LMV321, LMV358 LMV324, LMV324S www.ti.com SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 Low-Voltage Rail-To-Rail Output Operational Amplifiers Check for Samples: LMV321, LMV358, LMV324, LMV324S FEATURES DESCRIPTION • • • • • The LMV321, LMV358, and LMV324/LMV324S are single, dual, and quad low-voltage (2.7 V to 5.5 V) operational amplifiers with rail-to-rail output swing. The LMV324S, which is a variation of the standard LMV324, includes a power-saving shutdown feature that reduces supply current to a maximum of 5 μA per channel when the amplifiers are not needed. Channels 1 and 2 together are put in shutdown, as are channels 3 and 4. While in shutdown, the outputs actively are pulled low. 1 • • 2.7-V and 5-V Performance –40°C to 125°C Operation Low-Power Shutdown Mode (LMV324S) No Crossover Distortion Low Supply Current – LMV321 . . . 130 μA Typ – LMV358 . . . 210 μA Typ – LMV324 . . . 410 μA Typ – LMV324S . . . 410 μA Typ Rail-to-Rail Output Swing ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 1000-V Charged-Device Model (C101) The LMV321, LMV358, LMV324, and LMV324S are the most cost-effective solutions for applications where low-voltage operation, space saving, and low cost are needed. These amplifiers are designed specifically for low-voltage (2.7 V to 5 V) operation, with performance specifications meeting or exceeding the LM358 and LM324 devices that operate from 5 V to 30 V. Additional features of the LMV3xx devices are a common-mode input voltage range that includes ground, 1-MHz unity-gain bandwidth, and 1V/μs slew rate. The LMV321 is available in the ultra-small DCK (SC70) package, which is approximately one-half the size of the DBV (SOT-23) package. This package saves space on printed circuit boards and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity. LMV324 . . . D (SOIC) OR PW (TSSOP) PACKAGE (TOP VIEW) 1OUT 1IN– 1IN+ V C C+ 2IN+ 2IN– 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN– 4IN+ GND 3IN+ 3IN– 3OUT LMV324S . . . D (SOIC) OR PW (TSSOP) PACKAGE (TOP VIEW) 1OUT 1IN– 1IN+ VCC 2IN+ 2IN– 2OUT 1/2 SHDN 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 4OUT 4IN– 4IN+ GND 3IN+ 3IN– 3OUT 3/4 SHDN LMV358 . . . D (SOIC), DDU (VSSOP), DGK (MSOP), OR PW (TSSOP) PACKAGE (TOP VIEW) 1OUT 1IN– 1IN+ GND 1 8 2 7 3 6 4 5 VC C + 2OUT 2IN– 2IN+ LMV321 . . . DBV (SOT-23) OR DCK (SC-70) PACKAGE (TOP VIEW) 1IN+ 1 GND 2 1IN– 3 5 VC C + 4 OUT 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 1999–2013, Texas Instruments Incorporated LMV321, LMV358 LMV324, LMV324S SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Symbol (Each Amplifier) IN– – OUT IN+ + LMV324 Simplified Schematic VCC VBIAS1 VCC + – VBIAS2 + Output – VCC VCC VBIAS3 + IN- VBIAS4– IN+ + – 2 Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated LMV321, LMV358 LMV324, LMV324S www.ti.com SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) MIN (2) VCC Supply voltage VID Differential input voltage (3) VI Input voltage range (either input) Duration of output short circuit (one amplifier) to ground (4) –0.2 At or below TA = 25°C, VCC ≤ 5.5 V D package θJA Package thermal impedance (5) (6) Operating virtual junction temperature Tstg Storage temperature range (1) (2) (3) (4) (5) (6) UNIT 5.5 V ±5.5 V 5.5 V Unlimited 8 pin 97 14 pin 86 16 pin 73 DBV package 5 pin 206 DCK package 5 pin 252 DDU package 8 pin 210 DGK package 8 pin 172 8 pin 149 14 pin 113 16 pin 108 PW package TJ MAX –65 °C/W 150 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND. Differential voltages are at IN+ with respect to IN–. Short circuits from outputs to VCC can cause excessive heating and eventual destruction. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7. Recommended Operating Conditions (1) VCC Supply voltage (single-supply operation) VIH Amplifier turn-on voltage level (LMV324S) (2) VIL Amplifier turn-off voltage level (LMV324S) TA (1) (2) Operating free-air temperature MIN MAX 2.7 5.5 VCC = 2.7 V 1.7 VCC = 5 V 3.5 UNIT V V VCC = 2.7 V 0.7 VCC = 5 V 1.5 I temperature (LMV321, LMV358, LMV324, LMV321IDCK) –40 125 I temperature (LMV324S) -40 85 Q temperature –40 125 V °C All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. VIH should not be allowed to exceed VCC. Copyright © 1999–2013, Texas Instruments Incorporated Submit Documentation Feedback 3 LMV321, LMV358 LMV324, LMV324S SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 www.ti.com Electrical Characteristics VCC+ = 2.7 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX 1.7 7 UNIT VIO Input offset voltage αVIO Average temperature coefficient of input offset voltage IIB Input bias current IIO Input offset current CMRR Common-mode rejection ratio VCM = 0 to 1.7 V 50 63 dB kSVR Supply-voltage rejection ratio VCC = 2.7 V to 5 V, VO = 1 V 50 60 dB VICR Common-mode input voltage range CMRR ≥ 50 dB 0 –0.2 VO Output swing RL = 10 kΩ to 1.35 V ICC Supply current μV/°C 5 11 250 nA 5 50 nA 1.9 High level VCC – 100 1.7 VCC – 10 Low level LMV321I 60 180 80 170 LMV358I (both amplifiers) 140 340 LMV324I/LMV324SI (all four amplifiers) 260 680 V mV μA B1 Unity-gain bandwidth 1 MHz Φm Phase margin 60 deg Gm Gain margin 10 dB Vn Equivalent input noise voltage f = 1 kHz 46 nV/√Hz In Equivalent input noise current f = 1 kHz 0.17 pA/√Hz (1) CL = 200 pF mV Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the application and configuration and may vary over time. Typical values are not ensured on production material. Shutdown Characteristics (LMV324S) VCC+ = 2.7 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT ICC(SHDN) Supply current in shutdown mode (per channel) SHDN ≤ 0.6 V t(on) Amplifier turn-on time AV = 1, RL = Open (measured at 50% point) 2 μs t(off) Amplifier turn-off time AV = 1, RL = Open (measured at 50% point) 40 ns (1) 4 5 μA Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the application and configuration and may vary over time. Typical values are not ensured on production material. Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated LMV321, LMV358 LMV324, LMV324S www.ti.com SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 Electrical Characteristics VCC+ = 5 V, at specified free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA (1) MIN 25°C TYP (2) MAX 1.7 7 UNIT VIO Input offset voltage αVIO Average temperature coefficient of input offset voltage IIB Input bias current IIO Input offset current CMRR Common-mode rejection ratio VCM = 0 to 4 V 25°C 50 65 dB kSVR Supply-voltage rejection ratio VCC = 2.7 V to 5 V, VO = 1 V, VCM = 1 V 25°C 50 60 dB VICR Common-mode input voltage range CMRR ≥ 50 dB 25°C 0 –0.2 Full range Output swing High level RL = 10 kΩ to 2.5 V Low level Large-signal differential voltage gain IOS Output short-circuit current RL = 2 kΩ Sourcing, VO = 0 V Sinking, VO = 5 V LMV321I ICC Supply current LMV358I (both amplifiers) LMV324I/LMV324SI (all four amplifiers) B1 Unity-gain bandwidth Φm Gm Vn Equivalent input noise voltage In Equivalent input noise current SR Slew rate (1) (2) 25°C 15 5 CL = 200 pF 4.2 25°C VCC – 300 VCC – 400 25°C 120 VCC – 100 Full range VCC – 200 nA V 4 300 25°C mV VCC – 10 65 Full range 180 280 25°C 15 Full range 10 100 5 60 10 160 130 Full range V/mV mA 250 350 210 Full range 25°C 50 400 25°C 25°C nA VCC – 40 Full range 25°C 250 150 Full range 25°C μV/°C 500 25°C Low level AVD 5 Full range RL = 2 kΩ to 2.5 V VO 25°C Full range High level mV 9 440 μA 615 410 Full range 830 1160 25°C 1 MHz Phase margin 25°C 60 deg Gain margin 25°C 10 dB f = 1 kHz 25°C 39 nV/√Hz f = 1 kHz 25°C 0.21 pA/√Hz 25°C 1 V/μs Full range TA = –40°C to 125°C for I temperature(LMV321, LMV358, LMV324, LMV321IDCK), –40°C to 85°C for (LMV324S) and –40°C to 125°C for Q temperature. Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the application and configuration and may vary over time. Typical values are not ensured on production material. Copyright © 1999–2013, Texas Instruments Incorporated Submit Documentation Feedback 5 LMV321, LMV358 LMV324, LMV324S SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 www.ti.com Shutdown Characteristics (LMV324S) VCC+ = 5 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT ICC(SHDN) Supply current in shutdown mode (per channel) SHDN ≤ 0.6 V, TA = Full Temperature Range t(on) Amplifier turn-on time AV = 1, RL = Open (measured at 50% point) 2 μs t(off) Amplifier turn-off time AV = 1, RL = Open (measured at 50% point) 40 ns (1) 6 5 μA Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the application and configuration and may vary over time. Typical values are not ensured on production material. Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated LMV321, LMV358 LMV324, LMV324S www.ti.com SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 Typical Characteristics LMV321 FREQUENCY RESPONSE vs RESISTIVE LOAD LMV321 FREQUENCY RESPONSE vs RESISTIVE LOAD Vs = 2.7 V RL = 100 kΩ, 2 kΩ, 600 Ω 70 Phase 60 Gain − dB 40 70 90 60 75 60 2 kΩ 100 kΩ 30 105 45 Gain 20 30 600 Ω 10 100 kΩ −10 1k 10 k 100 k Frequency − Hz Figure 1. 90 600 Ω Phase 50 75 2 kΩ 60 40 100 kΩ 30 45 Gain 20 1M 0 0 −15 10 M −10 1k 15 10 k 70 100 100 Phase 0 pF 80 80 60 60 50 0 pF 60 50 100 pF −20 Vs = 5.0 V RL = 600 Ω CL = 0 pF 100 pF 500 pF 1000 pF −30 10 k −20 100 pF 0 pF 1000 pF 100 k 1M Frequency − Hz Figure 3. Copyright © 1999–2013, Texas Instruments Incorporated −40 500 pF −60 −80 −100 10 M Gain − dB Gain − dB Gain 40 40 30 500 pF Gain 20 20 0 10 −20 Vs = 5.0 V RL = 100 kΩ −10 CL = 0 pF 100 pF −20 500 pF 1000 pF −30 10 k 100 k 0 −40 0 pF 100 pF Phase Margin − Deg 0 20 −10 20 Phase Margin − Deg 500 pF 1000 pF 100 pF 1000 pF 40 40 0 −15 10 M 100 k 1M Frequency − Hz Figure 2. Phase 60 0 600 Ω LMV321 FREQUENCY RESPONSE vs CAPACITIVE LOAD 70 10 30 100 kΩ 10 15 LMV321 FREQUENCY RESPONSE vs CAPACITIVE LOAD 30 105 2 kΩ 2 kΩ 0 120 Vs = 5.0 V RL = 100 kΩ, 2 kΩ, 600 Ω Phase Margin − Deg 600 Ω 80 Phase Margin − Deg 50 120 Gain − dB 80 −60 500 pF −80 1000 pF 1M Frequency − Hz Figure 4. −100 10 M Submit Documentation Feedback 7 LMV321, LMV358 LMV324, LMV324S SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 www.ti.com Typical Characteristics (continued) STABILITY vs CAPACITIVE LOAD LMV321 FREQUENCY RESPONSE vs TEMPERATURE 120 80 Vs = 5.0 V RL = 2 kΩ 60 75 25°C 60 40 −40°C 45 Gain 20 30 85°C 25°C 10 −10 1k 10 k 100 VCC = ±2.5 V AV = +1 RL = 2 kΩ VO = 100 mVPP 10 −2 −15 10 M 100 k 1M Frequency − Hz Figure 5. −1.5 10000 2.5 V _ RL CL 2.5 V LMV324S (25% Overshoot) 100 LMV3xx (25% Overshoot) 10 −2.0 −1.5 −1 −0.5 0 Output Voltage − V Figure 7. 8 VO Capacitive Load − nF Capacitive Load − pF 1000 Submit Documentation Feedback −0.5 0 0.5 1 1.5 STABILITY vs CAPACITIVE LOAD 10000 + −1 Output Voltage − V Figure 6. STABILITY vs CAPACITIVE LOAD VI CL LMV3xx (25% Overshoot) 0 −40°C VO RL −2.5 V 1000 15 0 _ + VI Phase Margin − Deg Phase 30 2.5 V LMV324S (25% Overshoot) 90 85°C 50 Gain − dB 105 Capacitive Load − pF 70 10000 VCC = ±2.5 V RL = 2 kΩ AV = 10 VO = 100 mVPP 1000 LMV3xx (25% Overshoot) 100 134 kΩ 1 1.21 MΩ +2.5 V VCC = ±2.5 V AV = +1 RL = 1 MΩ VO = 100 mVPP 0.5 LMV324S (25% Overshoot) _ VI + VO RL CL −2.5 V 1.5 10 −2.0 −1.5 −1 −0.5 0 Output Voltage − V Figure 8. 0.5 1 1.5 Copyright © 1999–2013, Texas Instruments Incorporated LMV321, LMV358 LMV324, LMV324S www.ti.com SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 Typical Characteristics (continued) SLEW RATE vs SUPPLY VOLTAGE STABILITY vs CAPACITIVE LOAD 10000 1.500 RL = 100 kΩ 1.400 LMV3xx (25% Overshoot) 1.300 Slew Rate − V/µs Capacitive Load − nF VCC = ±2.5 V RL = 1 MΩ AV = 10 VO = 100 mVPP 1000 LMV324S (25% Overshoot) 100 134 kΩ 1.21 MΩ Gain 1.200 NSLEW 1.100 1.000 LMV3xx PSLEW 0.900 0.800 +2.5 V NSLEW _ VI VO + RL 0.700 CL −2.5 V 10 −2.0 −1.5 −1 LMV324S 0.600 PSLEW −0.5 0 0.5 1 0.500 2.5 1.5 Output Voltage − V Figure 9. 3.0 4.0 4.5 5.0 V CC − Supply Voltage − V Figure 10. SUPPLY CURRENT vs SUPPLY VOLTAGE − QUAD AMPLIFIER INPUT CURRENT vs TEMPERATURE 700 −10 VCC = 5 V VI = VCC/2 LMV3xx 600 LMV324S −20 TA = 85°C 500 Input Current − nA Supply Current − µA 3.5 TA = 25°C 400 300 TA = −40°C 200 −30 LMV3xx −40 −50 100 LMV324S 0 0 1 2 3 4 VCC − Supply Voltage − V Figure 11. Copyright © 1999–2013, Texas Instruments Incorporated 5 6 −60 −40 −30 −20 −10 0 10 20 30 40 50 60 70 80 TA − °C Figure 12. Submit Documentation Feedback 9 LMV321, LMV358 LMV324, LMV324S SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 www.ti.com Typical Characteristics (continued) SOURCE CURRENT vs OUTPUT VOLTAGE SOURCE CURRENT vs OUTPUT VOLTAGE 100 100 VCC = 2.7 V VCC = 5 V 10 Sourcing Current − mA Sourcing Current − mA 10 LMV3xx 1 LMV324S 0.1 1 LMV324S 0.1 0.01 0.01 0.001 0.001 LMV3xx 0.01 0.1 1 0.001 0.001 10 Output Voltage Referenced to VCC+ − V Figure 13. 10 100 VCC = 5 V VCC = 2.7 V 10 10 LMV324S Sinking Current − mA Sinking Current − mA 1 SINKING CURRENT vs OUTPUT VOLTAGE 100 1 LMV3xx 0.1 LMV324S 1 LMV324 0.1 0.01 0.01 0.01 0.1 1 Output Voltage Referenced to GND − V Figure 15. 10 0.1 Figure 14. SINKING CURRENT vs OUTPUT VOLTAGE 0.001 0.001 0.01 Output Voltage Referenced to VCC+ − V Submit Documentation Feedback 10 0.001 0.001 0.01 0.1 1 10 Output Voltage Referenced to GND − V Figure 16. Copyright © 1999–2013, Texas Instruments Incorporated LMV321, LMV358 LMV324, LMV324S www.ti.com SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 Typical Characteristics (continued) SHORT-CIRCUIT CURRENT vs TEMPERATURE SHORT-CIRCUIT CURRENT vs TEMPERATURE 120 300 LMV324S VCC = 5 V 270 Sinking Current − mA LMV324S VCC = 5 V 210 Sourcing Current − mA 100 240 LMV3xx VCC = 5 V 180 150 120 LMV3xx VCC = 2.7 V 90 60 LMV324S VCC = 2.7 V 80 LMV3xx VCC = 5 V 60 LMV3xx VCC = 2.7 V 40 LMV324S VCC = 2.7 V 20 30 0 −40 −30 −20 −10 0 0 10 20 30 40 50 60 70 80 90 TA − °C Figure 17. −40 −30 −20−10 0 TA − °C Figure 18. +kSVR vs FREQUENCY −kSVR vs FREQUENCY 80 90 LMV324S VCC = −5 V RL = 10 kΩ 70 LMV324S VCC = 5 V RL = 10 kΩ 80 70 60 LMV3xx LMV3xx 60 50 +k SVR − dB −k SVR − dB 10 20 30 40 50 60 70 80 90 40 30 50 40 30 20 20 10 0 100 10 0 1k 10k 100k Frequency − Hz Figure 19. Copyright © 1999–2013, Texas Instruments Incorporated 1M 100 1k 10k 100k 1M Frequency − Hz Figure 20. Submit Documentation Feedback 11 LMV321, LMV358 LMV324, LMV324S SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 www.ti.com Typical Characteristics (continued) +kSVR vs FREQUENCY −kSVR vs FREQUENCY 80 80 VCC = −2.7 V RL = 10 kΩ LMV324S 70 LMV3xx +k SVR − dB 50 40 30 50 30 20 10 10 100 1k 10k 100k 0 100 1M LMV3xx 40 20 0 1k Frequency − Hz Figure 21. 10k 6 RL = 10 kΩ THD > 5% AV = 3 RL = 10 kΩ 5 Peak Output Voltage − V OPP Output Voltage Swing − mV 60 LMV3xx LMV324S Negative Swing 1M OUTPUT VOLTAGE vs FREQUENCY 70 50 100k Frequency − Hz Figure 22. OUTPUT VOLTAGE SWING FROM RAILS vs SUPPLY VOLTAGE 40 30 20 Positive Swing LMV3xx VCC = 5 V 4 LMV324S VCC = 5 V 3 LMV3xx VCC = 2.7 V 2 LMV324S VCC = 2.7 V 1 10 0 0 2.5 3.0 3.5 4.0 VCC − Supply Voltage − V Figure 23. 12 VCC = 2.7 V RL = 10 kΩ 60 60 −kSVR − dB LMV324S 70 Submit Documentation Feedback 4.5 5.0 1k 10k 100k 1M 10M Frequency − Hz Figure 24. Copyright © 1999–2013, Texas Instruments Incorporated LMV321, LMV358 LMV324, LMV324S www.ti.com SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 Typical Characteristics (continued) OPEN-LOOP OUTPUT IMPEDANCE vs FREQUENCY CROSSTALK REJECTION vs FREQUENCY 150 110 LMV3xx VCC = 5 V Impedance − Ω 90 80 70 LMV324S VCC = 2.7 V 60 50 LMV324S VCC = 5 V 40 VCC = 5 V RL = 5 kΩ AV = 1 VO = 3 VPP 140 Crosstalk Rejection − dB 100 LMV3xx VCC = 2.7 V 130 120 110 100 30 20 1 1M 2M 3M 90 100 4M Figure 25. 1k 10k Frequency − Hz Figure 26. NONINVERTING LARGE-SIGNAL PULSE RESPONSE NONINVERTING LARGE-SIGNAL PULSE RESPONSE Frequency − Hz Input LMV3xx LMV3xx 1 V/Div 1 V/Div Input 100k LMV324S LMV324S VCC = ±2.5 V RL = 2 kΩ TA = 85°C VCC = ±2.5 V RL = 2 kΩ T = 25°C 1 µs/Div Figure 27. Copyright © 1999–2013, Texas Instruments Incorporated 1 µs/Div Figure 28. Submit Documentation Feedback 13 LMV321, LMV358 LMV324, LMV324S SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 www.ti.com Typical Characteristics (continued) NONINVERTING SMALL-SIGNAL PULSE RESPONSE NONINVERTING LARGE-SIGNAL PULSE RESPONSE Input Input LMV3xx LMV324S 50 mV/Div 1 V/Div LMV3xx LMV324S VCC = ±2.5 V RL = 2 kΩ TA = −40°C VCC = ±2.5 V RL = 2 kΩ TA = 25°C 1 µs/Div 1 µs/Div Figure 29. Figure 30. NONINVERTING SMALL-SIGNAL PULSE RESPONSE NONINVERTING SMALL-SIGNAL PULSE RESPONSE Input Input 50 mV/Div 50 mV/Div LMV3xx LMV324S LMV324S VCC = ±2.5 V RL = 2 kΩ TA = 85°C VCC = ±2.5 V RL = 2 kΩ TA = −40°C 1 µs/Div Figure 31. 14 LMV3xx Submit Documentation Feedback 1 µs/Div Figure 32. Copyright © 1999–2013, Texas Instruments Incorporated LMV321, LMV358 LMV324, LMV324S www.ti.com SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 Typical Characteristics (continued) INVERTING LARGE-SIGNAL PULSE RESPONSE INVERTING LARGE-SIGNAL PULSE RESPONSE Input Input LMV3xx 1 V/Div 1 V/Div LMV3xx LMV324S LMV324S VCC = ±2.5 V RL = 2 kΩ TA = 25°C VCC = ±2.5 V RL = 2 kΩ TA = 85°C 1 µs/Div 1 µs/Div Figure 34. Figure 33. INVERTING LARGE-SIGNAL PULSE RESPONSE INVERTING SMALL-SIGNAL PULSE RESPONSE Input Input LMV3xx 1 V/Div 50 mV/Div LMV3xx LMV324S VCC = ±2.5 V RL = 2 kΩ TA = −40°C LMV324S VCC = ±2.5 V RL = 2 kΩ TA = 25°C 1 µs/Div Figure 35. Copyright © 1999–2013, Texas Instruments Incorporated 1 µs/Div Figure 36. Submit Documentation Feedback 15 LMV321, LMV358 LMV324, LMV324S SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 www.ti.com Typical Characteristics (continued) INVERTING SMALL-SIGNAL PULSE RESPONSE Input Input LMV3xx LMV3xx 50 mV/Div 50 mV/Div INVERTING SMALL-SIGNAL PULSE RESPONSE LMV324S LMV324S VCC = ±2.5 V RL = 2 kΩ TA = −40°C VCC = ±2.5 V RL = 2 kΩ TA = 85°C 1 µs/Div 1 µs/Div Figure 38. Figure 37. INPUT CURRENT NOISE vs FREQUENCY INPUT CURRENT NOISE vs FREQUENCY 0.50 0.80 0.60 0.40 0.20 VCC = 5 V 0.45 Input Current Noise − pA/ Hz Input Current Noise − pA/ Hz VCC = 2.7 V 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.00 10 100 1k Frequency − Hz Figure 39. 16 Submit Documentation Feedback 10k 10 100 1k 10k Frequency − Hz Figure 40. Copyright © 1999–2013, Texas Instruments Incorporated LMV321, LMV358 LMV324, LMV324S www.ti.com SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 Typical Characteristics (continued) INPUT VOLTAGE NOISE vs FREQUENCY THD + N vs FREQUENCY 10.000 200 160 1.000 140 THD − % Input Voltage Noise − nV/ Hz 180 VCC = 2.7 V RL = 10 kΩ AV = 1 VO = 1 VPP 120 100 LMV3xx 0.100 80 VCC = 2.7 V 60 0.010 LMV324S 40 VCC = 5 V 0.001 20 10 100 1k 10 10k 100 10000 100000 Frequency − Hz Frequency − Hz Figure 41. Figure 42. THD + N vs FREQUENCY THD + N vs FREQUENCY 10.000 10.000 VCC = 2.7 V RL = 10 kΩ AV = 10 VO = 1 VPP 1.000 1000 1.000 VCC = 5 V RL = 10 kΩ AV = 1 VO = 1 VPP THD − % THD − % LMV324S 0.100 0.100 LMV324S LMV3xx 0.010 0.010 LMV3xx 0.001 0.001 10 100 1000 10000 Frequency − Hz Figure 43. Copyright © 1999–2013, Texas Instruments Incorporated 100000 10 100 1000 10000 100000 Frequency − Hz Figure 44. Submit Documentation Feedback 17 LMV321, LMV358 LMV324, LMV324S SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 www.ti.com Typical Characteristics (continued) THD + N vs FREQUENCY 10.000 VCC = 5 V RL = 10 kΩ AV = 10 VO = 2.5 VPP 1.000 THD − % LMV324S 0.100 0.010 LMV3xx 0.001 10 100 1000 10000 100000 Frequency − Hz Figure 45. 18 Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated LMV321, LMV358 LMV324, LMV324S www.ti.com SLOS263V – AUGUST 1999 – REVISED DECEMBER 2013 REVISION HISTORY Changes from Revision T (September 2007) to Revision U • Page Updated θJA value for DDU package. ................................................................................................................................... 3 Changes from Revision U (July 2012) to Revision V Page • Updated document to new TI data sheet format. ................................................................................................................. 1 • Added ESD warning. ............................................................................................................................................................ 2 • Removed Ordering Information table. ................................................................................................................................... 2 • Updated operating temperature range for LMV321IDCK. .................................................................................................... 3 Copyright © 1999–2013, Texas Instruments Incorporated Submit Documentation Feedback 19 PACKAGE OPTION ADDENDUM www.ti.com 31-Dec-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LMV321IDBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (RC1F ~ RC1K) LMV321IDBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (RC1F ~ RC1K) LMV321IDBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (RC1F ~ RC1K) LMV321IDBVTE4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (RC1F ~ RC1K) LMV321IDBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (RC1F ~ RC1K) LMV321IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (R3C ~ R3I ~ R3O ~ R3R ~ R3Z) LMV321IDCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (R3C ~ R3I ~ R3O ~ R3R ~ R3Z) LMV321IDCKT ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (R3C ~ R3I ~ R3R) LMV321IDCKTE4 ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (R3C ~ R3I ~ R3R) LMV321IDCKTG4 ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (R3C ~ R3I ~ R3R) LMV324ID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LMV324I LMV324IDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LMV324I LMV324IDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 LMV324I LMV324IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LMV324I LMV324IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 MV324I LMV324IPWRE ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV324I LMV324IPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV324I Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 31-Dec-2013 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LMV324QD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LMV324Q LMV324QDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LMV324Q LMV324QDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LMV324Q LMV324QDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 LMV324Q LMV324QPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV324Q LMV324QPWE4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV324Q LMV324QPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV324Q LMV324QPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV324Q LMV324QPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV324Q LMV324SI LMV324SID OBSOLETE SOIC D 16 TBD Call TI Call TI -40 to 85 LMV324SIDE4 OBSOLETE SOIC D 16 TBD Call TI Call TI -40 to 85 LMV324SIDG4 OBSOLETE SOIC D 16 TBD Call TI Call TI -40 to 85 LMV324SIDR OBSOLETE SOIC D 16 TBD Call TI Call TI -40 to 85 LMV324SIDRE4 OBSOLETE SOIC D 16 TBD Call TI Call TI -40 to 85 LMV324SIDRG4 OBSOLETE SOIC D 16 TBD Call TI Call TI -40 to 85 LMV324SI LMV324SIPWR OBSOLETE TSSOP PW 16 TBD Call TI Call TI -40 to 85 LMV324SIPWRE4 OBSOLETE TSSOP PW 16 TBD Call TI Call TI -40 to 85 LMV324SIPWRG4 OBSOLETE TSSOP PW 16 TBD Call TI Call TI -40 to 85 LMV358ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358I LMV358IDDUR ACTIVE VSSOP DDU 8 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 RA5R LMV358IDDURE4 ACTIVE VSSOP DDU 8 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 RA5R LMV358IDDURG4 ACTIVE VSSOP DDU 8 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 RA5R Addendum-Page 2 MV324SI Samples PACKAGE OPTION ADDENDUM www.ti.com 31-Dec-2013 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LMV358IDE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358I LMV358IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358I LMV358IDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (R5B ~ R5Q ~ R5R) LMV358IDGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (R5B ~ R5Q ~ R5R) LMV358IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 MV358I LMV358IDRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358I LMV358IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358I LMV358IPW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358I LMV358IPWE4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358I LMV358IPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358I LMV358IPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 MV358I LMV358IPWRE4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358I LMV358IPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358I LMV358QD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358Q LMV358QDDUR ACTIVE VSSOP DDU 8 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 RAHR LMV358QDDURE4 ACTIVE VSSOP DDU 8 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 RAHR LMV358QDDURG4 ACTIVE VSSOP DDU 8 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 RAHR LMV358QDE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358Q Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 31-Dec-2013 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LMV358QDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358Q LMV358QDGKR ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (RHO ~ RHR) LMV358QDGKRG4 ACTIVE VSSOP DGK 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (RHO ~ RHR) LMV358QDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358Q LMV358QDRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358Q LMV358QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358Q LMV358QPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358Q LMV358QPWRE4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358Q LMV358QPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 MV358Q (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 4 Samples PACKAGE OPTION ADDENDUM www.ti.com (4) 31-Dec-2013 There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF LMV324, LMV358 : • Automotive: LMV324-Q1, LMV358-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 5 PACKAGE MATERIALS INFORMATION www.ti.com 15-Mar-2014 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) LMV321IDBVR SOT-23 DBV 5 3000 178.0 9.0 LMV321IDBVR SOT-23 DBV 5 3000 180.0 LMV321IDBVT SOT-23 DBV 5 250 180.0 LMV321IDBVT SOT-23 DBV 5 250 LMV321IDCKR SC70 DCK 5 LMV321IDCKR SC70 DCK LMV321IDCKT SC70 DCK LMV321IDCKT SC70 LMV324IDR LMV324IDR W Pin1 (mm) Quadrant 3.23 3.17 1.37 4.0 8.0 Q3 9.2 3.17 3.23 1.37 4.0 8.0 Q3 9.2 3.17 3.23 1.37 4.0 8.0 Q3 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 3000 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3 5 3000 180.0 9.2 2.3 2.55 1.2 4.0 8.0 Q3 5 250 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3 DCK 5 250 180.0 9.2 2.3 2.55 1.2 4.0 8.0 Q3 SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 SOIC D 14 2500 330.0 16.8 6.5 9.5 2.3 8.0 16.0 Q1 LMV324IDRG4 SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 LMV324IPWR TSSOP PW 14 2000 330.0 12.4 7.0 5.6 1.6 8.0 12.0 Q1 LMV324IPWRG4 TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 LMV324QDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 LMV324QPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 LMV358IDDUR VSSOP DDU 8 3000 180.0 8.4 2.25 3.35 1.05 4.0 8.0 Q3 LMV358IDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV358IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 15-Mar-2014 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant LMV358IDR SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 LMV358IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LMV358IDRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 LMV358IPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 LMV358QDDUR VSSOP DDU 8 3000 180.0 8.4 2.25 3.35 1.05 4.0 8.0 Q3 LMV358QDGKR VSSOP DGK 8 2500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LMV358QDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LMV321IDBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 LMV321IDBVR SOT-23 DBV 5 3000 205.0 200.0 33.0 LMV321IDBVT SOT-23 DBV 5 250 205.0 200.0 33.0 LMV321IDBVT SOT-23 DBV 5 250 180.0 180.0 18.0 LMV321IDCKR SC70 DCK 5 3000 180.0 180.0 18.0 LMV321IDCKR SC70 DCK 5 3000 205.0 200.0 33.0 LMV321IDCKT SC70 DCK 5 250 180.0 180.0 18.0 LMV321IDCKT SC70 DCK 5 250 205.0 200.0 33.0 LMV324IDR SOIC D 14 2500 333.2 345.9 28.6 LMV324IDR SOIC D 14 2500 364.0 364.0 27.0 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 15-Mar-2014 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LMV324IDRG4 SOIC D 14 2500 333.2 345.9 28.6 LMV324IPWR TSSOP PW 14 2000 364.0 364.0 27.0 LMV324IPWRG4 TSSOP PW 14 2000 367.0 367.0 35.0 LMV324QDR SOIC D 14 2500 367.0 367.0 38.0 LMV324QPWR TSSOP PW 14 2000 367.0 367.0 35.0 LMV358IDDUR VSSOP DDU 8 3000 202.0 201.0 28.0 LMV358IDGKR VSSOP DGK 8 2500 358.0 335.0 35.0 LMV358IDR SOIC D 8 2500 340.5 338.1 20.6 LMV358IDR SOIC D 8 2500 364.0 364.0 27.0 LMV358IDR SOIC D 8 2500 367.0 367.0 35.0 LMV358IDRG4 SOIC D 8 2500 340.5 338.1 20.6 LMV358IPWR TSSOP PW 8 2000 364.0 364.0 27.0 LMV358QDDUR VSSOP DDU 8 3000 202.0 201.0 28.0 LMV358QDGKR VSSOP DGK 8 2500 358.0 335.0 35.0 LMV358QDR SOIC D 8 2500 340.5 338.1 20.6 Pack Materials-Page 3 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated