Micro Electronics ML7905A 3-terminal negative voltage regulator Datasheet

ML7900
SERIES
3-TERMINAL NEGATIVE
VOLTAGE REGULATOR
The ML7900 series are 3-Terminal Negative Voltage Regulators. These negative regulators are intended as complements to the popular
ML7800 series of positive voltage regulations, and they are available in the same voltage options from -5V to -24V. The ML7900 series
employ internal current-limiting. safe-area protection , and thermal shutdown, making them virtually indestructible.
■
Package Outline
TO-220
(7900A)
TO-220F
(7900FA)
1. OUT
2. IN
3. COMMON
32
(Ta=25℃)
ABSOLUTE MAXIMUM RATINGS
PARAMETER
Input Voltage
Storage Temperature Range
Maximum Rating
SYMBOL
VIN
UNIT
ML7905 to ML7909
-35
ML7912 to ML7920
-35
ML7924
-40
V
-40 to +125
Tstg
Operating Temperature Range
Power Dissipation
1
℃
Operating Junction Temperature
Tj
-30 to +125
Operating Ambient Temperature
Topr
-30 to +75
℃
15(Tc≦45℃ )
PD
W
THERMAL RESISTANCE
Thermal Resistance
Junction-to-Ambient Temperature
Θ ja
60
Junction-to-Case
Θ jc
5
ELECTRICAL CHARACTERISTICS
PARAMETER
(Tj=25℃,C1=0.33μF,Co=0.1μF)
TEST CONDITIONS
SYMBOL
℃/W
Measurement is to be conducted in
pulse testing.
MIN. TYP. MAX. UNIT
ML7905A / ML7905FA
Output Voltage
Vo
VIN=-10V
Io=0.5A
-4.8
-5.0
-5.2
V
Quiescent Current
IQ
VIN=-10V
Io=0mA
-
2.2
5.0
mA
Load Regulation
ΔVo Io
VIN=-10V
Io=0.005A to 1.5A
-
50
100
mV
Line Regulation
ΔVo Vin
-
12.5
100
mV
VIN=-7 to -25V Io=0.5A
ein=2Vp-p
Ripple Rejection
RR
VIN=-10V
Io=0.5A
Output Noise Voltage
VNO
VIN=-10V
BW=10Hz to 100KHz
Average Temperature
Cofficient of Output Voltage
ΔVo / ΔT VIN=-10V
Io=5mA
f=120Hz
54
60
-
dB
Io=0.5A
-
125
-
μV
-
-0.4
-
mV/℃
REV B
Page 1 of 10
ELECTRICAL CHARACTERISTICS
PARAMETER
(Tj=25℃,C1=0.33μF,Co=0.1μF)
TEST CONDITIONS
SYMBOL
Measurement is to be conducted
in pulse testing.
MIN. TYP. MAX. UNIT
ML7906A / ML7906FA
Output Voltage
Vo
VIN=-11V
Io=0.5A
-5.75
-6.0
-6.25
V
Quiescent Current
IQ
VIN=-11V
Io=0mA
-
2.2
5.0
mA
ΔVo Io
VIN=-11V
Io=0.005A to 1.5A
-
50
120
mV
-
12.5
120
mV
f=120Hz
54
60
-
dB
Io=0.5A
-
150
-
μV
Io=5mA
-
-0.4
-
mV/℃
Load Regulation
Line Regulation
Ripple Rejection
ΔVo Vin VIN=-8 to -25V
RR
VIN=-11V
VIN=-11V
Output Noise Voltage
VNO
Average Temperature
ΔVo / ΔT VIN=-11V
Cofficient of Output Voltage
Io=0.5A
Io=0.5A
ein=2Vp-p
BW=10Hz to 100KHz
ML7908A / ML7908FA
Output Voltage
Vo
VIN=-14V
Io=0.5A
-7.7
-8.0
-8.3
V
Quiescent Current
IQ
VIN=-14V
Io=0mA
-
2.2
5.0
mA
ΔVo Io
VIN=-14V
Io=0.005A to 1.5A
-
60
160
mV
-
12.5
160
mV
f=120Hz
54
60
-
dB
Io=0.5A
-
200
-
μV
Io=5mA
-
-0.7
-
mV/℃
Load Regulation
Line Regulation
Ripple Rejection
ΔVo Vin VIN=-10.5 to -25V
RR
VIN=-14V
VIN=-14V
Output Noise Voltage
VNO
Average Temperature
ΔVo / ΔT VIN=-14V
Cofficient of Output Voltage
Io=0.5A
Io=0.5A
ein=2Vp-p
BW=10Hz to 100KHz
ML7909A / ML7909FA
Output Voltage
Vo
VIN=-15V
Io=0.5A
-8.65
-9.0
-9.35
V
Quiescent Current
IQ
VIN=-15V
Io=0mA
-
2.2
5.0
mA
ΔVo Io
VIN=-15V
Io=0.005A to 1.5A
-
60
180
mV
-
8
180
mV
f=120Hz
54
60
-
dB
Io=0.5A
-
250
-
μV
Io=5mA
-
-0.8
-
mV/℃
Load Regulation
Line Regulation
Ripple Rejection
ΔVo Vin VIN=-11.5 to -25V
RR
VIN=-15V
VIN=-15V
Output Noise Voltage
VNO
Average Temperature
ΔVo / ΔT VIN=-15V
Cofficient of Output Voltage
Io=0.5A
Io=0.5A
ein=2Vp-p
BW=10Hz to 100KHz
ML7912A / ML7912FA
Output Voltage
Vo
VIN=-19V
Io=0.5A
-11.5
-12.0
-12.5
V
Quiescent Current
IQ
VIN=-19V
Io=0mA
-
2.7
6.0
mA
ΔVo Io
VIN=-19V
Io=0.005A to 1.5A
-
60
240
mV
-
5
240
mV
f=120Hz
54
60
-
dB
Io=0.5A
-
300
-
μV
-
-0.8
-
mV/℃
Load Regulation
Line Regulation
Ripple Rejection
ΔVo Vin VIN=-14.5 to -30V
RR
VIN=-19V
VIN=-19V
Output Noise Voltage
VNO
Average Temperature
ΔVo / ΔT VIN=-19V
Cofficient of Output Voltage
Io=0.5A
Io=0.5A
ein=2Vp-p
BW=10Hz to 100KHz
Io=5mA
REV B
Page 2 of 10
ELECTRICAL CHARACTERISTICS
PARAMETER
(Tj=25℃,C1=0.33μF,Co=0.1μF)
TEST CONDITIONS
SYMBOL
Measurement is to be conducted
in pulse testing.
MIN. TYP. MAX. UNIT
ML7915A / ML7915FA
Output Voltage
Vo
VIN=-23V
Io=0.5A
-14.4
-15.0
-15.6
V
Quiescent Current
IQ
VIN=-23V
Io=0mA
-
2.7
6.0
mA
ΔVo Io
VIN=-23V
Io=0.005A to 1.5A
-
60
300
mV
-
5
300
mV
f=120Hz
54
60
-
dB
Io=0.5A
-
375
-
μV
Io=5mA
-
-1
-
mV/℃
Load Regulation
Line Regulation
Ripple Rejection
ΔVo Vin VIN=-17.5 to -30V
RR
VIN=-23V
VIN=-23V
Output Noise Voltage
VNO
Average Temperature
ΔVo / ΔT VIN=-23V
Cofficient of Output Voltage
Io=0.5A
Io=0.5A
ein=2Vp-p
BW=10Hz to 100KHz
ML7918A / ML7918FA
Output Voltage
Vo
VIN=-27V
Io=0.5A
-17.3
-18.0
-18.7
V
Quiescent Current
IQ
VIN=-27V
Io=0mA
-
2.7
6.0
mA
ΔVo Io
VIN=-27V
Io=0.005A to 1.5A
-
60
360
mV
-
5
360
mV
f=120Hz
54
60
-
dB
Io=0.5A
-
450
-
μV
Io=5mA
-
-1
-
mV/℃
-23.0
-24.0
-25.0
V
Load Regulation
Line Regulation
Ripple Rejection
ΔVo Vin VIN=-21 to -33V
RR
VIN=-27V
VIN=-27V
Output Noise Voltage
VNO
Average Temperature
ΔVo / ΔT VIN=-27V
Cofficient of Output Voltage
Io=0.5A
Io=0.5A
ein=2Vp-p
BW=10Hz to 100KHz
ML7924A / ML7924FA
Output Voltage
Quiescent Current
Load Regulation
Line Regulation
Ripple Rejection
Vo
VIN=-33V
Io=0.5A
IQ
VIN=-33V
Io=0mA
-
2.7
6.0
mA
ΔVo Io
VIN=-33V
Io=0.005A to 1.5A
-
85
480
mV
-
5
480
mV
f=120Hz
54
60
-
dB
Io=0.5A
-
600
-
μV
-
-1
-
mV/℃
ΔVo Vin VIN=-28 to -38V
RR
VIN=-33V
VIN=-33V
Output Noise Voltage
VNO
Average Temperature
ΔVo / ΔT VIN=-33V
Cofficient of Output Voltage
Io=0.5A
Io=0.5A
ein=2Vp-p
BW=10Hz to 100KHz
Io=5mA
REV B
Page 3 of 10
■
Equivalent Circuit
■
Power Dissipation vs. Ambient Temperature
HS
Power Dissipation PD (W)
20
15
10
5
= Heat Sink Thermal Resistance
Heat Sink
HS
= 3 C/W
HS
= 5 C/W
HS
= 10 C/W
HS
= 20 C/W
Without Heat Sink
0
25
50
75
Ambient Temperature Ta ( C)
■
Test Circuit
1. Output Voltage, Line Regulation, Load
Regulation, Quiescent Current,
Average Temperature Coefficient of
Output Voltage, Output Noise Voltage.
2
1
3
2. Ripple Rejection
1
2
3
REV B
Page 4 of 10
■
Typical Characteristics
REV B
Page 5 of 10
■
Typical Characteristics
REV B
Page 6 of 10
1. Application Circuit
In the following explain only the positive regulator unless otherwise specified. However they can apply to the
negative voltage regulator by easy change.
Positive/Negative Voltage Supply
Note : In the above positive and negative
power supply application, D1 and D2
should be connected. If D1 and D2
are not connected, either of positive
or negative power supply circuit may
not turns on.
78 series
IN
+Vin
OUT
+Vo
GND
0.33uF
D1
0.1uF
D2
0.1uF
COM
0.33uF
COM
IN
-Vin
OUT
-Vo
79 series
2. Note in Application Circuit
If the higher voltage (above the rated value) or lower voltage (GND-0.5V) is supplied to the input
terminals, the IC may be destroyed. To avoid such a case, a zener diode or other parts of the surge
supressor should be connected as shown below.
(1)
L
R
1
OUT
3
Vo
1
Vin
+
Capacitor
Diode
Capacitor
OUT
3
Vo
2
(2)
+
2
Ze ner Diode
IN
GND
IN
GND
Vin
If the higher voltage than the input terminal is supplied to the output terminal, the IC may be
destroyed. To avoid input terminal short to the GND or the stored voltage in the capacitor back to the
output terminal, by the large value capacitor connecting to the output terminal application, the SBD
should be required as shown below;
DIODE
1
IN
GND
Vin
OUT
3
Vo
+
Capacitor
2
* In case of negative voltage regulator, reverse the SBD and capacitor direction.
REV B
Page 7 of 10
3. Thermal Design
(1)
Heat Producting
There are two kinds of heat producting (P LOSS-1, PLOSS-2) in three terminal regulator and the sum of
them is total heat producting of IC (PLOSS).
(1-1)
PLOSS-1 : heat producting by own operation
Input voltage (Vin) and quiescent current (IQ) produce the heat mentioned below equation.
PLOSS-1 = Vin X IQ
Input
IN
OUT
Iout
Output
GND
Vin
Vout
IQ
(1-2)
PLOSS-2 : heat producing by output current and the input-output differential voltage.
Internal power transistor produces the hest mentioned following equation.
PLOSS-2
= (Vin-Vout) x Iout
(W)
Therefore, the total heat producing PLOSS is :
PLOSS
= PLOSS-1 + PLOSS-2
= Vin X IQ + (Vin-Vout) X Iout
(2)
Thermal Resistance
(2-1)
Definition of Thermal Resistance : θ
(W)
Thermal resistance (θ ) is a degree of heat radiation mentioned following equation.
= (T1 - T2)/P (℃ /W)
Heat Producing Quantity
Ambient Temperature or case temperature
Heat Source Temperature
: P (W)
:T2 (℃ )
:T1 (℃ )
P(W)
T1
Rp
T2
T1 > T2
(2-2)
Thermal resistance of TO-220
There are two kinds of thermal resistance of TO-220. One is "θjc" for the application with the heat
sink, the other is "θja" for the application without the heat sink.
thermal resistance between IC chip (junction point) and the package back side
θjc :
contacting with the heat sink.
θja :
thermal resistance between IC chip (junction point) and ambience.
REV B
Page 8 of 10
(3)
Heat Radiation Balance
The heat produced in the IC is radiated to ambience through the package and the heat
sink.
The quantity of the heat radiation depends on the heat source temperature, ambient
temperature and the thermal resistance of the package.
(3-1)
TO-220 with heat sink
Heat radiation balance model of the TO-220 with heat sink is shown as below.
PLOSS
θJC
θCH
θJS
Tj
Ta
Ambient
Temperature
Heat Source
(junction)
Temperature
Where
θHS
θjc :
thermal resistance between IC chip (junction point) and the
package backside connecting to the heatsink.
θjs :
thermal resistance between IC chip (junction point) and the
package surface.
θCH :
thermal resistance between package backside and the heat sink
including the condidtion of insulator, silicon grease and
tighten torque.
θHS :
thermal resistance of the heat sink
Package
Face Side
Resin
θJS
Chip
Package
Back Side
IC
θJC
θCH
θHS
Heat Sink
If the js is large enough compare with other thermal resistance, the js can be neglected and the
heat radiation model can be mentioned as below.
PLOSS
θJC
θCH
θHS
Tj
Ta
The relation between temperature and heat radiation quantity is shown below.
Tj=P LOSS X (θjc+θCH +θHS) + Ta
REV B
(℃ )
Page 9 of 10
(4)
Thermal Design
The heat radiation balance model of the TO-220 with the heat sink is shown as follows.
Heat radiation balance
Tj = P LOSS X (θjc +θCH + θHS) + Ta
(℃ )
(4-1)
PLOSS = Vin X IQ + (Vin-Vout) X Iout
(W)
(4-2)
(℃)
(4-3)
Substituting "Eq.(4-2) into "Eq.(4-1)" obtains
Tj = [Vin X I Q +(Vin-Vout) X Iout] X (θjc +θCH +θHS)+Ta
In Eq.(4-3)
Vin, Iout, θCH, θHS, Ta depand on using condition.
Tj, I Q,Vout,θjc depend on IC depend on IC specification.
WhenθCH, IQ and Tj are assumed the following values,
Eq.(4-3) becomes Eq.(4-4).
θCH=0.3 to 0.4 (℃/W) Insert the mica paper (0.1t) and thermal conduction silicon grease between
the IC and heat sink and tighten them with the bolt by 4Kg*cm-min.
IQ = 5 to 6mA (max.)
Tj = 125℃ (max.)
Tj(max) = 125 = [5 X Vin + (Vin-Vout) X Iout] X (5+0.3+ θHS) +Ta
(℃)
(4-4)
When fix the Vout, Tj depends on the Vin, Iout, θHS and Ta.
It means;
Lower Vin and / or Iout are required to linit the temperature rise.
Smaller θHS is required for the effective heat reduce (i.e. using the large heat sink).
In the thermal design, when fix the Vin, Iout and Ta, selectthe heat sink which θHS is smaller that
the result of Eq.(4-4).
For more detail, please refer the heat resistance value mentioned in the specification of the heat sink
supplier.
REV B
Page 10 of 10
Similar pages