IRFB16N50K, SiHFB16N50K Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 500 RDS(on) (Ω) VGS = 10 V 0.285 Qg (Max.) (nC) 89 Qgs (nC) 27 Qgd (nC) 43 Configuration Available RoHS* • Improved Gate, Avalanche and Dynamic dV/dt COMPLIANT Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current Single • Low RDS(on) D • Lead (Pb)-free Available TO-220 APPLICATIONS G • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply S G D • High Speed Power Switching S N-Channel MOSFET • Hard Switched and High Frequency Circuits ORDERING INFORMATION Package TO-220 IRFB16N50KPbF SiHFB16N50K-E3 IRFB16N50K SiHFB16N50K Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT VDS VGS 500 ± 30 17 11 68 2.3 310 17 28 280 11 - 55 to + 150 300d 10 1.1 Drain-Source Voltage Gate-Source Voltage Continuous Drain Current VGS at 10 V Pulsed Drain Currenta Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche Currenta Repetitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque TC = 25 °C TC = 100 °C ID IDM TC = 25 °C EAS IAR EAR PD dV/dt TJ, Tstg for 10 s 6-32 or M3 screw UNIT V A W/°C mJ A mJ W V/ns °C lbf · in N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature. b. Starting TJ = 25 °C, L = 2.2 mH, RG = 25 Ω, IAS = 17 A. c. ISD ≤ 17 A, dI/dt ≤ 500 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91096 S-80567-Rev. A, 20-Jun-08 WORK-IN-PROGRESS www.vishay.com 1 IRFB16N50K, SiHFB16N50K Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 0.44 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.58 - V/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 500 V, VGS = 0 V - - 50 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 10 Ab VGS = 10 V VDS = 50 V, ID = 10 A µA - 0.285 0.350 Ω 5.7 - - S - 2210 - - 240 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss VGS = 0 V, VDS = 25 V, f = 1.0 MHz VGS = 0 V Coss eff. Total Gate Charge Qg Gate-Source Charge Qgs VGS = 10 V - 26 - VDS = 1.0 V, f = 1.0 MHz - 2620 - VDS = 400 V, f = 1.0 MHz - 63 - VDS = 0 V to 400 Vc - 120 - - 60 89 ID = 17 A, VDS = 400 Vb - 18 27 Gate-Drain Charge Qgd - 28 43 Turn-On Delay Time td(on) - 20 - - 77 - - 38 - - 30 - - - 17 - - 68 Rise Time Turn-Off Delay Time Fall Time tr td(off) VDD = 250 V, ID = 17 A, RG = 8.8 Ω, VGS = 10 Vb tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 17 A, VGS = 0 Vb TJ = 25 °C, IF = 17 A, dI/dt = 100 A/µsb - - 1.5 V - 490 730 ns - 5710 8560 nC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91096 S-80567-Rev. A, 20-Jun-08 IRFB16N50K, SiHFB16N50K Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 10 BOTTOM 1 ID, Drain-to-Source Current (Α ) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.5V 7.0V 6.5V 6.0V 5.5V 5.5V 0.1 1 10 10 T J = 25°C VDS = 100V 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 25°C 0.1 T J = 150°C 1.0 4 100 V DS, Drain-to-Source Voltage (V) 6 7 8 9 10 11 12 13 14 15 16 VGS, Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics Fig. 1 - Typical Output Characteristics 100 3.0 10 BOTTOM VGS 15V 10V 8.0V 7.5V 7.0V 6.5V 6.0V 5.5V RDS(on) , Drain-to-Source On Resistance (Normalized) TOP ID, Drain-to-Source Current (A) 5 5.5V 1 60µs PULSE WIDTH Tj = 150°C 0.1 2.5 ID = 17A VGS = 10V 2.0 1.5 1.0 0.5 0.0 0.1 1 10 100 -60 -40 -20 0 20 40 60 80 100 120 140 160 V DS, Drain-to-Source Voltage (V) T J , Junction Temperature (°C) Fig. 2 - Typical Output Characteristics Fig. 4 - Normalized On-Resistance vs. Temperature Document Number: 91096 S-80567-Rev. A, 20-Jun-08 www.vishay.com 3 IRFB16N50K, SiHFB16N50K Vishay Siliconix 100000 ISD, Reverse Drain Current (A) Crss = C gd Coss = C ds + C gd 10000 C, Capacitance(pF) 100.00 VGS = 0V, f = 1 MHZ Ciss = C gs + C gd, C ds SHORTED Ciss 1000 Coss 100 Crss 10 T J = 150°C 10.00 T J = 25°C 1.00 VGS = 0V 0.10 1 1 10 100 0.2 1000 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Source-Drain Diode Forward Voltage 1000 12.0 ID= 17A VDS= 400V VDS= 250V VDS= 100V 10.0 ID, Drain-to-Source Current (A) VGS, Gate-to-Source Voltage (V) 0.4 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 8.0 6.0 4.0 2.0 10 100µsec 1msec 1 Tc = 25°C Tj = 150°C Single Pulse 10msec 0.1 0.0 0 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 1 10 100 1000 10000 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91096 S-80567-Rev. A, 20-Jun-08 IRFB16N50K, SiHFB16N50K Vishay Siliconix RD 20 VDS VGS 15 ID, Drain Current (A) D.U.T. RG + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 10 Fig. 10a - Switching Time Test Circuit 5 VDS 90 % 0 25 50 75 100 125 150 10 % VGS T C , Case Temperature (°C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T. RG IAS 20 V tp Driver + - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91096 S-80567-Rev. A, 20-Jun-08 A Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFB16N50K, SiHFB16N50K Vishay Siliconix EAS , Single Pulse Avalanche Energy (mJ) 600 ID 7.6A 11A BOTTOM 17A TOP 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91096 S-80567-Rev. A, 20-Jun-08 IRFB16N50K, SiHFB16N50K Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91096. Document Number: 91096 S-80567-Rev. A, 20-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1