NCP4300A Dual Operational Amplifier and Voltage Reference The NCP4300A is a monolithic integrated circuit specifically designed to control the output current and voltage levels of switch mode battery chargers and power supplies. This device contains a precision 2.6 V shunt reference and two operational amplifiers. Op−Amp 1 is designed to perform voltage control and has its non−inverting input internally connected to the reference. Op−Amp 2 is designed for current control and has both inputs uncommitted. The NCP4300A offers the power converter designer a control solution that features increased precision with a corresponding reduction in system complexity and cost. This device is available in an 8−lead surface mount package. http://onsemi.com MARKING DIAGRAM 8 SO−8 D SUFFIX CASE 751 8 1 N4300 ALYWX 1 Features A L Y W X Operational Amplifier • • • • • • Low Input Offset Voltage: 0.5 mV Input Common Mode Voltage Range Includes Ground Low Supply Current: 210 µA/Op−Amp (@VCC = 5.0 V) Medium Unity Gain Bandwidth: 0.7 MHz Large Output Voltage Swing: 0 V to VCC − 1.5 V Wide Power Supply Voltage Range: 3.0 V to 35 V = Assembly Location = Wafer Lot = Year = Work Week = Option Code = A PIN CONNECTIONS Voltage Reference • Fixed Output Voltage Reference: 2.60 V • High Precision Over Temperature: 1.0% • Wide Sink Current Range: 80 µA to 80 mA Out 1 1 8 VCC In 1− 2 7 Out 2 In 1+ 3 6 In 2− GND 4 5 In 2+ Typical Applications • Battery Charger • Switch Mode Power Supply (Top View) ORDERING INFORMATION Device 1 − Output 1 VCC 7 Output 2 6 2.6 V 4 Package Shipping† SO−8 2500/Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. − + 3 GND NCP4300ADR2 + 2 Inputs 1 8 Inputs 2 5 Figure 1. Functional Block Diagram Semiconductor Components Industries, LLC, 2003 December, 2003 − Rev. 2 1 Publication Order Number: NCP4300A/D NCP4300A ABSOLUTE MAXIMUM RATINGS Symbol Value Unit Supply Voltage (VCC to GND) Rating VCC 36 V ESD Protection Voltage at any Pin (Human Body Model) VESD 2.0 K (min) V Op−Amp 1 and 2 Input Voltage Range (Pins 2, 5, 6) VIR −0.6 to VCC +0.6 V Op−Amp 2 Input Differential Voltage Range (Pins 5, 6) VIDR VCC to GND V IK 100 mA Voltage Reference Cathode Current (Pin 3) Maximum Junction Temperature TJ 150 °C Operating Ambient Temperature Range TA 0 to 105 °C Storage Temperature Range Tstg −55 to 150 °C Symbol Value Unit Thermal Resistance, Junction to Ambient RJA 155 °C/W Thermal Resistance, Junction to Case RJC 45 °C/W THERMAL CHARACTERISTICS Rating TYPICAL ELECTRICAL CHARACTERISTICS Characteristic Total Supply Current, excluding Current in the Voltage Reference VCC = 5.0 V, no load; 0°C TA 105°C Symbol Min Typ Max Unit ICC − 0.42 0.8 mA − − 0.5 − 2.0 3.0 − 7.0 − − − −50 − −150 −150 50 25 100 − − − Op−Amp 1 (Op−amp with non−inverting input connected to the internal Vref) (VCC = 5.0 V, Vout = 1.4 V, TA = 25°C, unless otherwise noted) Input Offset Voltage TA = 25°C TA = 0°C to 105°C VIO VIO/T Input Offset Voltage Temperature Coefficient TA = 0°C to 105°C Input Bias Current (Inverting input only) TA = 25°C TA = 0°C to 105°C mV IIB µV/°C nA Large Signal Voltage Gain (VCC = 15 V, RL = 2.0 kΩ, Vout = 1.4 V to 11.4 V) TA = 25°C TA = 0°C to 105°C AVOL Power Supply Rejection (VCC = 5.0 V to 30 V) PSRR 40 90 − dB Output Source Current (VCC = 15 V, Vout = 2.0 V, VID = +1.0 V) IO+ 10 16 − mA Output Sink Current (VCC = 15 V, Vout = 2.0 V, VID = −1.0 V) IO− 10 25 − mA Output Voltage Swing, High (VCC = 30 V, RL = 10 kΩ, VID = +1.0 V) TA = 25°C TA = 0°C to 105°C VOH 27 27 28 − − − Output Voltage Swing, Low (RL = 10 kΩ, VID = −1.0 V) TA = 25°C TA = 0°C to 105°C VOL − − 17 − 100 100 Slew Rate (Vin = 0.5 to 2.0 V, VCC = 15 V, RL = 2.0 kΩ, Av = 1.0, CL = 100 pF) SR 0.3 0.5 − V/µs Unity Gain Bandwidth (VCC = 30 V, RL = 2.0 kΩ, CL = 100 pF, Vin = 0.5 Vpp @ f = 70 kHz) BW 0.3 0.7 − MHz Total Harmonic Distortion (f = 1.0 kHz, AV = 10, RL = 2.0 kΩ, VCC = 30 V, Vout = 2.0 VPP) THD − 0.02 − % http://onsemi.com 2 V/mV V mV NCP4300A TYPICAL ELECTRICAL CHARACTERISTICS (continued) Characteristic Symbol Min Typ Max − − 0.5 − 2.0 3.0 − 7.0 − − − 2.0 − 30 30 − − −50 − −150 −150 − 0 to VCC −1.5 − 50 25 100 − − − 40 90 − 40 30 60 − − − Unit Op−Amp 2 (Independent op−amp) (VCC = 5.0 V, Vout = 1.4 V, TA = 25°C, unless otherwise noted) Input Offset Voltage TA = 25°C TA = 0°C to 105°C VIO VIO/T Input Offset Voltage Temperature Coefficient TA = 0°C to 105°C Input Offset Current TA = 25°C TA = 0°C to 105°C IIO Input Bias Current TA = 25°C TA = 0°C to 105°C IIB Input Common Mode Voltage Range (VCC = 0 V to 35 V) VICR Large Signal Voltage Gain (VCC = 15 V, RL = 2.0 kΩ, Vout = 1.4 V to 11.4 V) TA = 25°C TA = 0°C to 105°C AVOL Power Supply Rejection (VCC = 5.0 V to 30 V) PSRR Common Mode Rejection (VCM = 0 V to 3.5 V) TA = 25°C TA = 0°C to 105°C CMRR mV µV/°C nA nA V V/mV dB dB Output Source Current (VCC = 15 V, Vout = 2.0 V, VID = +1.0 V) IO+ 10 16 − mA Output Sink Current (VCC = 15 V, Vout = 2.0 V, VID = −1.0 V) IO− 10 25 − mA Output Voltage Swing, High (VCC = 30 V, RL = 10 kΩ, VID = +1.0 V) TA = 25°C TA = 0°C to 105°C VOH 27 27 28 − − − Output Voltage Swing, Low (RL = 10 kΩ, VID = −1.0 V) TA = 25°C TA = 0°C to 105°C VOL − − 17 − 100 100 Slew Rate (Vin = 0.5 to 3.0 V, VCC = 15 V, RL = 2.0 kΩ, Av = 1.0, CL = 100 pF) SR 0.3 0.5 − V/µs Unity Gain Bandwidth (VCC = 30 V, RL = 2.0 kΩ, CL = 100 pF, Vin = 0.5 Vpp @ f = 70 kHz) BW 0.3 0.7 − MHz Total Harmonic Distortion (f = 1.0 KHz, AV = 10, RL = 2.0 kΩ, VCC = 30 V, Vout = 2.0 VPP) THD − 0.02 − % − 2.574 2.60 2.60 − 2.626 V mV Voltage Reference Reference Voltage (IK = 10 mA) TA = 25°C TA = 0°C to 105°C Vref V Reference Input Voltage Deviation Over Full Temperature Range (IK = 10 mA, TA = 0°C to 105°C) Vref − 5.0 22 mV Minimum Cathode Current for Regulation IK(min) − 55 80 µA Dynamic Impedance TA = 25°C, IK = 1.0 to 80 mA, f 1.0 KHz TA = 0°C to 125°C, IK = 1.0 mA to 60 mA, f 1.0 KHz |ZKA| − − 0.3 − 0.5 0.6 http://onsemi.com 3 Ω TA = 25°C 60 Vref, REFERENCE VOLTAGE (V) IK, CATHODE CURRENT (mA) NCP4300A 40 20 0 −20 −1.0 0 1.0 2.620 2.610 2.600 2.590 2.580 3.0 2.0 20 0 80 100 TA, AMBIENT TEMPERATURE (°C) Figure 2. Reference Cathode Current vs. Cathode Voltage Figure 3. Reference Voltage vs. Ambient Temperature 10 IK, CATHODE CURRENT (mA) IK = 1.0 mA to 60 mA 0.35 0.3 0.25 0.2 0 50 TA = 25°C 8.0 Stable 6.0 Unstable 4.0 Stable 2.0 0 100 pF 100 1.0 F 1000 pF 10 F 100 F CL, LOAD CAPACITANCE TA, AMBIENT TEMPERATURE (°C) Figure 5. Reference Stability vs. Load Capacitance Figure 4. Reference Dynamic Impedance vs. Ambient Temperature 0 1.0 VCC = 5.0 V IIB, INPUT BIAS CURRENT (nA) VO, INPUT OFFSET VOLTAGE (mV) 60 40 VKA, CATHODE VOLTAGE (V) 0.4 |ZKA|, DYNAMIC IMPEDANCE (Ω) IK = 10 mA Op−Amp 2 0.5 0 Op−Amp 1 −0.5 VCC = 5.0 V −5.0 −10 −15 Op−Amp 2 Op−Amp 1 −20 −25 −1.0 0 20 40 60 80 0 100 20 40 60 80 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 6. Input Offset Voltage vs. Ambient Temperature Figure 7. Input Bias Current vs. Ambient Temperature http://onsemi.com 4 100 CMRR, COMMON MODE REJECTION RATIO (dB) NCP4300A 65 VCC = 3.0 V to 35 V 60 105°C 55 25°C 0°C 50 0 10 20 30 40 VCC, SUPPLY VOLTAGE (V) Figure 8. Common Mode Rejection Ratio vs. Supply Voltage DETAILED OPERATING DESCRIPTION reference is initially trimmed to a ±0.5% tolerance at TA = 25C and is guaranteed to be within ±1.0% over an ambient temperature range of 0C to 105C. INTRODUCTION Power supplies and battery chargers require precise control of output voltage and current in order to prevent catastrophic damage to the system connected. Many present day power sources contain a wide assortment of building blocks and glue devices to perform the required sensing for proper regulation. Typical feedback loop circuits may consist of a voltage and current amplifier, summing circuitry and a reference. The NCP4300A contains all of these basic functions in a manner that is easily adaptable to many of the various power source−load configurations. Voltage Sensing Operational Amplifier (Op−Amp 1) The internal Op−Amp 1 is designed to perform the voltage control function. The non−inverting input of the op−amp is connected to the precision voltage reference internally. The inverting input of the op−amp monitors the voltage information derived from the system output. As the control threshold is internally connected to the voltage reference, the voltage regulation threshold is fixed at 2.6 V. For any output voltage from 2.6 V up to the maximum limit can be configurated with an external resistor divider. The output terminal of Op−Amp 1 (pin 1) provides the error signal for output voltage control. The output pin also provides a means for external compensation. OPERATING DESCRIPTION The NCP4300A is an analog regulation control circuit that is designed to simultaneously close the voltage and current feedback loops in power supply and battery charger applications. This device can control the feedback loop in either constant−voltage (CV) or constant−current (CC) mode with smooth crossover. A concise description of the integrated circuit blocks is given in below. The functional block diagram of the IC is shown in Figure 1. Independent Operational Amplifier (Op−Amp 2) The internal Op−Amp 2 is configurated as a general purpose op−amp with all terminals available for the user. With the low offset voltage provided, 0.5 mV, this op−amp can be used for current sensing in a constant current regulator. Internal Reference An internal precision band gap reference is used to set the 2.6 V voltage threshold and current threshold setting. The http://onsemi.com 5 NCP4300A Opto Isolator 8 6 − AC Line 7 SMPS 5 Iout + + Battery Pack R1 2.6 V + Vout − 1 2 − 3 4 R3 R2 R4 R5 Current Sense The above circuit demonstrates the use of the NCP4300A in a constant−current constant−voltage switch mode battery charger application. The charging current level is set by resistors R3, R4, and R5. The reference voltage is divided down by resistors R3 and R4 to create an offset voltage at pin 6. This results in a high state at the op amp output, pin 7. As the battery pack charge current increases, a proportional increasing voltage is developed across R5 that will eventually cancel out the pin 6 offset voltage. This will cause the op amp output to sink current from the opto isolator diode, and control the SMPS block in a constant−current mode. Resistors R1 and R2 divide the battery pack voltage down to the 2.6 V reference level. As the battery pack voltage exceeds the desired programmed level, the voltage at pin 2 will become slightly greater than pin 3. This will cause the op amp output to sink current from the opto isolator diode, and control the SMPS block in a constant−voltage mode. The formulas for programming the output current and voltage are given below. Iout Vref R3 1 R5 R4 Vout R1 1 Vref R2 With : R3 30 k R4 1.2 k R5 0.1 Iout 1.0 A With : R1 4.7 k R2 3.6 k Vout 6.0 V Figure 9. Constant−Current Constant−Voltage Switch Mode Battery Charger http://onsemi.com 6 NCP4300A PACKAGE DIMENSIONS SO−8 D SUFFIX CASE 751−07 ISSUE AA NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. −X− A 8 5 0.25 (0.010) S B 1 M Y M 4 K −Y− G C N X 45 SEATING PLANE −Z− 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X S http://onsemi.com 7 J DIM A B C D G H J K M N S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 8 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 8 0.010 0.020 0.228 0.244 NCP4300A ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 8 For additional information, please contact your local Sales Representative. NCP4300A/D