RTO05_1
(PPG04_1)
Document Number: 002-05612 Rev. *D
LQFP-100
Pin No.
BGA-112
LQFP-120
18
69
13
70
17
65
16
66
15
67
14
68
F4
E9
F1
D11
G2
F9
G1
E11
F3
E10
F2
F8
23
79
18
80
22
75
21
76
20
77
19
78
Wave form generator output of multi-function timer 0.
This pin operates as PPG00 when it is used in PPG 0 output
modes.
19
G3
24
71
D10
86
Wave form generator output of multi-function timer 0.
This pin operates as PPG00 when it is used in PPG 0 output
modes.
20
H1
25
-
-
85
Wave form generator output of multi-function timer 0.
This pin operates as PPG02 when it is used in PPG 0 output
modes.
21
H2
26
-
-
84
Wave form generator output of multi-function timer 0.
This pin operates as PPG02 when it is used in PPG 0 output
modes.
22
G4
27
-
-
83
Wave form generator output of multi-function timer 0.
This pin operates as PPG04 when it is used in PPG 0 output
modes.
23
H3
28
-
-
82
Wave form generator output of multi-function timer 0.
This pin operates as PPG04 when it is used in PPG 0 output
modes.
24
J2
29
-
-
81
Function
Input signal controlling wave form generator outputs
RTO00 to RTO05 of multi-function timer 0.
16-bit free-run timer ch.0 external clock input pin.
16-bit input capture ch.0 input pin of multi-function timer 0.
ICxx describes channel number.
October 23, 2017
Page 34 of 112
MB9B300B Series
Module
Multi Function
Timer
1
Pin name
DTTI1X_0
DTTI1X_1
FRCK1_0
FRCK1_1
IC10_0
IC10_1
IC11_0
IC11_1
IC12_0
IC12_1
IC13_0
IC13_1
RTO10_0
(PPG10_0)
RTO10_1
(PPG10_1)
RTO11_0
(PPG10_0)
RTO11_1
(PPG10_1)
RTO12_0
(PPG12_0)
RTO12_1
(PPG12_1)
RTO13_0
(PPG12_0)
RTO13_1
(PPG12_1)
RTO14_0
(PPG14_0)
RTO14_1
(PPG14_1)
RTO15_0
(PPG14_0)
RTO15_1
(PPG14_1)
Document Number: 002-05612 Rev. *D
LQFP-100
Pin No.
BGA-112
LQFP-120
8
39
87
44
88
40
89
41
90
42
91
43
D5
K6
D7
J7
A6
J6
B6
L7
C6
K7
A5
H6
8
44
102
49
103
45
104
46
105
47
106
48
Wave form generator output of multi-function timer 1.
This pin operates as PPG10 when it is used in PPG 1 output
modes.
2
C1
2
27
J4
32
Wave form generator output of multi-function timer 1.
This pin operates as PPG10 when it is used in PPG 1 output
modes.
3
C2
3
28
L5
33
Wave form generator output of multi-function timer 1.
This pin operates as PPG12 when it is used in PPG 1 output
modes.
4
B3
4
29
K5
34
Wave form generator output of multi-function timer 1.
This pin operates as PPG12 when it is used in PPG 1 output
modes.
5
D1
5
30
J5
35
6
D2
6
31
H5
36
7
D3
7
32
L6
37
Function
Input signal controlling wave form generator outputs RTO10
to RTO15 of multi-function timer 1.
16-bit free-run timer ch.1 external clock input pin.
16-bit input capture ch.0 input pin of multi-function timer 1.
ICxx describes channel number.
Wave form generator output of multi-function timer 1.
This pin operates as PPG14 when it is used in PPG 1 output
modes.
Wave form generator output of multi-function timer 1.
This pin operates as PPG14 when it is used in PPG 1 output
modes.
October 23, 2017
Page 35 of 112
MB9B300B Series
Module
Quadrature
Position/
Revolution
Counter
0
Pin name
Function
AIN0_0
AIN0_1
LQFP-120
9
E1
14
40
J6
45
2
C1
2
BIN0_0
10
E2
15
41
L7
46
BIN0_2
3
C2
3
ZIN0_0
11
E3
16
42
K7
47
4
B3
4
74
C10
89
43
H6
48
73
C11
88
44
J7
49
72
E8
87
45
K8
50
98
99
95
A3
A2
B4
118
119
115
ZIN0_1
QPRC ch.0 AIN input pin.
QPRC ch.0 BIN input pin.
QPRC ch.0 ZIN input pin.
ZIN0_2
AIN1_1
AIN1_2
BIN1_1
BIN1_2
ZIN1_1
ZIN1_2
USB
Pin No.
BGA-112
AIN0_2
BIN0_1
Quadrature
Position/
Revolution
Counter
1
LQFP-100
UDM0
UDP0
UHCONX
Document Number: 002-05612 Rev. *D
QPRC ch.1 AIN input pin.
QPRC ch.1 BIN input pin.
QPRC ch.1 ZIN input pin.
USB Device / HOST D – pin.
USB Device / HOST D + pin.
USB external pull-up control pin.
October 23, 2017
Page 36 of 112
MB9B300B Series
LQFP-100
Pin No.
BGA-112
LQFP-120
38
K4
43
47
L8
57
Main clock (oscillation) input pin.
Sub clock (oscillation) input pin.
Main clock (oscillation) I/O pin.
Sub clock (oscillation) I/O pin.
Built-in High-speed CR-osc clock output port.
A/D converter analog power pin.
A/D converter analog reference voltage input pin.
46
1
26
35
51
76
97
25
34
50
75
100
48
36
49
37
74
60
61
K9
B1
J1
K1
K11
A10
A4
B2
L1
K2
J3
H4
L4
L11
K10
J9
H8
B10
C9
A11
D8
D4
C3
A1
L9
L3
L10
K3
C10
H11
F11
56
1
31
40
61
91
117
30
39
60
90
120
58
41
59
42
89
70
71
AVSS
A/D converter GND pin.
62
G11
72
C
Power stabilization capacity pin.
33
L2
38
Module
Reset
Mode
Pin name
INITX
MD0
Power
GND
Clock
Analog
Power
Analog
GND
C-pin
MD1
VCC
VCC
VCC
VCC
VCC
USBVCC
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
X0
X0A
X1
X1A
CROUT
AVCC
AVRH
Function
External Reset Input. A reset is valid when INITX=L.
Mode 0 pin.
During normal operation, MD0=L must be input. During serial
programming to flash memory, MD0=H must be input.
Mode 1 pin. Input must always be at the "L" level.
Power Pin.
3.3V Power supply port for USB I/O.
GND Pin.
Note:
−
While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant
to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in
other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP
controller.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 37 of 112
MB9B300B Series
5. I/O Circuit Type
Type
A
Circuit
Remarks
• Oscillation feedback resistor
: Approximately 1 MΩ
• With Standby mode control
X1
Clock input
X0
Standby mode control
B
• CMOS level hysteresis input
• pull-up resistor
: Approximately 50 kΩ
Pull-up resistor
Digital input
C
• CMOS level hysteresis input
Mode input
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 38 of 112
MB9B300B Series
Type
D
Circuit
Remarks
It is possible to select the sub
oscillation / GPIO function
Pull-up
When the sub oscillation is selected.
resistor
P-ch
P-ch
Digital output
X1A
• Oscillation feedback resistor
: Approximately 20 MΩ
• With Standby mode control
When the GPIO is selected.
N-ch
Digital output
R
Pull-up resistor control
• CMOS level output.
• CMOS level hysteresis input
• With pull-up resistor control
• With standby mode control
• pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
Digital input
Standby mode control
Feedback
Clock input
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0A
Pull-up resistor control
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 39 of 112
MB9B300B Series
Type
E
Circuit
P-ch
P-ch
N-ch
Remarks
Digital output
Digital output
• CMOS level output
• CMOS level hysteresis input
• With pull-up resistor control
• With standby mode control
• pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• When this pin is used as an I2C pin,
the digital output
P-ch transistor is always off
• +B input is available
R
Pull-up resistor control
Digital input
Standby mode control
F
P-ch
P-ch
N-ch
R
Digital output
Digital output
• CMOS level output
• CMOS level hysteresis input
• With input control
• Analog input
• With pull-up resistor control
• With standby mode control
• pull-up resistor
: Approximately 50 kΩ
• IOH = -4 mA, IOL = 4 mA
• When this pin is used as an I2C pin,
the digital output
P-ch transistor is always off
• +B input is available
Pull-up resistor control
Digital input
Standby mode control
Analog input
Input control
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 40 of 112
MB9B300B Series
Type
G
Circuit
P-ch
Remarks
Digital output
P-ch
N-ch
• CMOS level output
• CMOS level hysteresis input
• With pull-up resistor control
• With standby mode control
• pull-up resistor
: Approximately 50 kΩ
• IOH = -12 mA, IOL = 12 mA
• +B input is available
Digital output
R
Pull-up resistor control
Digital input
Standby mode control
H
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
When the USB IO is selected.
GPIO Digital input circuit control
• Full-speed, Low-speed control
UDP output
When the GPIO is selected.
UDP0/P81
UDP input
Differential
UDM0/P80
It is possible to select the USB IO /
GPIO function.
Differential input
• CMOS level output
• CMOS level hysteresis input
• With standby mode control
• IOH = -25.3 mA, IOL = 19.7 mA
USB/GPIO select
UDM input
UDM output
USB Digital input/output direction
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
GPIO Digital input circuit control
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 41 of 112
MB9B300B Series
6. Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to
minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.
6.1
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
certain established limits, called absolute maximum ratings. Do not exceed these ratings.
Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical
characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely
affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the datasheet. Users
considering application outside the listed conditions are advised to contact their sales representative beforehand.
Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and
input/output functions.
1. Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device,
and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at
the design stage.
2. Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows.
Such conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
3. Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be
connected through an appropriate resistance to a power supply pin or ground pin.
Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally
high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess
of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or
damage from high heat, smoke or flame. To prevent this from happening, do the following:
1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal
noise, surge levels, etc.
2. Be sure that abnormal current flows do not occur during the power-on sequence.
Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.
Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 42 of 112
MB9B300B Series
Precautions Related to Usage of Devices
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.)
are requested to consult with sales representatives before such use. The company will not be responsible for damages arising
from such use without prior approval.
6.2
Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you
should only mount under Cypress recommended conditions. For detailed information about mount conditions, contact your sales
representative.
Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board,
or mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be
subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to
Cypress recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be
verified before mounting.
Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily
deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open
connections caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of
mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended
conditions.
Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction
strength may be reduced under some conditions of use.
Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption
of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel,
reducing moisture resistance and causing packages to crack. To prevent, do the following:
1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in
locations where temperature changes are slight.
2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C
and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica
gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended
conditions for baking.
Condition: 125°C/24 h
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 43 of 112
MB9B300B Series
Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following
precautions:
1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be
needed to remove electricity.
2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level
of 1 MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is
recommended.
4. Ground all fixtures and instruments, or protect with anti-static measures.
5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.
6.3
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
1. Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are
anticipated, consider anti-humidity processing.
2. Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases,
use anti-static measures or processing to prevent discharges.
3. Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If
you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
4. Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide
shielding as appropriate.
5. Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices
begin to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Cypress products in other special environmental conditions should consult with sales
representatives.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 44 of 112
MB9B300B Series
7. Handling Devices
Power supply pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to
prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground
lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the
ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also
advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin
and GND pin, between AVCC pin and AVSS pin near this device.
Stabilizing power supply voltage
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended
operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that
the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC
value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a
momentary fluctuation on switching the power supply.
Crystal oscillator circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1,
X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as
possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by
ground plane as this is expected to produce stable operation.
Evaluate oscillation of your using crystal oscillator by your mount board.
Using an external clock
When using an external clock, the clock signal should be input to the X0,X0A pin only and the X1,X1A pin should be kept open.
•
Example of Using an External Clock
Device
X0(X0A)
X1(X1A)
Open
Handling when using Multi function serial pin as I2C pin
If it is using multi function serial pin as I2C pins, P-ch transistor of digital output is always disable. However, I 2C pins need to keep
the electrical characteristic like other pins and not to connect to external I2C bus system with power OFF.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 45 of 112
MB9B300B Series
C Pin
This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND
pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F
characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use
by evaluating the temperature characteristics of a capacitor.
A smoothing capacitor of about 4.7 μF would be recommended for this series.
C
Device
CS
VSS
GND
Mode pins (MD0, MD1)
Connect the MD pin (MD0, MD1) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down
resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the
connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory
data. It is because of preventing the device erroneously switching to test mode due to noise.
Notes on power-on
Turn power on/off in the following order or at the same time.
If not using the A/D converter, connect AVCC =VCC and AVSS = VSS.
Turning on : VCC →USBVCC
VCC → AVCC → AVRH
Turning off : AVRH → AVCC → VCC
USBVCC → VCC
Serial Communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the
end. If an error is detected, retransmit the data.
Differences in features among the products with different memory sizes and between FLASH products and
MASK products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics
among the products with different memory sizes and between FLASH products and MASK products are different because chip
layout and memory structures are different.
If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 46 of 112
MB9B300B Series
8. Block Diagram
MB9BF304B/305B/306B
TRSTX,TC
KTDI,TMS
TDO
TRACED[3:0],
TRACECLK
SWJ-DP
ETM
TPIU
ROM
Table
SRAM0
16/24/32
Kbyte
Cortex-M3 Core I
@80MHz(Max.)
D
NVIC
Multi-layer AHB (Max.80MHz)
MPU
Sys
AHB-APB Bridge:
APB0(Max.40MHz)
Dual-Timer
WatchDog Timer
(Software)
Clock Reset
Generator
INITX
WatchDog Timer
(Hardware)
On-Chip
Flash
256/384/512K
byte
Flash I/F
Security
SRAM1
16/24/32
Kbyte
USB 2.0
(Host
/Device)
/Func)
USBVCC
PHY
UDP0,UDM0
UHCONX
DMAC
8ch.
CSV
X0
X1
X0A
X1A
CROUT
AVCC,
AVSS,AVRH
Main
Osc
Sub
Osc
PLL
CR
4MHz
AHB-AHB
Bridge
CLK
Source Clock
CR
100kHz
MAD[24:0]
External Bus IF
12-bit A/D Converter
MDATA[15:0]
MCSX[7:0],
MOEX,MWEX,
MNALE,
MNCLE
MNWEX,
MNREX,
MDQM[1:0]
Unit 0
AN[15:0]
Unit 1
ADTG[8:0]
Unit 2
USB Clock ctrl
AIN[1:0]
BIN[1:0]
QPRC
2ch.
ZIN[1:0]
A/D Activation
Compare
3ch.
IC0[3:0]
IC1[3:0]
FRCK[1:0]
16-bit Input Capture
4ch.
16-bit FreeRun Timer
3ch.
16-bit Output
Compare
6ch.
DTTI[1:0]X
RTO0[5:0]
RTO1[5:0]
LVD Ctrl
AHB-APB Bridge : APB2 ( Max.40MHz)
TIOB[7:0]
Base Timer
16-bit 8ch.
/32-bit 4ch.
AHB-APB Bridge : APB1 (Max.40MHz)
TIOA[7:0]
Multi Function Timer x2
Document Number: 002-05612 Rev. *D
Power On
Reset
LVD
Regulator
C
IRQ-Monitor
CRC
Accelerator
Watch Counter
External Interrupt
Controller
16-pin + NMI
INT[15:0]
NMIX
MD[1:0]
MODE-Ctrl
P0[F:0],
P1[F:0],
GPIO
Waveform Generator
3ch.
16-bit PPG
3ch.
PLL
PIN-Function-Ctrl
・
・
Px[x:0],
Multi-Function
Serial I/F
8ch.
(with FIFO ch.4~7)
*HW flow control(ch.4)
October 23, 2017
SCK[7:0]
SIN[7:0]
SOT[7:0]
CTS4
RTS4
Page 47 of 112
MB9B300B Series
9. Memory Size
See “Memory size” in “1. Product Lineup” to confirm the memory size.
10. Memory Map
Memory Map (1)
Peripherals Area
0x41FF_FFFF
Reserved
0xFFFF_FFFF
Reserved
0x4006_4000
Cortex-M3 Private
Peripherals
0x4006_3000
0x4006_2000
0x4006_1000
0x4006_0000
0xE010_0000
0xE000_0000
Reserved
Reserved
Reserved
DMAC
Reserved
0x4005_0000
USB ch.0
Reserved
0x4004_0000
0x4003_F000
Reserved
0x7000_0000
External Device
Area
0x6000_0000
Reserved
0x4400_0000
32Mbyte
Bit band alias
0x4200_0000
Peripherals
0x4000_0000
Reserved
0x2400_0000
32Mbyte
Bit band alias
0x2200_0000
0x2000_0000
0x4003_B000
0x4003_A000
0x4003_9000
0x4003_8000
0x4003_7000
0x4003_6000
0x4003_5000
0x4003_4000
0x4003_3000
0x4003_2000
0x4003_1000
0x4003_0000
0x4002_F000
0x4002_E000
0x4002_7000
0x4002_6000
0x4002_5000
0x4002_4000
SRAM1
SRAM0
0x0010_2000
0x0010_0000
A/DC
QPRC
Base Timer
PPG
Reserved
0x1FF8_0000
Please refer to the
next page for
the memory size
details.
Watch Counter
CRC
MFS
Reserved
USB Clock Ctrl
LVD
Reserved
GPIO
Reserved
Int-Req. Read
EXTI
Reserved
CR Trim
Reserved
0x4002_8000
Reserved
0x2008_0000
EXT-bus I/F
Reserved
0x4002_2000
0x4002_1000
Security/CR Trim
0x4002_0000
Flash
0x4001_6000
0x4001_5000
MFT unit1
MFT unit0
Reserved
Dual Timer
Reserved
0x4001_3000
0x0000_0000
0x4001_2000
0x4001_1000
0x4001_0000
SW WDT
HW WDT
Clock/Reset
Reserved
0x4000_1000
0x4000_0000
Document Number: 002-05612 Rev. *D
October 23, 2017
Flash I/F
Page 48 of 112
MB9B300B Series
Memory Map (2)
MB9BF306NB/RB
0x2008_0000
MB9BF305NB/RB
0x2008_0000
Reserved
MB9BF304NB/RB
0x2008_0000
Reserved
Reserved
0x2000_8000
0x2000_6000
SRAM1
32kbyte
0x2000_4000
SRAM1
24kbyte
0x2000_0000
0x2000_0000
0x2000_0000
SRAM0
24kbyte
SRAM0
32Kbyte
0x1FFF_C000
SRAM1
16kbyte
SRAM0
16kbyte
0x1FFF_A000
0x1FFF_8000
0x0010_2000
0x0010_1000
0x0010_0000
Reserved
Reserved
Reserved
0x0010_2000
0x0010_1000
0x0010_0000
CR trimming
Security
0x0010_2000
0x0010_1000
0x0010_0000
CR trimming
Security
CR trimming
Security
Reserved
Reserved
Reserved
0x0008_0000
0x0006_0000
SA10-13(64KBx4)
0x0000_0000
SA4-7(8KBx4)
SA8-9(48KBx2)
0x0000_0000
SA4-7(8KBx4)
0x0004_0000
SA10-11(64KBx2)
SA8-9(48KBx2)
0x0000_0000
SA4-7(8KBx4)
Flash 256Kbyte
SA8-9(48KBx2)
Flash 384Kbyte
Flash 512Kbyte
SA10-15(64KBx6)
*: See "MB9B500/400/300/100/MB9A100 Series Flash Programming Manual" for sector structure of Flash.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 49 of 112
MB9B300B Series
Peripheral Address Map
Start address
End address
Bus
Peripherals
0x4000_0000
0x4000_0FFF
0x4000_1000
0x4000_FFFF
0x4001_0000
0x4001_0FFF
Clock/Reset Control
0x4001_1000
0x4001_1FFF
Hardware Watchdog timer
0x4001_2000
0x4001_2FFF
0x4001_3000
0x4001_4FFF
0x4001_5000
0x4001_5FFF
Dual-Timer
0x4001_6000
0x4001_FFFF
Reserved
0x4002_0000
0x4002_0FFF
Multi-function timer unit0
0x4002_1000
0x4002_1FFF
Multi-function timer unit1
0x4002_2000
0x4002_3FFF
Reserved
0x4002_4000
0x4002_4FFF
PPG
0x4002_5000
0x4002_5FFF
0x4002_6000
0x4002_6FFF
0x4002_7000
0x4002_7FFF
A/D Converter
0x4002_8000
0x4002_DFFF
Reserved
0x4002_E000
0x4002_EFFF
Internal CR trimming
0x4002_F000
0x4002_FFFF
Reserved
0x4003_0000
0x4003_0FFF
External Interrupt Controller
0x4003_1000
0x4003_1FFF
Interrupt Request Batch-Read Function
0x4003_2000
0x4003_2FFF
Reserved
0x4003_3000
0x4003_3FFF
GPIO
0x4003_4000
0x4003_4FFF
Reserved
0x4003_5000
0x4003_5FFF
Low Voltage Detector
0x4003_6000
0x4003_6FFF
0x4003_7000
0x4003_7FFF
Reserved
0x4003_8000
0x4003_8FFF
Multi-function serial Interface
0x4003_9000
0x4003_9FFF
CRC
0x4003_A000
0x4003_AFFF
Watch Counter
0x4003_B000
0x4003_EFFF
Reserved
0x4003_F000
0x4003_FFFF
External Memory interface
0x4004_0000
0x4004_FFFF
USB ch.0
0x4005_0000
0x4005_FFFF
Reserved
0x4006_0000
0x4006_0FFF
0x4006_1000
0x4006_1FFF
0x4006_2000
0x4006_2FFF
Reserved
0x4006_3000
0x4006_3FFF
Reserved
0x4006_4000
0x41FF_FFFF
Reserved
Document Number: 002-05612 Rev. *D
AHB
APB0
APB1
APB2
Flash Memory I/F register
Reserved
Software Watchdog timer
Reserved
Base Timer
Quadrature Position/Revolution Counter
USB clock generator
DMAC register
AHB
Reserved
October 23, 2017
Page 50 of 112
MB9B300B Series
11. Pin Status in Each CPU State
The terms used for pin status have the following meanings.
 INITX=0
This is the period when the INITX pin is the "L" level.
 INITX=1
This is the period when the INITX pin is the "H" level.
 SPL=0
This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "0".
 SPL=1
This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "1".
 Input enabled
Indicates that the input function can be used.
 Internal input fixed at "0"
This is the status that the input function cannot be used. Internal input is fixed at "L".
 Hi-Z
Indicates that the output drive transistor is disabled and the pin is put in the Hi-Z state.
 Setting disabled
Indicates that the setting is disabled.
 Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
 Analog input is enabled
Indicates that the analog input is enabled.
 Trace output
Indicates that the trace function can be used.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 51 of 112
MB9B300B Series
List of Pin Status
Pin status
type
A
Function group
Main crystal
oscillator input pin
Power-on
reset or low
voltage
detection
state
Power
supply
unstable
Input enabled
INITX input
state
Device
internal
reset state
Run mode
or sleep
mode state
Timer mode or sleep
mode state
INITX=0
-
INITX=1
-
Power
supply
stable
INITX=1
-
Input enabled
Input enabled
Input enabled
Input enabled
Input enabled
Maintain
previous
state/
H output at
oscillation
stop*1/
Internal input
fixed at "0"
Maintain
previous
state/
H output at
oscillation
stop*1/
Internal input
fixed at "0"
Power supply stable
Power supply stable
INITX=1
SPL=0
SPL=1
B
Main crystal
oscillator output pin
H output/
Internal input
fixed at "0"/ or
Input enabled
H output/
Internal input
fixed at "0"
H output/
Internal input
fixed at "0"
Maintain
previous
state/
H output at
oscillation
stop*1 /
Internal input
fixed at "0"
C
INITX input pin
Pull-up/ Input
enabled
Pull-up/ Input
enabled
Pull-up/ Input
enabled
Pull-up/ Input
enabled
Pull-up/ Input
enabled
Pull-up/ Input
enabled
D
Mode input pin
Input enabled
Input enabled
Input enabled
Input enabled
Input enabled
Input enabled
JTAG
selected
Hi-Z
Pull-up/ Input
enabled
Pull-up/ Input
enabled
Setting disabled
Setting
disabled
Setting
disabled
External interrupt
enabled selected
GPIO
selected, or other
than above
resource selected
Setting disabled
Setting
disabled
Setting
disabled
Hi-Z
Hi-Z/
Input enabled
Hi-Z/
Input enabled
Trace selected
Setting disabled
Setting
disabled
Setting
disabled
E
GPIO
selected
Trace selected
F
G
H
GPIO selected, or
other than above
resource selected
Hi-Z
Hi-Z/
Input enabled
Hi-Z/
Input enabled
External interrupt
enabled selected
Setting disabled
Setting
disabled
Setting
disabled
GPIO selected, or
other than above
resource selected
Hi-Z
Hi-Z/
Input enabled
Hi-Z/
Input enabled
Document Number: 002-05612 Rev. *D
October 23, 2017
Maintain
previous state
Maintain
previous state
Maintain
previous state
Hi-Z/ Internal
input fixed at
"0"
Trace output
Maintain
previous state
Maintain
previous state
Maintain
previous state
Maintain
previous state
Maintain
previous state
Hi-Z/
Internal input
fixed at "0"
Trace output
Maintain
previous state
Maintain
previous state
Hi-Z/
Internal input
fixed at "0"
Maintain
previous state
Hi-Z/
Internal input
fixed at "0"
Page 52 of 112
MB9B300B Series
Pin status
type
I
J
Function group
Power-on
reset or low
voltage
detection
state
Power
supply
unstable
-
Device
internal
reset state
Power supply stable
INITX=0
-
INITX=1
-
GPIO selected,
resource selected
Hi-Z
Hi-Z/
Input enabled
Hi-Z/
Input enabled
NMIX selected
Setting disabled
Setting
disabled
Setting
disabled
Hi-Z
Hi-Z/
Input enabled
Hi-Z/
Input enabled
Analog input
selected
Hi-Z
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
GPIO selected, or
other than above
resource selected
Setting disabled
External interrupt
enabled selected
Run mode
or sleep
mode state
Power
supply
stable
INITX=1
Maintain
previous state
Timer mode or sleep
mode state
Power supply stable
INITX=1
SPL=0
Maintain
previous state
SPL=1
Hi-Z/ Internal
input fixed at
"0"
Maintain
previous state
Maintain
previous state
Maintain
previous state
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z/
Internal input
fixed at "0"
Setting disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Maintain
previous state
Analog input
selected
Hi-Z
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
Hi-Z/
Internal input
fixed at "0"/
Analog input
enabled
GPIO selected, or
other than above
resource selected
Setting disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z/
Internal input
fixed at "0"
GPIO selected
Setting disabled
Setting
disabled
Setting
disabled
Maintain
previous state
Maintain
previous state
Hi-Z/ Internal
input fixed at
"0"
Sub crystal
oscillator input pin
Input enabled
Input enabled
Input enabled
Input enabled
Input enabled
Input enabled
GPIO selected, or
other than above
resource selected
K
L
INITX input
state
M
Document Number: 002-05612 Rev. *D
October 23, 2017
Hi-Z/
Internal input
fixed at "0"
Page 53 of 112
MB9B300B Series
Pin status
type
Power-on
reset or low
voltage
detection
state
Power
supply
unstable
-
Function group
GPIO selected
Setting disabled
INITX input
state
Device
internal
reset state
Power supply stable
INITX=0
Setting
disabled
INITX=1
Setting
disabled
Run
mode or
sleep
mode
state
Power
supply
stable
INITX=1
-
Timer mode or sleep mode
state
Power supply stable
INITX=1
SPL=0
SPL=1
Maintain
previous
state
Maintain
previous state
Hi-Z/
Internal input
fixed at "0"
Maintain
previous state/
Hi-Z at
oscillation
stop*2/
Internal input
fixed at "0"
Sub crystal
oscillator output pin
Hi-Z/
Internal input
fixed at "0"
Hi-Z/
Internal input
fixed at "0"
Hi-Z/
Internal input
fixed at "0"
Maintain
previous
state
Maintain
previous state/
Hi-Z at
oscillation
stop*2/
Internal input
fixed at "0"
GPIO selected
Hi-Z
Hi-Z/
Input enabled
Hi-Z/
Input enabled
Maintain
previous
state
Maintain
previous state
Hi-Z/ Internal
input fixed at
"0"
Maintain
previous
state
Hi-Z at
transmission/
Input enabled/
Internal input
fixed at "0" at
reception
Hi-Z at
transmission/
Input enabled/
Internal input
fixed at "0" at
reception
N
O
USB I/O pin
Setting disabled
Setting
disabled
Setting
disabled
*1: Oscillation is stopped at sub timer mode, Low speed CR timer mode, and stop mode.
*2: Oscillation is stopped at stop mode.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 54 of 112
MB9B300B Series
12. Electrical Characteristics
12.1 Absolute Maximum Ratings
Parameter
Power supply voltage*1, *2
Power supply voltage (for USB)*1, *3
Analog power supply voltage*1, *4
Analog reference voltage*1, *4
Rating
Symbol
Min
Vcc
USBVcc
AVcc
AVRH
Vss - 0.5
Vss - 0.5
Vss - 0.5
Vss - 0.5
Vss - 0.5
Input
voltage*1
VI
Vss - 0.5
Analog pin input voltage*1
VIA
Vss - 0.5
Output voltage*1
VO
Vss - 0.5
Clamp maximum current
ICLAMP
-2
Clamp total maximum current
Σ[ICLAMP]
"L" level maximum output current*5
IOL
-
"L" level average output current*6
IOLAV
-
"L" level total maximum output current
"L" level total average output current*7
∑IOL
∑IOLAV
-
"H" level maximum output current*5
IOH
-
"H" level average output current*6
IOHAV
-
"H" level total maximum output current
"H" level total average output current*7
Power consumption
Storage temperature
∑IOH
∑IOHAV
PD
TSTG
- 55
Unit
Max
Remarks
Vss + 6.5
Vss + 6.5
Vss + 6.5
Vss + 6.5
Vcc + 0.5
(≤ 6.5V)
USBVcc + 0.5
(≤ 6.5V)
AVcc + 0.5
(≤ 6.5V)
Vcc + 0.5
(≤ 6.5V)
+2
V
V
V
V
mA
*8
+20
mA
*8
10
20
39
4
12
19.7
100
50
- 10
- 20
- 39
-4
- 12
- 25.3
- 100
- 50
800
+ 150
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mW
C
4 mA type
12 mA type
P80, P81
4 mA type
12 mA type
P80, P81
V
Except for USB
pin
V
USB pin
V
V
4 mA type
12 mA type
P80, P81
4 mA type
12 mA type
P80, P81
*1: These parameters are based on the condition that Vss = AVss = 0.0 V.
*2: Vcc must not drop below Vss - 0.5 V.
*3: USBVcc must not drop below Vss - 0.5 V.
*4: Be careful not to exceed Vcc + 0.5 V, for example, when the power is turned on.
*5: The maximum output current is the peak value for a single pin.
*6: The average output is the average current for a single pin over a period of 100 ms.
*7: The total average output current is the average current for all pins over a period of 100 ms.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 55 of 112
MB9B300B Series
*8:
• See “4. List of Pin Functions” and “5. I/O Circuit Type” about +B input available pin.
• Use within recommended operating conditions.
• Use at DC voltage (current) the +B input.
• The +B signal should always be applied a limiting resistance placed between the +B signal and the device.
• The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does
not exceed rated values, either instantaneously or for prolonged periods.
• Note that when the device drive current is low, such as in the low-power consumption modes, the +B input potential may pass
through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices.
• Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the
pins, so that incomplete operation may result.
• The following is a recommended circuit example (I/O equivalent circuit).
Protection Diode
VCC
VCC
Limiting
resistor
P-ch
Digital output
+B input (0V to 16V)
N-ch
Digital input
R
AVCC
Analog input
WARNING:
−
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess
of absolute maximum ratings. Do not exceed these ratings.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 56 of 112
MB9B300B Series
12.2 Recommended Operating Conditions
(Vss = AVss = 0.0 V)
Parameter
Power supply voltage
Power supply voltage for USB
Symbol
Vcc
USBVcc
Value
Conditions
-
Min
Max
2.7 *4
5.5
3.0
3.6
(≤ Vcc)
-
Unit
Remarks
V
*1
V
Analog power supply voltage
Analog reference voltage
AVcc
AVRH
-
2.7
2.7
5.5
(≤ Vcc)
5.5
AVcc
Smoothing capacitor
CS
-
1
10
μF
- 40
+ 85
C
TA
When mounted
on four-layer
PCB
When mounted
on double-sided
single-layer PCB
- 40
+ 85
C
Icc ≤ 100 mA
- 40
+ 70
C
Icc > 100 mA
2.7
Operating
Temperature
LQM120
LQI100
LBC112
*2
V
V
AVcc = Vcc
For built-in regulator *3
*1: When P81/UDP0 and P80/UDM0 pin are used as USB (UDP0, UDM0).
*2: When P81/UDP0 and P80/UDM0 pin are used as GPIO (P81, P80).
*3: See "C Pin" in "7. Handling Devices" for the connection of the smoothing capacitor.
*4: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage
or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or
built-in Low-speed CR is possible to operate only.
WARNING:
−
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All
of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges
may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating
conditions, or combinations not represented on the datasheet. Users considering application outside the listed conditions are
advised to contact their representatives beforehand.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 57 of 112
MB9B300B Series
12.3 DC Characteristics
12.3.1 Current Rating
(Vcc = AVcc = USBVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, TA = - 40C to + 85C)
Parameter
Symbol
Pin
name
Conditions
PLL
RUN mode
RUN
mode
current
Icc
VCC
High-speed
CR
RUN mode
Sub
RUN mode
Low-speed
CR
RUN mode
SLEEP
mode
current
Iccs
PLL
SLEEP mode
High-speed
CR
SLEEP mode
Sub
SLEEP mode
Low-speed
CR
SLEEP mode
CPU: 80 MHz,
Peripheral: 40 MHz,
FLASH 2 Wait
FRWTR.RWT = 10
FSYNDN.SD = 000
CPU: 60 MHz,
Peripheral: 30 MHz,
FLASH 0 Wait
FRWTR.RWT = 00
FSYNDN.SD = 000
CPU: 80 MHz,
Peripheral: 40 MHz,
FLASH 5 Wait
FRWTR.RWT = 10
FSYNDN.SD = 011
CPU: 60 MHz,
Peripheral: 30 MHz,
FLASH 3Wait
FRWTR.RWT = 00
FSYNDN.SD = 011
Value
Typ *3
Max *4
Unit
Remarks
96
118
mA
*1, *5
76
94
mA
*1, *3
66
82
mA
*1, *5
52
65
mA
*3, *5
6.0
9.2
mA
*1
0.2
2.24
mA
*1, *6
0.3
2.36
mA
*1
Peripheral: 40 MHz
43
54
mA
*1, *5
Peripheral: 4 MHz*2
3.5
6.2
mA
*1
Peripheral: 32 kHz
0.15
2.18
mA
*1, *6
Peripheral: 100 kHz
0.22
2.27
mA
*1
CPU/Peripheral: 4 MHz*2
FLASH 0Wait
FRWTR.RWT = 00
FSYNDN.SD = 000
CPU/Peripheral: 32 kHz
FLASH 0Wait
FRWTR.RWT = 00
FSYNDN.SD = 000
CPU/Peripheral: 100 kHz
FLASH 0Wait
FRWTR.RWT = 00
FSYNDN.SD = 000
*1: When all ports are fixed.
*2: When setting it to 4 MHz by trimming.
*3: TA=+25°C, VCC=3.3 V
*4: TA=+85°C, VCC=5.5 V
*5: When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit)
*6: When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit)
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 58 of 112
MB9B300B Series
(Vcc = AVcc = USBVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, TA = - 40C to + 85C)
Parameter
TIMER
mode
current
Pin
name
Symbol
Main
TIMER
mode
ICCT
VCC
STOP
mode
current
ICCH
Value
Typ *2
Max *3
Conditions
Sub
TIMER
mode
STOP mode
Ta = + 25C,
When LVD is off
Ta = + 85C,
When LVD is off
Ta = + 25C,
When LVD is off
Ta = + 85C,
When LVD is off
Ta = + 25C,
When LVD is off
Ta = + 85C,
When LVD is off
Unit
Remarks
2.4
2.5
mA
*1, *4
-
5.4
mA
*1, *4
110
300
μA
*1, *5
-
2.2
mA
*1, *5
50
200
μA
*1
-
2
mA
*1
*1: When all ports are fixed.
*2: VCC=3.3 V
*3: VCC=5.5 V
*4: When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit)
*5: When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit)
Low-Voltage Detection Current
(VCC = 2.7 V to 5.5 V, VSS = 0 V, TA = - 40°C to + 85°C)
Parameter
Low-Voltage detection
circuit (LVD) power
supply current
Symbol
ICCLVD
Pin
name
VCC
Value
Conditions
At operation
for interrupt
Typ
2
Max
10
Unit
μA
Remarks
At not detect
Flash Memory Current
(VCC = 2.7 V to 5.5 V, VSS = 0 V, TA = - 40°C to + 85°C)
Parameter
Flash memory
write/erase
current
Symbol
ICCFLASH
Pin
name
VCC
Value
Conditions
At Write/Erase
Typ
13
Max
24
Unit
Remarks
mA
A/D Converter Current
(VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = AVRL = 0 V, TA = - 40°C to + 85°C)
Parameter
Power supply current
Reference power
supply current
Symbol
ICCAD
ICCAVRH
Document Number: 002-05612 Rev. *D
Pin
name
Value
Conditions
Typ
Max
Unit
At 1unit operation
2.3
3.6
mA
At stop
0.1
2
μA
At 1unit operation
AVRH=5.5V
2.2
3.0
mA
At stop
0.03
0.6
μA
Remarks
AVCC
AVRH
October 23, 2017
Page 59 of 112
MB9B300B Series
12.3.2 Pin Characteristics
(Vcc = AVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, TA = - 40C to + 85C)
Parameter
"H" level input
voltage
(hysteresis
input)
"L" level input
voltage
(hysteresis
input)
Symbol
VIHS
VILS
Pin name
CMOS
hysteresis
input pin,
MD0,1
CMOS
hysteresis
input pin,
MD0,1
4mA type
"H" level
output voltage
VOH
12 mA type
P80, P81
4mA type
"L" level
output voltage
VOL
12mA type
P80, P81
Input leak current
Pull-up resistance
value
Input capacitance
IIL
-
RPU
Pull-up pin
CIN
Other than
Vcc, Vss,
AVcc, AVss,
AVRH
Document Number: 002-05612 Rev. *D
Value
Conditions
Min
Typ
Max
Unit
-
Vcc× 0.8
-
Vcc+ 0.3
V
-
Vss- 0.3
-
Vcc× 0.2
V
Vcc- 0.5
-
Vcc
V
Vcc- 0.5
-
Vcc
V
Vcc- 0.4
-
Vcc
V
Vss
-
0.4
V
Vss
-
0.4
V
Vss
-
0.4
V
μA
Vcc 4.5 V
IOH = - 4 mA
Vcc < 4.5 V
IOH = - 2 mA
Vcc 4.5 V
IOH = - 12 mA
Vcc 4.5 V
IOH = - 8 mA
Vcc  4.5 V
IOH = - 25.3 mA
Vcc < 4.5 V
IOH = - 13.4 mA
Vcc  4.5 V
IOL = 4 mA
Vcc < 4.5 V
IOL = 2 mA
Vcc 4.5 V
IOL = 12 mA
Vcc  4.5 V
IOL = 8 mA
Vcc  4.5 V
IOL = 19.7 mA
Vcc < 4.5 V
IOL = 11.9 mA
-
-5
-
5
Vcc  4.5 V
25
50
100
Vcc 4.5 V
30
80
200
-
-
5
15
October 23, 2017
Remarks
kΩ
pF
Page 60 of 112
MB9B300B Series
12.4 AC Characteristics
12.4.1 Main Clock Input Characteristics
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Input frequency
FCH
Input clock cycle
tCYLH
Input clock pulse width
-
Input clock rise time and
fall time
tCF
tCR
Internal operating
clock*1
frequency
Internal operating
clock *1
cycle time
Pin
name
Symbol
X0
X1
Value
Conditions
Min
Max
Unit
Vcc  4.5 V
Vcc  4.5 V
Vcc  4.5 V
Vcc  4.5 V
Vcc  4.5 V
Vcc  4.5 V
PWH/tCYLH
PWL/tCYLH
4
4
4
4
20.83
50
48
20
48
20
250
250
45
55
%
-
-
5
ns
Remarks
MHz
When crystal oscillator is
connected
MHz
When using external
clock
ns
When using external
clock
When using external
clock
When using external
clock
FCM
-
-
-
80
MHz
Master clock
FCC
-
-
-
80
MHz
FCP0
FCP1
-
-
-
40
40
MHz
MHz
Base clock
(HCLK/FCLK)
APB0 bus clock *2
APB1 bus clock *2
FCP2
-
-
-
40
MHz
APB2 bus clock *2
tCYCC
-
-
12.5
-
ns
tCYCP0
tCYCP1
tCYCP2
-
-
25
-
ns
Base clock
(HCLK/FCLK)
APB0 bus clock *2
-
-
25
-
ns
APB1 bus clock *2
-
-
25
-
ns
APB2 bus clock *2
*1: For more information about each internal operating clock, see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual".
*2: For about each APB bus which each peripheral is connected to, see "8. Block Diagram" in this datasheet.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 61 of 112
MB9B300B Series
12.4.2 Sub Clock Input Characteristics
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Input frequency
Input clock cycle
Input clock pulse width
Symbol
Pin
name
FCL
tCYLL
-
Document Number: 002-05612 Rev. *D
X0A
X1A
Value
Conditions
Min
Typ
Max
Unit
Remarks
-
-
32.768
-
kHz
-
32
-
100
kHz
When crystal oscillator is
connected
When using external clock
-
10
-
31.25
μs
When using external clock
PWH/tCYLL
PWL/tCYLL
45
-
55
%
When using external clock
October 23, 2017
Page 62 of 112
MB9B300B Series
12.4.3 Built-in CR Oscillation Characteristics
Built-in high-speed CR
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Clock frequency
Frequency stability time
Symbol
FCRH
tCRWT
Value
Conditions
Min
Typ
Max
TA = + 25C
3.92
4
4.08
TA = 0C to + 70C
3.84
4
4.16
TA = - 40C to + 85C
3.8
4
4.2
TA = - 40C to + 85C
3
4
6
-
-
-
50
Unit
MHz
Remarks
When trimming *1
When not trimming
μs
*2
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.
*2: Frequency stable time is time to stable of the frequency of the High-speed CR clock after the trim value is set. After setting the
trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock.
Built-in low-speed CR
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Clock frequency
Symbol
FCRL
Document Number: 002-05612 Rev. *D
Conditions
-
Value
Min
50
Typ
100
October 23, 2017
Max
150
Unit
Remarks
kHz
Page 63 of 112
MB9B300B Series
12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL)
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
PLL oscillation stabilization wait time (LOCK UP time)
Value
Symbol
Min
Typ
Unit
Max
*1
tLOCK
100
-
-
μs
PLL input clock frequency
PLL multiple rate
PLL macro oscillation clock frequency
Main PLL clock frequency *2
fPLLI
fPLLO
FCLKPLL
4
4
60
-
-
30
30
120
80
MHz
multiple
MHz
MHz
USB clock frequency *3
FCLKSPLL
-
-
48
MHz
Remarks
After the M frequency
division
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual".
*3: For more information about USB clock, see "Chapter 2-2: USB Clock Generation" in "FM3 Family Peripheral Manual
Communication Macro Part".
12.4.5 Operating Conditions of Main PLL (In the case of using built-in high speed CR)
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
PLL oscillation stabilization wait time (LOCK UP time)
Symbol
Value
Min
Typ
Unit
Max
*1
tLOCK
100
-
-
μs
PLL input clock frequency
PLL multiple rate
PLL macro oscillation clock frequency
Main PLL clock frequency *2
fPLLI
fPLLO
FCLKPLL
3.8
15
57
-
4
-
4.2
28
120
80
MHz
multiple
MHz
MHz
Remarks
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual".
Note:
−
Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency has been trimmed.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 64 of 112
MB9B300B Series
Main PLL connection
Main clock (CLKMO)
High-speed CR clock (CLKHC)
K
divider
PLL input
clock
Main
PLL
PLL macro
oscillation clock
M
divider
Main PLL
clock
(CLKPLL)
N
divider
USB PLL connection
Main clock (CLKMO)
K
divider
PLL macro
oscillation clock
PLL input
clock
USB PLL
M
divider
USB
clock
N
divider
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 65 of 112
MB9B300B Series
12.4.6 Reset Input Characteristics
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Symbol
Reset input time
tINITX
Pin name
INITX
Value
Conditions
-
Min
500
Max
-
Unit
Remarks
ns
12.4.7 Power-on Reset Timing
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Power supply rising time
Tr
Power supply shut down time
Toff
Time until releasing
Power-on reset
Tprt
Value
Pin
name
Symbol
Min
VCC
Max
Unit
0
-
ms
1
-
ms
0.422
0.704
ms
Remarks
VCC_minimum
VCC
VDH_minimum
0.2V
0.2V
0.2V
Tr
Tprt
Internal RST
RST Active
Toff
Release
CPU Operation
start
Glossary
VCC_minimum: Minimum VCC of recommended operating conditions
VDH_minimum: Minimum release voltage of Low-Voltage detection reset.
See "12.7. Low-Voltage Detection Characteristics"
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 66 of 112
MB9B300B Series
12.4.8 External Bus Timing
Asynchronous SRAM Mode
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
MOEX
Min pulse width
MOEX  
Address delay time
MOEX  
Address delay time
MOEX  
MCSX  delay time
MOEX  
MCSX  delay time
Data set up
MOEX  time
MOEX  
Data hold time
MCSX  
MWEX  delay time
MWEX  
MCSX  delay time
Address 
MWEX  delay time
MWEX  
Address delay time
MWEX  
MDQM  delay time
MWEX  
MDQM  delay time
MWEX
Min pulse width
MWEX  
Data delay time
MWEX  
Data delay time
Symbol
tOEW
tOEL - AV
tOEH - AX
tOEL - CSL
tOEH - CSH
tDS - OE
tDH - OE
tCSL - WEL
tWEH - CSH
tAV - WEL
tWEH - AX
tWEL - DQML
tWEH - DQMH
tWEW
tWEL - DV
tWEH - DX
Pin name
MOEX
MOEX
MAD24 to 00
MOEX
MAD24 to 00
MOEX
MCSX
MOEX
MCSX
MOEX
MDATA15 to 0
MOEX
MDATA15 to 0
MCSX
MWEX
MCSX
MWEX
MWEX
MAD24 to 00
MWEX
MAD24 to 00
MWEX
MDQM0 to 1
MWEX
MDQM0 to 1
MWEX
MWEX
MDATA15 to 0
MWEX
MDATA15 to 0
Value
Conditions
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Min
Max
Unit
THCLK×1 - 3
-
0
0
0
0
10
20
10
20
0
10
ns
0
10
ns
20
38
-
ns
0
-
ns
THCLK×1 - 5
THCLK×1 - 10
THCLK×1 - 5
THCLK×1 - 10
THCLK×1 - 5
THCLK×1 - 15
THCLK×1 - 5
THCLK×1 - 15
0
0
0
0
5
10
5
10
THCLK×1 - 3
-
-5
-15
THCLK×1 - 5
THCLK×1 - 15
5
15
-
Remarks
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note:
−
When the external load capacitance = 50 pF.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 67 of 112
MB9B300B Series
SRAM read
tCYC
HCLK
VOH
VOH
tOEH-CSH
tOEL-CSL
MCSX0 to 7
VOH
VOL
tOEL-AV
tOEH-AX
VOH
VOL
MAD24 to 00
VOH
VOL
tOEW
MOEX
VOH
VOL
tDS-OE
VIH
MDATA15 to 0
tDH-OE
VIH
Read
VIL
VIL
SRAM write
tCYC
HCLK
tW EH-CSH
tCSL-W EL
MCSX0 to 7
VOH
VOL
tAV-W EL
MAD24 to 00
tW EH-AX
VOH
VOL
VOH
VOL
tW EH-DQMH
tW EL-DQML
MDQM0 to 1
VOH
VOL
tW EW
MWEX
VOL
VOH
tW EH-DX
tW EL-DV
MDATA15 to 0
VOH
VOL
Document Number: 002-05612 Rev. *D
October 23, 2017
Write
VOH
VOL
Page 68 of 112
MB9B300B Series
NAND FLASH mode
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
MNREX
Min pulse width
Data set up
 MNREX  tiime
MNREX  
Data hold time
MNALE  
MNWEX delay time
MNWEX  
MNALE delay time
MNCLE  
MNWEX delay time
MNWEX  
MNCLE delay time
MNWEX
Min pulse width
MNWEX  
Data delay time
MNWEX  
Data delay time
Symbol
tNREW
tDS - NRE
tDH - NRE
tALEH - NWEL
tNWEH - ALEL
tCLEH - NWEL
tNWEH - CLEL
tNWEW
tNWEL - DV
tNWEH - DX
Pin name
MNREX
MNREX
MDATA15 to 0
MNREX
MDATA15 to 0
MNALE
MNWEX
MNALE
MNWEX
MNCLE
MNWEX
MNCLE
MNWEX
MNWEX
MNWEX
MDATA15 to 0
MNWEX
MDATA15 to 0
Conditions
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Vcc ≥ 4.5 V
Vcc  4.5 V
Value
Min
Max
THCLK×1 - 3
-
20
38
0
0
THCLK×1 - 5
THCLK×1 - 15
THCLK×1 - 5
THCLK×1 - 15
THCLK×1 - 5
THCLK×1 - 15
THCLK×1 - 5
THCLK×1 - 15
-
THCLK×1 - 3
-
-5
-15
THCLK×1 - 5
THCLK×1 - 15
+5
+15
-
Unit
Remarks
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note:
−
When the external load capacitance = 50 pF.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 69 of 112
MB9B300B Series
NAND FLASH read
tCYC
HCLK
VOH
VOH
tNREW
MNREX
VOH
VOL
tDS-NRE
VIH
MDATA15 to 0
tDH-NRE
VIH
Read
VIL
VIL
NAND FLASH write
tCYC
HCLK
tNW EH-ALEL
tALEH-NW EL
VOH
VOL
MNALE
tNW EH-CLEL
tCLEH-NW EL
VOH
VOL
MNCLE
tNW EW
MNWEX
VOL
VOH
tNW EH-DX
tNW EL-DV
MDATA15 to 0
VOH
VOL
Document Number: 002-05612 Rev. *D
October 23, 2017
Write
VOH
VOL
Page 70 of 112
MB9B300B Series
12.4.9 Base Timer Input Timing
Timer input timing
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Input pulse width
Symbol
Pin name
Conditions
TIOAn/TIOBn
(when using as
ECK,TIN)
tTIWH
tTIWL
-
tTIWH
VIHS
Value
Min
2tCYCP
Max
-
Unit
Remarks
ns
tTIWL
VIHS
VILS
VILS
Trigger input timing
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Input pulse width
Symbol
Pin name
Conditions
TIOAn/TIOBn
(when using as
TGIN)
tTRGH
tTRGL
-
TGIN
2tCYCP
Max
-
Unit
Remarks
ns
tTRGL
tTRGH
VIHS
Value
Min
VIHS
VILS
VILS
Note:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Base Timer is connected to, see “8. Block Diagram” in this datasheet.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 71 of 112
MB9B300B Series
12.4.10 CSIO/UART Timing
CSIO (SPI = 0, SCINV = 0)
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Pin
name
Symbol
Baud Rate
-
-
Serial clock cycle time
tSCYC
SCK   SOT delay time
tSLOVI
SCKx
SCKx
SOTx
SCKx
SINx
SCKx
SINx
SCKx
SCKx
SCKx
SOTx
SCKx
SINx
SCKx
SINx
SCKx
SCKx
SIN  SCK  setup time
tIVSHI
SCK   SIN hold time
tSHIXI
Serial clock "L" pulse width
Serial clock "H" pulse width
tSLSH
tSHSL
SCK   SOT delay time
tSLOVE
SIN  SCK  setup time
tIVSHE
SCK   SIN hold time
tSHIXE
SCK fall time
SCK rise time
tF
tR
Vcc  4.5 V
Min
Max
Conditions
-
Master mode
Slave mode
Vcc ≥ 4.5 V
Min
Max
Unit
-
8
-
8
Mbps
4tCYCP
-
4tCYCP
-
ns
-30
+30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
−
−
tCYCP indicates the APB bus clock cycle time.
−
When the external load capacitance = 50 pF.
About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 72 of 112
MB9B300B Series
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
VOL
SOT
tIVSHI
VIH
VIL
SIN
tSHIXI
VIH
VIL
Master mode
tSLSH
SCK
VIH
tF
SOT
SIN
VIL
tSHSL
VIL
VIH
VIH
tR
tSLOVE
VOH
VOL
tIVSHE
VIH
VIL
tSHIXE
VIH
VIL
Slave mode
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 73 of 112
MB9B300B Series
CSIO (SPI = 0, SCINV = 1)
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Symbol
Pin
name
Baud Rate
Serial clock cycle time
tSCYC
SCKx
SCK   SOT delay time
tSHOVI
SCKx
SOTx
SIN  SCK  setup time
tIVSLI
SCK   SIN hold time
tSLIXI
Serial clock "L" pulse width
Serial clock "H" pulse width
tSLSH
tSHSL
SCK   SOT delay time
tSHOVE
SIN  SCK  setup time
tIVSLE
SCK   SIN hold time
tSLIXE
SCK fall time
SCK rise time
tF
tR
SCKx
SINx
SCKx
SINx
SCKx
SCKx
SCKx
SOTx
SCKx
SINx
SCKx
SINx
SCKx
SCKx
Vcc  4.5 V
Min
Max
Conditions
-
Master mode
Slave mode
Vcc ≥ 4.5 V
Min
Max
Unit
4tCYCP
8
-
4tCYCP
8
-
Mbps
ns
-30
+30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see “8. Block Diagram” in this datasheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance = 50 pF.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 74 of 112
MB9B300B Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
VOL
SOT
tIVSLI
VIH
VIL
SIN
tSLIXI
VIH
VIL
Master mode
tSHSL
SCK
tSLSH
VIH
VIH
VIL
tR
VIL
tF
tSHOVE
SOT
SIN
VIL
VOH
VOL
tIVSLE
VIH
VIL
tSLIXE
VIH
VIL
Slave mode
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 75 of 112
MB9B300B Series
CSIO (SPI = 1, SCINV = 0)
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Symbol
Pin
name
Baud Rate
Serial clock cycle time
tSCYC
SCKx
SCK   SOT delay time
tSHOVI
SCKx
SOTx
SIN  SCK  setup time
tIVSLI
SCK   SIN hold time
tSLIXI
SOT  SCK  delay time
tSOVLI
Serial clock "L" pulse width
Serial clock "H" pulse width
tSLSH
tSHSL
SCK   SOT delay time
tSHOVE
SIN  SCK  setup time
tIVSLE
SCK   SIN hold time
tSLIXE
SCK fall time
SCK rise time
tF
tR
SCKx
SINx
SCKx
SINx
SCKx
SOTx
SCKx
SCKx
SCKx
SOTx
SCKx
SINx
SCKx
SINx
SCKx
SCKx
Vcc  4.5 V
Min
Max
Conditions
-
Master mode
Slave mode
Vcc ≥ 4.5 V
Min
Max
Unit
4tCYCP
8
-
4tCYCP
8
-
Mbps
ns
-30
+30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet.
−
These characteristics only guarantees the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance = 50 pF.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 76 of 112
MB9B300B Series
tSCYC
VOH
VOL
SCK
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
Master mode
tSLSH
VIH
SCK
tR
VIH
tSHOVE
VOH
VOL
VOH
VOL
tIVSLE
SIN
VIH
VIL
VIL
tF
*
SOT
tSHSL
tSLIXE
VIH
VIL
VIH
VIL
Slave mode
*: Changes when writing to TDR register
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 77 of 112
MB9B300B Series
CSIO (SPI = 1, SCINV = 1)
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Symbol
Pin
name
Baud Rate
Serial clock cycle time
tSCYC
SCKx
SCK   SOT delay time
tSLOVI
SCKx
SOTx
SIN  SCK  setup time
tIVSHI
SCK  SIN hold time
tSHIXI
SOT  SCK  delay time
tSOVHI
Serial clock "L" pulse width
Serial clock "H" pulse width
tSLSH
tSHSL
SCK   SOT delay time
tSLOVE
SIN  SCK  setup time
tIVSHE
SCK   SIN hold time
tSHIXE
SCK fall time
SCK rise time
tF
tR
SCKx
SINx
SCKx
SINx
SCKx
SOTx
SCKx
SCKx
SCKx
SOTx
SCKx
SINx
SCKx
SINx
SCKx
SCKx
Vcc  4.5 V
Min
Max
Conditions
-
Master mode
Slave mode
Vcc ≥ 4.5 V
Min
Max
Unit
4tCYCPp
8
-
4tCYCP
8
-
Mbps
ns
-30
+30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
30
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to CLK synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance = 50 pF.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 78 of 112
MB9B300B Series
tSCYC
VOH
SCK
tSOVHI
tSLOVI
VOH
VOL
SOT
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
Master mode
SCK
tSLSH
tSHSL
tR
VIH
VIL
VIH
tF
t SLOVE
VOH
VOL
VOH
VOL
SOT
tSHIXE
t IVSHE
VIH
VIL
VIH
VIL
SIN
VIH
VIL
VIL
Slave mode
UART external clock input (EXT = 1)
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Serial clock "L" pulse width
Serial clock "H" pulse width
SCK fall time
SCK rise time
Symbol
tSLSH
tSHSL
tF
tR
Conditions
Document Number: 002-05612 Rev. *D
5
5
Unit
Remarks
ns
ns
ns
ns
tF
tR
V IL
Max
tCYCP + 10
tCYCP + 10
-
CL = 50 pF
SCK
Min
tSHSL
V IH
t SLSH
V IH
V IL
October 23, 2017
VIL
V IH
Page 79 of 112
MB9B300B Series
12.4.11 External Input Timing
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Symbol
Pin name
Value
Conditions
Min
Max
Unit
ADTG
Input pulse
width
tINH
tINL
Remarks
A/D converter trigger input
FRCKx
ICxx
DTTIxX
INTxx,
NMIX
-
2tCYCP *1
-
ns
Except
Timer mode,
Stop mode
Timer mode,
Stop mode
2tCYCP *1
-
ns
2tCYCP + 100 *1
-
ns
500
-
ns
Free-run timer input clock
Input capture
Wave form generator
External interrupt
NMI
*1: tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to,
see "8. Block Diagram" in this datasheet.
tINH
VILS
Document Number: 002-05612 Rev. *D
tINL
VILS
VIHS
October 23, 2017
VIHS
Page 80 of 112
MB9B300B Series
12.4.12 Quadrature Position/Revolution Counter timing
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Symbol
AIN pin "H" width
AIN pin "L" width
BIN pin "H" width
BIN pin "L" width
BIN rise time from
AIN pin "H" level
AIN fall time from
BIN pin "H" level
BIN fall time from
AIN pin "L" level
AIN rise time from
BIN pin "L" level
AIN rise time from
BIN pin "H" level
BIN fall time from
AIN pin "H" level
AIN fall time from
BIN pin "L" level
BIN rise time from
AIN pin "L" level
ZIN pin "H" width
ZIN pin "L" width
AIN/BIN rise and fall time from
determined ZIN level
Determined ZIN level from AIN/BIN
rise and fall time
Value
Conditions
tAHL
tALL
tBHL
tBLL
-
tAUBU
PC_Mode2 or PC_Mode3
tBUAD
PC_Mode2 or PC_Mode3
tADBD
PC_Mode2 or PC_Mode3
tBDAU
PC_Mode2 or PC_Mode3
tBUAU
PC_Mode2 or PC_Mode3
tAUBD
PC_Mode2 or PC_Mode3
tBDAD
PC_Mode2 or PC_Mode3
tADBU
PC_Mode2 or PC_Mode3
tZHL
tZLL
QCR:CGSC="0"
QCR:CGSC="0"
tZABE
QCR:CGSC="1"
tABEZ
QCR:CGSC="1"
Min
Max
2tCYCP *1
-
Unit
ns
*1: tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Quadrature Position/Revolution Counter is
connected to, see "8. Block Diagram" in this datasheet.
tALL
tAHL
AIN
tAUBU
tADBD
tBUAD
tBDAU
BIN
tBHL
Document Number: 002-05612 Rev. *D
tBLL
October 23, 2017
Page 81 of 112
MB9B300B Series
tBLL
tBHL
BIN
tBUAU
tBDAD
tAUBD
tADBU
AIN
tAHL
tALL
ZIN
ZIN
AIN/BIN
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 82 of 112
MB9B300B Series
12.4.13 I2C Timing
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
SCL clock frequency
(Repeated) START condition
hold time
SDA   SCL 
SCLclock "L" width
SCLclock "H" width
(Repeated) START setup time
SCL   SDA 
Data hold time
SCL   SDA  
Data setup time
SDA    SCL 
STOP condition setup time
SCL   SDA 
Bus free time between
"STOP condition" and
"START condition"
Noise filter
Symbol
Standard-mode
Min
Max
Conditions
Fast-mode
Min
Max
Unit
FSCL
0
100
0
400
kHz
tHDSTA
4.0
-
0.6
-
μs
tLOW
tHIGH
4.7
4.0
-
1.3
0.6
-
μs
μs
4.7
-
0.6
-
μs
0
3.45 *2
0
0.9 *3
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
2 tCYCP *4
-
2 tCYCP *4
-
ns
tSUSTA
tHDDAT
tSP
CL = 50 pF,
R = (Vp/IOL) *1
-
Remarks
*1: R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively.
Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT must satisfy that it doesn't extend at least "L" period (t LOW) of device's SCL signal.
*3: Fast-mode I2C bus device can be used on Standard-mode I2C bus system as long as the device satisfies the requirement of
"tSUDAT ≥ 250 ns".
*4: tCYCP is the APB bus clock cycle time.
About the APB bus number that I2C is connected to, see "8. Block Diagram" in this datasheet.
To use Standard-mode, set the APB bus clock at 2 MHz or more.
To use Fast-mode, set the APB bus clock at 8 MHz or more.
SDA
SCL
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 83 of 112
MB9B300B Series
12.4.14 ETM Timing
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Symbol
Data hold
tETMH
TRACECLK
Frequency
1/tTRACE
Pin name
TRACECLK
TRACED3 - 0
TRACECLK
TRACECLK
clock cycle time
tTRACE
Value
Min
Max
Conditions
Unit
Vcc ≥ 4.5 V
2
9
Vcc  4.5 V
2
15
Vcc ≥ 4.5 V
-
50
MHz
Vcc < 4.5 V
-
32
MHz
Vcc ≥ 4.5 V
20
-
ns
Vcc < 4.5 V
31.25
-
ns
Remarks
ns
Note:
−
When the external load capacitance = 50 pF.
HCLK
TRACECLK
TRACED[3:0]
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 84 of 112
MB9B300B Series
12.4.15 JTAG Timing
(Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Symbol
Pin name
Conditions
TMS,TDI setup time
tJTAGS
TCK
TMS,TDI
Vcc ≥ 4.5 V
TMS,TDI hold time
tJTAGH
TCK
TMS,TDI
Vcc ≥ 4.5 V
TDO delay time
tJTAGD
TCK
TDO
Min
Value
Max
Unit
15
-
ns
15
-
ns
Vcc ≥ 4.5 V
-
25
Vcc  4.5 V
-
45
Vcc  4.5 V
Vcc  4.5 V
Remarks
ns
Note:
−
When the external load capacitance = 50 pF.
TCK
TMS/TDI
TDO
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 85 of 112
MB9B300B Series
12.5 12-bit A/D Converter
Electrical characteristics for the A/D converter
(Vcc = AVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, TA = - 40C to + 85C)
Parameter
Pin
name
Symbol
Resolution
Integral Nonlinearity
Differential Nonlinearity
Zero transition voltage
Full-scale transition voltage
VZT
VFST
ANxx
ANxx
Conversion time
-
-
Sampling time
Ts
-
Compare clock cycle *3
Tcck
-
State transition time to
operation permission
Tstt
-
Analog input capacity
CAIN
Analog input resistance
Value
Typ
Min
Max
Unit
1.0 *1
2.666 *1
±2
±2
±5
AVRH ± 10
-
12
± 4.5
± 2.5
± 20
AVRH ± 20
-
*2
-
-
*2
55.5
-
-
-
10000
ns
-
-
2.5
μs
-
-
-
14.5
pF
RAIN
-
-
-
Interchannel disparity
Analog port input leak current
-
ANxx
-
-
2.04
4
5
Analog input voltage
-
ANxx
AVSS
-
AVRH
V
Reference voltage
-
AVRH
2.7
-
AVCC
V
166.6 *4
0.93
bit
LSB
LSB
mV
mV
μs
ns
kΩ
Remarks
AVRH = 2.7 V to 5.5 V
AVcc ≥ 4.5 V
AVcc < 4.5 V
AVcc ≥ 4.5 V
AVcc < 4.5 V
AVcc ≥ 4.5 V
AVcc < 4.5 V
AVcc ≥ 4.5 V
AVcc < 4.5 V
LSB
μA
*1: The Conversion time is the value of sampling time(Ts) + compare time(Tc).
The condition of the minimum conversion time is the following.
AVcc ≥ 4.5 V, HCLK=72 MHz
AVcc < 4.5 V, HCLK=54 MHz
sampling time: 0.222 μs
sampling time: 0.333 μs
compare time: 0.778 μs
compare time: 2.333 μs
Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck).
For setting of the sampling time and compare clock cycle, see "Chapter 1-1: A/D Converter" in "FM3 Family Peripheral Manual
Analog Macro Part".
The registers setting of the A/D Converter are reflected in the operation according to the APB bus clock timing.
The sampling clock and compare clock is generated from the Base clock (HCLK).
About the APB bus number which the A/D Converter is connected to, see "8. Block Diagram" in this datasheet.
*2: A necessary sampling time changes by external impedance.
Ensure that it set the sampling time to satisfy (Equation 1)
*3: The Compare time (Tc) is the value of (Equation 2)
*4: When 12-bit A/D converter is used at AVcc<4.5 V, there is a limitation as follows.
Please set the HCLK frequency under 54 MHz.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 86 of 112
MB9B300B Series
Rext
Analog
signal source
ANxx
Analog input pin
Comparator
RAIN
CAIN
(Equation 1) Ts ≥ ( RAIN + Rext ) × CAIN × 9
Ts:
Sampling time
RAIN:
Input resistance of A/D = 0.93 kΩ
4.5 V ≤ AVCC ≤ 5.5 V
Input resistance of A/D = 2.04 kΩ
2.7 V ≤ AVCC < 4.5 V
CAIN:
Input capacity of A/D = 14.5 pF
2.7 V ≤ AVCC ≤ 5.5 V
Rext:
Output impedance of external circuit
(Equation 2) Tc = Tcck × 14
Tc:
Compare time
Tcck:
Compare clock cycle
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 87 of 112
MB9B300B Series
Definition of 12-bit A/D Converter Terms
 Resolution:
Analog variation that is recognized by an A/D converter.
 Integral Nonlinearity:
Deviation of the line between the zero-transition point
(0b000000000000 ←→ 0b000000000001) and the full-scale transition point
(0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics.
 Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code
by 1 LSB
Integral Nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actuallymeasured
value)
(Actually-measured
value)
0x003
Digital output
Digital output
0xFFD
Differential Nonlinearity
Actual conversion
characteristics
Ideal characteristics
0x002
0x001
0xN
Actual conversion
characteristics
Ideal characteristics
VNT
Actual conversion characteristics
AVRH
AVSS
Analog input
Integral Nonlinearity of digital output N =
Differential Nonlinearity of digital output N =
1LSB =
N:
VZT:
VFST:
VNT:
(Actually-measured
value)
(Actually-measured
value)
0x(N-2)
VZT (Actually-measured value)
AVSS
V(N+1)T
0x(N-1)
AVRH
Analog input
VNT - {1LSB × (N - 1) + VZT}
1LSB
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST – VZT
4094
A/D converter digital output value.
Voltage at which the digital output changes from 0x000 to 0x001.
Voltage at which the digital output changes from 0xFFE to 0xFFF.
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 88 of 112
MB9B300B Series
12.6 USB Characteristics
(Vcc = 2.7 V to 5.5 V, USBVcc = 3.0V to 3.6 V, Vss = 0 V, TA = - 40C to + 85C)
Parameter
Input
characteristics
Output
characterstics
Symbol
Pin
name
Value
Conditions
Min
Max
Unit
Remarks
Input High level voltage
VIH
-
2.0
USBVcc + 0.3
V
*1
Input Low level voltage
VIL
-
Vss - 0.3
0.8
V
*1
Differential input sensitivity
VDI
-
0.2
-
V
*2
Different common mode input
voltage
VCM
-
0.8
2.5
V
*2
Output High level voltage
VOH
2.8
3.6
V
*3
0.0
0.3
V
*3
1.3
4
4
90
28
75
75
80
2.0
20
20
111.11
44
300
300
125
V
ns
ns
%
Ω
ns
ns
%
*4
*5
*5
*5
*6
*7
*7
*7
Output Low level voltage
VOL
Crossover voltage
Rise time
Fall time
Rise/ fall time matching
Output impedance
Rise time
Fall time
Rise/ fall time matching
VCRS
tFR
tFF
tFRFM
ZDRV
tLR
tLF
tLRFM
UDP0,
UDM0
External pulldown
resistance
= 15 kΩ
External pull-up
resistance
= 1.5 kΩ
Full Speed
Full Speed
Full Speed
Full Speed
Low Speed
Low Speed
Low Speed
*1: The switching threshold voltage of Single-End-Receiver of USB I/O buffer is set as within VIL (Max) = 0.8 V,
VIH (Min) = 2.0 V (TTL input standard).
There are some hystereses to lower noise sensitivity.
Minimum differential input sensitivity [V]
*2: Use differential-Receiver to receive USB differential data signal.
Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V
to the local ground reference level.
Above voltage range is the common mode input voltage range.
1.0
0.2
0.8
2.5
Common mode input voltage [V]
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 89 of 112
MB9B300B Series
*3: The output drive capability of the driver is below 0.3 V at Low-State (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above
(to the VSS and 1.5 kΩ load) at High-State (VOH).
*4: The cross voltage of the external differential output signal (D + /D −) of USB I/O buffer is within 1.3 V to 2.0 V.
D+
Max 2.0V
VCRS specified range
Min 1.3V
D*5: They indicate rise time (Trise) and fall time (Tfall) of the full-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
For full-speed buffer, Tr/Tf ratio is regulated as within  10% to minimize RFI emission.
D+
90%
90%
10%
10%
DTrise
Tfall
Rising time
Falling time
Full-speed Buffer
Rs = 27Ω
TxD+
CL = 50pF
Rs = 27Ω
TxDCL = 50pF.
3-State Enable
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 90 of 112
MB9B300B Series
*6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance
(Differential Mode).
USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω. So, discrete series resistor
(Rs) addition is defined in order to satisfy the above definition and keep balance.
When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω) series resistor Rs.
Full-speed Buffer
Rs
TxD+
28Ω to 44Ω Equiv. Imped.
Rs
TxD-
28Ω to 44Ω Equiv. Imped.
3-State Enable
Mount it as external resistance.
Rs series resistor 25Ω to 30Ω
Series resistor of 27Ω(recommendation value) must be added.
And, use "resistance with an uncertainty of 5% by E24 sequence".
*7: They indicate rise time (Trise) and fall time (Tfall) of the low-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
D+
90%
90%
10%
10%
D-
Trise
Rising time
Tfall
Falling time
See “Low-Speed Load (Compliance Load)” for conditions of the external load.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 91 of 112
MB9B300B Series
Low-Speed Load (Upstream Port Load) - Reference 1
Low-speed Buffer
Rs = 27Ω
TxD+
Rpd
CL = 50 to 150pF
Rs = 27Ω
TxDRpd
CL =50 to 150pF
3-State Enable
Rpd=15kΩ
Low-Speed Load (Downstream Port Load) - Reference 2
Low-speed Buffer
Rs=27Ω
TxD+
VTERM
CL=200 to
600pF
Rpu
Rs=27Ω
TxDCL=200 to
600pF
3-State Enable
Rpu=1.5kΩ
VTERM=3.6V
Low-Speed Load (Compliance Load)
Low-speed Buffer
Rs = 27Ω
TxD+
CL = 200 to 450pF
Rs = 27Ω
TxDCL =200 to 450pF
3-State Enable
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 92 of 112
MB9B300B Series
12.7 Low-Voltage Detection Characteristics
12.7.1 Low-Voltage Detection Reset
(TA = - 40C to + 85C)
Parameter
Detected voltage
Released voltage
Symbol
Conditions
VDL
VDH
-
Value
Typ
Min
2.20
2.30
2.40
2.50
Max
2.60
2.70
Unit
Remarks
V
V
When voltage drops
When voltage rises
12.7.2 Interrupt of Low-Voltage Detection
(TA = - 40C to + 85C)
Parameter
Symbol
Detected voltage
Released voltage
Detected voltage
VDL
VDH
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
LVD stabilization wait time
TLVDW
Conditions
SVHI = 0000
SVHI = 0001
SVHI = 0010
SVHI = 0011
SVHI = 0100
SVHI = 0111
SVHI = 1000
SVHI = 1001
-
Value
Typ
Min
Max
Unit
Remarks
2.58
2.67
2.76
2.8
2.9
3.0
3.02
3.13
3.24
V
V
V
When voltage drops
When voltage rises
When voltage drops
2.85
3.1
3.34
V
When voltage rises
2.94
3.2
3.45
V
When voltage drops
3.04
3.3
3.56
V
When voltage rises
3.31
3.6
3.88
V
When voltage drops
3.40
3.7
3.99
V
When voltage rises
3.40
3.7
3.99
V
When voltage drops
3.50
3.8
4.10
V
When voltage rises
3.68
4.0
4.32
V
When voltage drops
3.77
4.1
4.42
V
When voltage rises
3.77
4.1
4.42
V
When voltage drops
3.86
4.2
4.53
V
When voltage rises
3.86
4.2
4.53
V
When voltage drops
3.96
4.3
4.64
V
When voltage rises
-
-
2040 × tcycp *1
μs
*1: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 93 of 112
MB9B300B Series
12.8 Flash Memory Write/Erase Characteristics
12.8.1 Write / Erase time
(Vcc = 2.7 V to 5.5 V, TA = - 40C to + 85C)
Value
Parameter
Typ *1
Unit
Max *1
Large Sector
1.6
7.5
Small Sector
0.4
2.1
Half word (16 bit)
write time
25
Chip erase time
16
Sector erase time
Remarks
s
Includes write time prior to internal erase
400
μs
Not including system-level overhead time.
76.8
s
Includes write time prior to internal erase
*1: The typical value is immediately after shipment, the maximum value is guarantee value under 100,000 cycle of erase/write.
12.8.2 Erase/write cycles and data hold time
Erase/write cycles
(cycle)
1,000
10,000
100,000
Data hold time
(year)
Remarks
20 *1
10 *1
5 *1
*1: At average + 85°C
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 94 of 112
MB9B300B Series
12.9 Return Time from Low-Power Consumption Mode
12.9.1 Return Factor: Interrupt
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the
program operation.
Return Count Time
(VCC = 2.7 V to 5.5 V, TA = - 40°C to + 85°C)
Parameter
Value
Symbol
Unit
Max *1
Typ
SLEEP mode
tCYCC
High-speed CR TIMER mode,
Main TIMER mode,
PLL TIMER mode
33
100
μs
445
1061
μs
Sub TIMER mode
445
1061
μs
STOP mode
445
1061
μs
Low-speed CR TIMER mode
Ticnt
Remarks
ns
*1: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by external interrupt *1)
Ext.INT
Interrupt factor
accept
Active
Ticnt
CPU
Operation
Interrupt factor
clear by CPU
Start
*1: External interrupt is set to detecting fall edge.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 95 of 112
MB9B300B Series
Operation example of return from Low-Power consumption mode (by internal resource interrupt *1)
Internal
Resource INT
Interrupt factor
accept
Active
Ticnt
CPU
Operation
Interrupt factor
clear by CPU
Start
*1: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family Peripheral Manual about
the return factor from Low-Power consumption mode.
−
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before
the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in "FM3 Family Peripheral
Manual"
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 96 of 112
MB9B300B Series
12.9.2 Return Factor: Reset
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program
operation.
Return Count Time
(VCC = 2.7 V to 5.5 V, TA = - 40°C to + 85°C)
Parameter
Value
Symbol
Typ
Unit
Max *1
SLEEP mode
82
181
μs
High-speed CR TIMER mode,
Main TIMER mode,
PLL TIMER mode
82
181
μs
431
1003
μs
Sub TIMER mode
431
1003
μs
STOP mode
431
1003
μs
Low-speed CR TIMER mode
Trcnt
Remarks
*1: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by INITX)
INITX
Internal RST
RST Active
Release
Trcnt
CPU
Operation
Document Number: 002-05612 Rev. *D
Start
October 23, 2017
Page 97 of 112
MB9B300B Series
Operation example of return from low power consumption mode (by internal resource reset *1)
Internal
Resource RST
Internal RST
RST Active
Release
Trcnt
CPU
Operation
Start
*1: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family Peripheral Manual.
−
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the
Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in "FM3 Family Peripheral
Manual"
−
The time during the power-on reset/low-voltage detection reset is excluded. See "12.4.7. Power-on Reset Timing
12.4. AC Characteristics in 12. Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage
detection reset
−
When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is
necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time.
−
The internal resource reset means the watchdog reset and the CSV reset.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 98 of 112
MB9B300B Series
13. Example of Characteristic
Power supply current (PLL run mode, PLL sleep mode)
Icc normal operation(PLL) temperature characteristics
Vcc:5.5V, CPU:80MHz, Peripheral:40MHz,FLASH 2Wait
Iccs sleep operation(PLL) temperature characteristics
Vcc:5.5V, Peripheral:40MHz
120
60
100
90
50
Power supply current [mA]
Power supply current [mA]
110
80
70
60
50
40
30
20
40
30
20
10
10
0
0
-40 -30 -20 -10
0
10
20
30
40
50
60
70
80
-40 -30 -20 -10
0
Temperature Ta[℃]
10
20
30
40
50
60
70
80
Temperature Ta[℃]
Power supply current (Sub run mode)
Icc normal operation(sub oscillation) temperature
characteristics Vcc:5.5V, CPU/Peripheral:32KHz
Icc normal operation(sub oscillation) temperature
characteristics(semi-log) Vcc:5.5V, CPU/Peripheral:32KHz
500
1000
Power supply current [μA] (log)
Power supply current [μA]
450
400
350
300
250
200
150
100
100
10
50
1
0
-40 -30 -20 -10
0
10
20
30
40
50
60
70
-40 -30 -20 -10
80
0
10
20
30
40
50
60
70
80
70
80
Temperature Ta[℃]
Temperature Ta[℃]
Power supply current (Sub sleep mode)
Iccs sleep operation(sub oscillation) temperature
Iccs sleep operation(sub oscillation) temperature
characteristics Vcc:5.5V, Peripheral:32KHz
characteristics(semi-log) Vcc:5.5V, Peripheral:32KHz
1000
500
Power supply current [μA] (log)
Power supply current [μA]
450
400
350
300
250
200
150
100
50
10
1
0
-40 -30 -20 -10
100
0
10
20
30
40
50
60
70
80
-40 -30 -20 -10
Temperature Ta[℃]
Document Number: 002-05612 Rev. *D
0
10
20
30
40
50
60
Temperature Ta[℃]
October 23, 2017
Page 99 of 112
MB9B300B Series
Power supply current (Sub timer mode)
ICCT timer mode(sub oscillation) temperature
characteristics(semi-log) Vcc:5.5V, LVD is Off
ICCT timer mode(sub oscillation) temperature characteristics
Vcc:5.5V, LVD is Off
1000
500
Power supply current [μA] (log)
Power supply current [μA]
450
400
350
300
250
200
150
100
50
0
100
10
1
-40 -30 -20 -10
0
10
20
30
40
50
60
70
80
-40 -30 -20 -10
Temperature Ta[℃]
0
10
20
30
40
50
60
70
80
Temperature Ta[℃]
Power supply current (Stop mode)
ICCH stop mode (sub oscillation) temperature
ICCH stop mode (sub oscillation) temperature characteristics
Vcc:5.5V, LVD is Off
characteristics(semi-log) Vcc:5.5V, LVD is Off
500
1000
Power supply current [μA] (log)
Power supply current [μA]
450
400
350
300
250
200
150
100
50
10
1
0
-40 -30 -20 -10
100
0
10
20
30
40
50
60
70
80
-40 -30 -20 -10
Temperature Ta[℃]
Document Number: 002-05612 Rev. *D
0
10
20
30
40
50
60
70
80
Temperature Ta[℃]
October 23, 2017
Page 100 of 112
MB9B300B Series
14. Ordering Information
Part Number
MB9BF304NBPMC-G-JNE2
On-chip
Flash
Memory
On-chip
SRAM
256 Kbyte
32 KB
384 Kbyte
48 KB
512 Kbyte
64 KB
256 Kbyte
32 KB
MB9BF305RBPMC-G-JNE2
384 Kbyte
48 KB
MB9BF306RBPMC-G-JNE2
512 Kbyte
64 KB
MB9BF304NBBGL-GK6E1
256 Kbyte
32 KB
MB9BF305NBBGL-GK6E1
384 Kbyte
48 KB
MB9BF306NBBGL-GK6E1
512 Kbyte
64 KB
MB9BF304NBPMC-G-UNE1
MB9BF305NBPMC-G-JNE2
MB9BF306NBPMC-G-UNE1
MB9BF306NBPMC-G-UNE2
MB9BF304RBPMC-G-JNE2
MB9BF304RBPMC-G-UNE1
Document Number: 002-05612 Rev. *D
October 23, 2017
Package
Packing
Plastic・LQFP(0.5 mm pitch),100-pin
(LQI100)
Plastic・LQFP(0.5 mm pitch),120-pin
(LQM120)
Tray
Plastic・FBGA(0.8 mm pitch),112-pin
(LBC112)
Page 101 of 112
MB9B300B Series
15. Package Dimensions
Package Type
LQFP 100
Package Code
LQI100
D
D1
75
4
D
5 7
51
D1
51
50
76
4
5 7
75
50
76
E1 E
5 4
7
E1 E
5 4
7
3
6
26
100
1
26
25
1
25
2 5 7
e
100
BOTTOM VIEW
0.1 0 C A-B D
3
0.2 0 C A-B D
b
TOP VIEW
8
0.0 8
C A-B
D
2
A
9
A
SEAT ING
PLA NE
A'
0.25
L1
0.0 8 C
c
A1
b
10
SECTION A-A'
L
SIDE VIEW
SYMBOL
DETAIL A
DIMENSIONS
MIN.
NOM. MAX.
1.70
A
A1
0.05
b
0.15
0.15
0.27
c
0.09
0.20
D
16.00 BSC
D1
14.00 BSC
e
0.50 BSC
E
16.00 BSC
E1
14.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
NOTES :
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING
LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
3. DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
4. TO BE DETERMINED AT SEATING PLANE C.
5. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED
AT DATUM PLANE H.
6. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED
WITHIN THE ZONE INDICATED.
7. REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY
SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST
FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS.
BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER
SECTIONS OF THE MOLDER BODY.
8. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR
PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b
MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON
THE LOWER RADIUS OR THE LEAD FOOT.
9. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD
BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
10. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO
THE LOWEST POINT OF THE PACKAGE BODY.
002-11500 *A
PACKAGE OUTLINE, 100 LEAD LQFP
14.0X14.0X1.7 MM LQI100 REV*A
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 102 of 112
MB9B300B Series
Package Type
LQFP 120
Package Code
LQM120
4
D
5 7
D1
90
61
91
61
60
90
91
60
E1
E
4
5
7
3
6
31
120
1
30
e
31
30
2 5 7
1
0.10 C A-B D
3
b
0.20 C A-B D
0.08
C A-B
D
BOTTOM VIEW
8
TOP VIEW
2
A
9
c
A
A'
0.08 C
SEATI NG
PLA NE
0.25
A1
10
b
SEC TION A -A'
L
SIDE VIEW
SYMBOL
DIMENSIONS
MIN. NOM. MAX.
A
A1
1 . 70
0.05
0.15
b
0.17
c
0.115
0.22
D
18.00 BSC
D1
16.00 BSC
e
0.50 BSC
E
18.00 BSC
E1
L
0.27
0.195
16.00 BSC
0.45
0
0.60
0.75
8
002-16172 **
PACKAGE OUTLINE, 120 LEAD LQFP
18.0X18.0X1.7 MM LQM120 REV**
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 103 of 112
MB9B300B Series
Package Type
FBGA 112
Package Code
LBC112
A
0.20 C
11
2X
10
9
6
8
7
6
5
4
3
2
1
L
PIN A1
CORNER
INDEX MARK
K
J
H
G
F
E
D
7
C
B
A
6
B
0.20 C
TOP VIEW
2X
BOTTOM VIEW
DETAIL A
5
112x φb
C
0.10 C
DETAIL A
0.08
C A B
SIDE VIEW
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS.
DIMENSIONS
SYMBOL
MIN.
NOM.
MAX.
2. SOLDER BALL POSITION DESIGNATIO
N PER JEP95, SECTION 3, SPP-020.
A
-
-
1.45
3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
A1
0.25
0.35
0.45
4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
D
10.00 BSC
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
E
10.00 BSC
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX
D1
8.00 BSC
E1
8.00 BSC
MD
11
ME
11
N
112
b
0.35
0.45
eD
0.80 BSC
eE
0.80 BSC
SD
0.00
SE
SIZE MD X ME.
5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A
0.00
PLANE PARALLEL TO DATUM C.
6. "SD" AND "SE" ARE MEASUREDWITH RESPECT TO DATUMS A AND B AND
DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
0.55
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW,
"SD" OR "SE" = 0.
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW,
"SD" = eD/2 AND "SE" = eE/2.
7. A1 CORNER TO BE IDENTIFIED BY
CHAMFER, LASER OR INK MARK
METALIZED MARK, INDENTATION OR OTHER MEANS.
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER
BALLS.
002-13225 **
PACKAGE OUTLINE, 112 BALL FBGA
10.00X10.00X1.45 MM LBC112 REV**
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 104 of 112
MB9B300B Series
16. Errata
This chapter describes the errata for MB9B300R and MB9B300RA series. Details include errata trigger conditions, scope of
impact, available workaround, and silicon revision applicability.
Contact your local Cypress Sales Representative if you have questions.
16.1 Part Numbers Affected
Part Number
Initial Revision
MB9BF304RPMC-G-JNE2, MB9BF305RPMC-G-JNE2, MB9BF306RPMC-G-JNE2,
MB9BF304NPMC-G-JNE2, MB9BF305NPMC-G-JNE2, MB9BF306NPMC-G-JNE2,
MB9BF304NBGL-GE1, MB9BF305NBGL-GE1, MB9BF306NBGL-GE1,
MB9BF306NBGL-GK6E1
Rev. A
MB9BF304RAPMC-G-JNE2, MB9BF305RAPMC-G-JNE2, MB9BF306RAPMC-G-JNE2,
MB9BF304NAPMC-G-JNE2, MB9BF305NAPMC-G-JNE2, MB9BF306NAPMC-G-JNE2,
MB9BF304NABGL-GE1, MB9BF305NABGL-GE1, MB9BF306NABGL-GE1
16.2 Qualification Status
Product Status: In Production − Qual.
16.3 Errata Summary
This table defines the errata applicability to available devices.
Items
Part Number
Silicon Revision
Fix Status
[1] Timer/Stop Mode Issue
Refer to 16.1
Rev. initial rev.
Fixed in Rev. A
[2] USB HOST Issue
Refer to 16.1
Rev. initial rev.
Rev. A
Fixed in Rev. B
[3] Gap Between Watch Counter
Value and Real Time at Return in
Timer Mode
Refer to 16.1
Rev. initial rev.
Fixed in Rev. A
16.4 Errata Detail
16.4.1 Timer and Stop Mode Issue
 PROBLEM DEFINITION
MCU does not return form timer or stop mode.
 PARAMETERS AFFECTED
N/A
 TRIGGER CONDITION(S)
The condition is that the timing of entering timer or stop mode and an interruption occurrence meet.
 SCOPE OF IMPACT
MCU does not return from time or stop mode.
 WORKAROUND
This error cannot be avoided by any software, except not using timer and stop mode.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 105 of 112
MB9B300B Series
 FIX STATUS
This issue was fixed in Rev. A.
16.4.2 USB HOST Issue
 PROBLEM DEFINITION
Unexpected USB transfer is generated or USB HOST stops its operation.
 PARAMETERS AFFECTED
N/A
 TRIGGER CONDITION(S)
The condition is that all (1) and (2) and (3) and (4) meet.
(1) The timing of rising edge of USB clock and the timing of rising edge of CPU clock meet
(2) Endpoint processing is on-going
(3) USB bus is differential 1
(4) One of these cases happens
Case 1: TKNEN bits are set to 001 from 110.
Case 2: TKNEN is set to 111.
 SCOPE OF IMPACT
USB HOST does not work properly.
 WORKAROUND
This error cannot be avoided by any software, except not using USB HOST.
 FIX STATUS
This issue was fixed in Rev. B.
16.4.3 Gap Between Watch Counter Value and Real Time at Return in Timer Mode
 PROBLEM DEFINITION
There is a gap between the value of the counter and the real time at the return by the interrupt in the sub-timer mode or the low
speed CR timer mode. When the watch counter using the sub-crystal oscillator is used in the sub timer mode or the low speed CR
timer mode, the value of the watch counter has a “Low speed CR x 35clock” delay (about 350us at waiting for the stability of the
regulator) at the return by the interrupt. As a result, a gap occurs between the value of the counter and the real time.
The following figure shows the timing waveform.
 ROOT CAUSE
The internal regulator operates with low drive and low power consumption in the sub timer mode or the low speed CR timer mode.
When the interrupt is requested, the mode of the internal regulator is switched to the normal drive mode. At this time, a switching
time for the stability of the regulator is required.
This MCU is designed for keeping down the voltage variation of the regulator by reducing the current. To achieve it, the clock to the
watch counter is stopped in the period.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 106 of 112
MB9B300B Series
At a result, the value of the watch counter delay until the time for the stability of the regulator is shown in the Figure. Therefore, a
gap occurs between the value of the counter and the real time.
 TRIGGER CONDITION(S)
When both of (1) and (2) described in below is applicable, the gap occurs.
(1)
CPU Operation Mode
The gap occurs in the sub timer mode or the low speed CR mode.
It does not occur in the following modes:
(2)
•
Run modes (PLL, main, high speed CR, sub, and low speed CR)
•
Sleep modes (PLL, main, high speed CR, sub, low speed CR)
•
PLL timer mode
•
Main timer mode
•
High speed CR timer mode
•
Stop mode
Return Factor
The gap occurs when any of the following interrupt is requested for the return in the sub timer mode or the low speed CR timer
mode.
•
NMI interrupt
•
External interrupt
•
Hardware Watchdog Timer interrupt
•
USB Wakeup interrupt
•
Watch Counter interrupt
•
Low-voltage detection interrupt
•
The gap does not occur in the standby return by the reset because the value of the counter is cleared
 WORKAROUND
When the extremely accuracy is required for the count time of the watch counter, use the sub sleep mode or the low speed CR
sleep mode.
 FIX STATUS
This issue was fixed in Rev. A.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 107 of 112
MB9B300B Series
17. Major Changes
Spansion Publication Number: DS706-00024
Page
Section
Revision 1.0
Revision 2.0
-
-
Revision 2.1
Revision 3.0
FEATURES
2
USB Interface
FEATURES
3
External Bus Interface
8
PACKAGES
LIST OF PIN FUNCTIONS
17
List of pin numbers
LIST OF PIN FUNCTIONS
32-35
List of pin functions
42
I/O CIRCUIT TYPE
42, 43
I/O CIRCUIT TYPE
48
HANDLING DEVICES
HANDLING DEVICES
48
Crystal oscillator circuit
HANDLING DEVICES
49
C Pin
50
BLOCK DIAGRAM
50
51
52
MEMORY SIZE
MEMORY MAP
Memory map(1)
MEMORY MAP
Memory map(2)
59, 60
ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
61
ELECTRICAL CHARACTERISTICS
2. Recommended Operation Conditions
62, 63
ELECTRICAL CHARACTERISTICS
3. DC Characteristics
(1) Current rating
65
66
ELECTRICAL CHARACTERISTICS
4. AC Characteristics
(1) Main Clock Input Characteristics
ELECTRICAL CHARACTERISTICS
4. AC Characteristics
(3) Built-in CR Oscillation Characteristics
Document Number: 002-05612 Rev. *D
Change Results
Initial release
Corrected series name and part number:
MB9B300A Series → MB9B300B Series,
MB9BF304NA → MB9BF304NB,
MB9BF304RA → MB9BF304RB,
MB9BF305NA → MB9BF305NB,
MB9BF305RA → MB9BF305RB,
MB9BF306NA → MB9BF306NB,
MB9BF306RA → MB9BF306RB
Company name and layout design change
Added the description of PLL for USB
Added the description of Maximum area size
Deleted the description of ES
Modified the Pin state type of P4E from I to H
Added LIN to the description of SOTxx
Added the description of I2C to the type of E and F
Added about +B input
Added "Stabilizing power supply voltage"
Added the following description
"Evaluate oscillation of your using crystal oscillator by your mount board."
Changed the description
Modified the block diagram
Changed to the following description
See "Memory size" in "PRODUCT LINEUP" to confirm the memory size.
Modified the area of "External Device Area"
Added the summary of Flash memory sector and the note
Added the Clamp maximum current
Added the output current of P80 and P81
Added about +B input
Modified the minimum value of Analog reference voltage
Added Smoothing capacitor
Added the note about less than the minimum power supply voltage
Changed the table format
Added Main TIMER mode current
Added Flash Memory Current
Moved A/D Converter Current
Added Master clock at Internal operating clock frequency
Added Frequency stability time at Built-in high-speed CR
October 23, 2017
Page 108 of 112
MB9B300B Series
Page
67
68
74-81
88
91
96
97-100
103
104
Section
ELECTRICAL CHARACTERISTICS
4. AC Characteristics
(4-1) Operating Conditions of Main and USB
PLL
(4-2) Operating Conditions of Main PLL
ELECTRICAL CHARACTERISTICS
4. AC Characteristics
(6) Power-on Reset Timing
ELECTRICAL CHARACTERISTICS
4. AC Characteristics
(7) CSIO/UART Timing
ELECTRICAL CHARACTERISTICS
5. 12bit A/D Converter
ELECTRICAL CHARACTERISTICS
6. USB Characteristics
ELECTRICAL CHARACTERISTICS
8. Flash Memory Write/Erase Characteristics
ELECTRICAL CHARACTERISTICS
9. Return Time from Low-Power Consumption
Mode
ORDERING INFORMATION
PACKAGE DIMENSIONS
Change Results
Added Main PLL clock frequency
Added USB clock frequency
Added the figure of Main PLL connection and USB PLL connection
Added Time until releasing Power-on reset
Changed the figure of timing
Modified from UART Timing to CSIO/UART Timing
Changed from Internal shift clock operation to Master mode
Changed from External shift clock operation to Slave mode
Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero
transition voltage and Full-scale transition voltage
Added Conversion time at AVcc < 4.5 V
Modified Stage transition time to operation permission
Modified the minimum value of Reference voltage
Modified condition of Output Low level voltage
Change to the erase time of include write time prior to internal erase
Added Return Time from Low-Power Consumption Mode
Change to full part number
Deleted FPT-100P-M20 and FPT-120P-M21
Note: Please see “Document History” about later revised information.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 109 of 112
MB9B300B Series
Document History
Document Title: MB9B300B Series 32-bit Arm® Cortex®-M3 FM3 Microcontroller
Document Number: 002-05612
Revision
ECN
Orig. of
Change
Submission
Date
**
–
AKIH
12/15/2014
Migrated to Cypress and assigned document number 002-05612.
No change to document contents or format.
*A
5206321
AKIH
04/11/2016
Updated to Cypress format.
Description of Change
Updated Cypress Logo.
Corrected the following statement
USB Function → USB Device
in chapter:
Features (Page 1)
1. Product Lineup (Page 6)
4. List of Pin Functions (Page 36)
8. Block Diagram (Page 47).
Corrected the following statement
J-TAG → JTAG
in chapter 4. List of Pin Functions (Page 25)
Added “Note” about TAP pins in chapter 4. List of Pin Functions (Page 37).
Added the Baud rate spec in 12.4.10 CSIO Timing (Page 72-78)
Corrected the following statement
Analog port input current → Analog port input leak current
in chapter 12.5 12-bit A/D Converter (Page 86).
*B
5486354
HTER
03/02/2017
Corrected the following statement
Comrare clock cycle → Compare clock cycle
in chapter 12.5 12-bit A/D Converter (Page 87).
Changed the package codes as the following table in chapter:
2. Packages (Page 7)
3. Pin Assignment (Page 8-10)
12.2 Recommended Operating Conditions (Page 57)
14. Ordering Information (Page 101)
15. Package Dimensions (Page 102-104).
Before
FPT-100P-M23
FPT-120P-M37
BGA-112P-M04
After
LQI100
LQM120
LBC112
Added the Part numbers
- MB9BF304RBPMC-G-UNE1
in chapter 14. Ordering Information (Page 101).
Corrected the Part numbers
- MB9BF304NBBGL-G-YE1 → MB9BF304NBBGL-GK6E1
- MB9BF305NBBGL-G-YE1 → MB9BF305NBBGL-GK6E1
- MB9BF306NBBGL-G-YE1 → MB9BF306NBBGL-GK6E1
in chapter 14. Ordering Information (Page 101).
Added 16. Errata (Page 105-106)
*C
5811601
YSAT
Document Number: 002-05612 Rev. *D
07/13/2017
Adapted new Cypress logo
October 23, 2017
Page 110 of 112
MB9B300B Series
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
Corrected the following Clock frequency MAX value (When not trimming)
5MHz  6MHz
in chapter 12.4.3 Built-in CR Oscillation Characteristics.
Added the Part numbers in chapter 14. Ordering Information.
*D
5942095
HUAL
10/24/2017
- MB9BF304NBPMC-G-UNE1
- MB9BF306NBPMC-G-UNE1
Corrected the Part numbers in chapter 14. Ordering Information.
- MB9BF306NBPMC-G-JNE2 → MB9BF306NBPMC-G-UNE2
Added the errata 002-06782 contents in chapter 16. Errata.
Document Number: 002-05612 Rev. *D
October 23, 2017
Page 111 of 112
MB9B300B Series
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
ARM® Cortex® Microcontrollers
Automotive
Clocks & Buffers
Interface
Internet of Things
Memory
cypress.com/arm
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/memory
Microcontrollers
cypress.com/mcu
PSoC
cypress.com/psoc
Power Management ICs
cypress.com/pmic
Touch Sensing
USB Controllers
Wireless Connectivity
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6
Cypress Developer Community
Forums | WICED IOT Forums | Projects | Video | Blogs |
Training | Components
Technical Support
cypress.com/support
cypress.com/touch
cypress.com/usb
cypress.com/wireless
Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.
© Cypress Semiconductor Corporation, 2011-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then
Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to
end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the
Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation,
or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It
is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress
products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support
devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform
can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress
from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs,
damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-05612 Rev. *D
October 24, 2017
Page 112 of 112
Similar pages