Final Electrical Specifications LTC5532 300MHz to 7GHz Precision RF Power Detector with Gain and Offset Adjustment U FEATURES ■ ■ ■ ■ ■ ■ ■ ■ ■ DESCRIPTIO Temperature Compensated Internal Schottky Diode RF Detector Wide Input Frequency Range: 300MHz to 7GHz Wide Input Power Range: –32dBm to 8dBm Buffered Detector Output with External Gain Control Precision VOUT Offset Control Low Offset Voltage: 120mV ±35mV for Gain = 2x Wide VCC Range of 2.7V to 6V Low Operating Current: 500µA Available in a Low Profile (1mm) SOT-23 Package ■ ■ ■ ■ ■ The RF input voltage is peak detected using an on-chip Schottky diode. The detected voltage is buffered and supplied to the VOUT pin. 802.11a, 802.11b, 802.11g, 802.15 Multimode Mobile Phone Products Optical Data Links Wireless Data Modems Wireless and Cable Infrastructure RF Power Alarm Envelope Detector The LTC5532 operates with input power levels from –32dBm to 8dBm. , LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. U ■ The LTC®5532 is an RF power detector for RF applications operating in the 300MHz to 7GHz range. A temperature compensated Schottky diode peak detector and buffer amplifier are combined in a small ThinSOTTM package. The supply voltage range is optimized for operation from a single lithium-ion cell or 3xNiMH. The LTC5532 output buffer gain is set via external resistors. The initial offset voltage of 120mV ±35mV can be precisely adjusted using the VOS pin. U APPLICATIO S ■ August 2003 TYPICAL APPLICATIO Output Voltage vs RF Input Power 3600 33pF RF INPUT 1 LTC5532 VCC 6 RFIN VCC 100pF 2 VOS REFERENCE 3 GND VOUT 5 RA VOS VM 5532 TA01 4 RB 0.1µF VOUT OUTPUT VOLTAGE (mV) 300MHz to 7GHz RF Power Detector VCC = 3.6V 3200 TA = 25°C GAIN = 2 2800 VOS = 0V 1000MHz 300MHz 2400 4000MHz 2000 1600 1200 800 2000MHz 3000MHz 400 5000MHz 6000MHz 7000MHz 0 –32 –27 –22 –17 –12 –7 –2 RF INPUT POWER (dBm) 3 8 5532 TA02 5532i Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 1 LTC5532 U W W W ABSOLUTE AXI U RATI GS U W U PACKAGE/ORDER I FOR ATIO (Note 1) VCC, VOUT, VM, VOS .......................................... –0.3V to 6.5V RFIN Voltage .........................................(VCC ± 1V) to 7V IVOUT ...................................................................... 5mA Operating Temperature Range (Note 2) .. – 40°C to 85°C Maximum Junction Temperature ......................... 125°C Storage Temperature Range ................ – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C ORDER PART NUMBER TOP VIEW RFIN 1 6 VCC GND 2 5 VOUT VOS 3 4 VM LTC5532ES6 S6 PART MARKING S6 PACKAGE 6-LEAD PLASTIC TSOT-23 TJMAX = 125°C, θJA = 250°C/W LTAFS Consult LTC Marketing for parts specified with wider operating temperature ranges. ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VCC = 3.6V, RF Input Signal is Off, RA = RB = 1k, VOS = 0V unless otherwise noted. PARAMETER CONDITIONS MIN VCC Operating Voltage ● TYP 2.7 MAX 6 UNITS V IVCC Operating Current IVOUT = 0mA ● 0.5 0.7 mA VOUT VOL (No RF Input) RLOAD = 2k, VOS = 0V ● 85 100 to 140 155 mV VOUT Output Current VOUT = 1.75V, VCC = 2.7V, ∆VOUT < 10mV ● 2 4 mA VOUT Bandwidth CLOAD = 33pF, RLOAD = 2k (Note 4) VOUT Load Capacitance (Note 6) 2 VOUT Slew Rate VRFIN = 1V Step, CLOAD = 33pF, Total RLOAD = 2k (Note 3) 3 V/µs VOUT Noise VCC = 3V, Noise BW = 1.5MHz, 50Ω RF Input Termination, 50Ω AC Output Termination 1 mVP-P VOS Voltage Range VOS Input Current VOS = 1V VM Voltage Range VM Input Current VM = 3.6V RFIN Input Frequency Range MHz 33 ● ● 0 ● ● ● pF 1 V –0.5 0.5 µA 0 VCC -1. 8 V –0.5 0.5 µA 300 to 7000 MHz –32 to 8 dBm RFIN Input Power Range RF Frequency = 300MHz to 7GHz (Note 5, 6) VCC = 2.7V to 6V RFIN AC Input Resistance F = 1000MHz, Pin = –25dBm 220 Ω RFIN Input Shunt Capacitance F = 1000MHz, Pin = –25dBm 0.65 pF Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls. Note 3: The rise time at VOUT is measured between 1.3V and 2.3V. Note 4: Bandwidth is calculated based on the 10% to 90% rise time equation: BW = 0.35/rise time. Note 5: RF performance is tested at 1800MHz Note 6: Guaranteed by design. 5532i 2 LTC5532 U W TYPICAL PERFOR A CE CHARACTERISTICS Output Voltage vs Supply Voltage (RF Input Signal Off) (RLOAD = 20k) Supply Current vs Supply Voltage (RF Input Signal Off) Output Delay vs RF Input Power 500 130 1000 VCC = 3.6V TA = 25°C VOS = 0V GAIN = 2 TA = 25°C 120 TA = –40°C 115 800 480 TA = –40°C 460 OUTPUT DELAY (ns) TA = 85°C 125 SUPPLY CURRENT (mA) TA = 25°C TA = 85°C 440 110 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 5.5 420 2.5 6.0 50% SWITCHING 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 3600 VCC = 3.6V VOUT OUTPUT VOLTAGE (mV) 2800 TA = –40°C 2000 TA = 25°C 1600 1200 800 TA = 85°C 400 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 3600 2800 TA = –40°C 2400 2000 TA = 25°C 1600 1200 800 TA = 85°C 3600 VCC = 3.6V 3200 VOUT OUTPUT VOLTAGE (mV) 2000 1600 TA = 25°C 1200 800 400 TA = 85°C 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 4 8 5532 G04 TA = 25°C 1600 1200 800 TA = 85°C 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 8 3600 TA = –40°C TA = 25°C 1200 800 VCC = 3.6V 3200 2000 1600 8 5532 G03 VCC = 3.6V 2800 2400 4 Typical Detector Characteristics, 5000MHz, Gain = 2, VOS = 0V TA = 85°C 400 4 2000 400 3200 TA = –40°C TA = –40°C 2400 Typical Detector Characteristics, 4000MHz, Gain = 2, VOS = 0V Typical Detector Characteristics, 3000MHz, Gain = 2, VOS = 0V 2400 2800 5532 G02 5532 G01 2800 VCC = 3.6V 3200 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 8 10 Typical Detector Characteristics, 2000MHz, Gain = 2, VOS = 0V VCC = 3.6V 400 4 0 –5 5 RF INPUT POWER (dBm) 5532 G23 3200 2400 –10 Typical Detector Characteristics, 1000MHz, Gain = 2, VOS = 0V 3200 3600 6.0 VOUT OUTPUT VOLTAGE (mV) 3600 5.5 5532 G2a Typical Detector Characteristics, 300MHz, Gain = 2, VOS = 0V VOUT OUTPUT VOLTAGE (mV) 90% SWITCHING 400 0 3.0 5532 G1a VOUT OUTPUT VOLTAGE (mV) 600 200 VOUT OUTPUT VOLTAGE (mV) VOUT OUTPUT VOLTAGE (mV) VOS = 0V GAIN = 2 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 2800 2400 2000 1600 8 5532 G05 TA = 25°C 1200 800 400 4 TA = –40°C TA = 85°C 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 4 8 5532 G06 5532i 3 LTC5532 U W TYPICAL PERFOR A CE CHARACTERISTICS Typical Detector Characteristics, 6000MHz, Gain = 2, VOS = 0V Typical Detector Characteristics, 7000MHz, Gain = 2, VOS = 0V 3600 VCC = 3.6V 3600 VCC = 3.6V 2800 TA = –40°C 2400 2000 1600 TA = 25°C 1200 800 TA = 85°C 400 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 4 2800 2400 TA = –40°C 2000 1600 TA = 25°C 1200 800 400 3 5532 G07 2000 TA = 25°C 1200 800 TA = 85°C 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 2000 1600 800 VOS = 1V VOS = 0.5V 4 8 5532 G12 5532 G11 2800 2400 2000 1600 1200 800 VOS = 1V VOS = 0.5V 400 VOS = 0.2V VOS = 0V 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 8 8 VCC = 3.6V 3200 TA = 25°C 2400 1200 4 3600 2800 400 4 TA = 85°C 800 VOUT vs RF Input Power and VOS, 1000MHz, Gain = 2 VOUT OUTPUT VOLTAGE (mV) VOUT OUTPUT VOLTAGE (mV) VOUT OUTPUT VOLTAGE (mV) 2400 400 1200 5532 G10 VCC = 3.6V 3200 TA = 25°C TA = –40°C TA = 25°C 1600 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 8 3600 3200 1600 2000 VOUT vs RF Input Power and VOS, 300MHz, Gain = 2 VCC = 3.6V 2800 2400 5532 G08 Typical Detector Characteristics, 1000MHz, Gain = 4, VOS = 0V 3600 TA = –40°C 2800 400 TA = 85°C 0 –32 –27 –22 –17 –12 –7 –2 RF INPUT POWER (dBm) 8 VCC = 3.6V 3200 3200 VOUT OUTPUT VOLTAGE (mV) VOUT OUTPUT VOLTAGE (mV) 3200 Typical Detector Characteristics, 300MHz, Gain = 4, VOS = 0V VOUT OUTPUT VOLTAGE (mV) 3600 (RLOAD = 20k) VOS = 0.2V VOS = 0V 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 4 8 5532 G13 VOUT vs RF Input Power, 300MHz and 1000MHz, Gain = 2 and 4, VOS = 0V 3600 VOUT OUTPUT VOLTAGE (mV) VCC = 3.6V 3200 TA = 25°C 2800 300MHz GAIN = 4 1000MHz GAIN = 4 2400 2000 1600 1200 800 300MHz GAIN = 2 400 1000MHz GAIN = 2 0 –32 –28 –24 –20 –16 –12 –8 –4 0 RF INPUT POWER (dBm) 4 8 5532 G14 5532i 4 LTC5532 U W TYPICAL PERFOR A CE CHARACTERISTICS 1000 VCC = 3.6V GAIN = 2 VOS = 0V VOUT SLOPE (mV/dB) VOUT SLOPE (mV/dB) 1000 VOUT Slope vs RF Input Power at 1GHz 100 TA = –40°C TA = 85°C 10 1000 VCC = 3.6V GAIN = 2 VOS = 0V 100 TA = –40°C TA = 85°C 10 TA = 25°C 1 –30 –25 –20 –15 –10 –5 RF INPUT POWER (dBm) 1 –30 5 0 TA = 85°C –25 TA = 25°C –20 –15 –10 –5 RF INPUT POWER (dBm) 1 –30 5 0 TA = 85°C –25 –20 –15 –10 –5 RF INPUT POWER (dBm) VOUT Slope vs RF Input Power at 5GHz 1000 VCC = 3.6V GAIN = 2 VOS = 0V 100 TA = –40°C TA = 85°C 10 VCC = 3.6V GAIN = 2 VOS = 0V 100 TA = –40°C TA = 85°C 10 TA = 25°C TA = 25°C –20 –15 –10 –5 RF INPUT POWER (dBm) 1 –30 5 0 –25 TA = 25°C –20 –15 –10 –5 RF INPUT POWER (dBm) 5 0 5532 G18 1000 VOUT SLOPE (mV/dB) 100 TA = –40°C TA = 85°C –25 –20 –15 –10 –5 RF INPUT POWER (dBm) –20 –15 –10 –5 RF INPUT POWER (dBm) 0 5 5532 G20 VCC = 3.6V GAIN = 2 VOS= 0V 100 TA = –40°C 10 TA = 85°C TA = 25°C TA = 25°C 1 –30 –25 VOUT Slope vs RF Input Power at 7GHz VCC = 3.6V GAIN = 2 VOS = 0V 10 1 –30 5532 G19 VOUT Slope vs RF Input Power at 6GHz 1000 5 0 5532 G17 VOUT SLOPE (mV/dB) VOUT SLOPE (mV/dB) TA = –40°C VOUT SLOPE (mV/dB) VOUT SLOPE (mV/dB) 1000 100 –25 TA = –40°C 10 VOUT Slope vs RF Input Power at 4GHz VCC = 3.6V GAIN = 2 VOS = 0V 1 –30 100 5532 G16 VOUT Slope vs RF Input Power at 3GHz 10 VCC = 3.6V GAIN = 2 VOS = 0V TA = 25°C 5532 G15 1000 VOUT Slope vs RF Input Power at 2GHz VOUT SLOPE (mV/dB) VOUT Slope vs RF Input Power at 300MHz (RLOAD = 20k) 0 5 5532 G21 1 –30 –25 –20 –15 –10 –5 RF INPUT POWER (dBm) 0 5 5532 G22 5532i 5 LTC5532 U W TYPICAL PERFOR A CE CHARACTERISTICS RFIN Input Impedance (Pin = 0dBm, VCC = 3.6V, TA = 25°C) FREQUENCY (GHz) RESISTANCE (Ω) REACTANCE (Ω) 0.30 290.45 –136.22 0.50 234.41 –162.54 0.70 178.25 –170.53 0.90 137.31 –159.89 1.10 109.17 –147.57 1.30 86.30 –136.18 1.50 68.65 –121.74 1.70 57.48 –107.60 1.90 49.79 – 96.72 2.10 43.56 – 86.70 2.30 38.67 –77.91 2.50 34.82 –70.13 2.70 31.68 – 62.86 2.90 29.13 – 56.01 3.10 27.17 – 49.83 3.30 25.73 – 44.24 3.50 24.56 – 39.74 3.70 23.18 – 35.35 3.90 22.31 – 30.62 4.10 20.73 –26.88 4.30 19.88 –22.31 4.50 19.40 –18.23 4.70 19.05 –14.25 4.90 19.08 –10.21 5.10 19.55 – 6.30 5.30 20.85 – 2.84 5.50 21.94 –1.49 5.70 20.60 – 0.07 5.90 19.29 2.99 6.10 18.69 6.61 6.30 18.53 10.39 6.50 18.74 14.35 6.70 19.79 17.91 6.90 19.75 20.77 7.00 19.99 22.47 S11 Forward Reflection Impedance 0.3000GHz-7.000GHz 5508 TA03 5532i 6 LTC5532 U W TYPICAL PERFOR A CE CHARACTERISTICS RFIN Input Impedance (Pin = –25dBm, VCC = 3.6V, TA = 25°C) FREQUENCY (GHz) RESISTANCE (Ω) REACTANCE (Ω) 0.30 216.45 –76.47 0.50 190.63 –98.28 0.70 161.98 –112.03 0.90 133.17 –111.53 1.10 113.08 –109.05 1.30 94.55 –107.08 1.50 75.33 – 98.50 1.70 63.52 – 88.19 1.90 55.19 – 80.05 2.10 48.64 –72.23 2.30 43.73 – 64.81 2.50 39.71 – 58.31 2.70 36.47 – 52.27 2.90 33.69 – 46.77 3.10 31.61 – 41.25 3.30 29.78 –36.61 3.50 28.27 –32.39 3.70 26.63 –28.12 3.90 26.12 –23.97 4.10 24.20 –20.75 4.30 23.28 –16.69 4.50 22.60 –12.77 4.70 22.21 – 9.08 4.90 22.15 –5.24 5.10 22.61 –1.58 5.30 23.90 1.53 5.50 24.97 2.62 5.70 23.51 4.00 5.90 22.25 6.94 6.10 21.57 10.62 6.30 21.43 14.02 6.50 21.69 17.77 6.70 22.68 21.24 6.90 22.81 24.21 7.00 23.07 25.56 S11 Forward Reflection Impedance 0.3000GHz-7.000GHz 5508 TA04 5532i 7 LTC5532 U U U PI FU CTIO S RFIN (Pin 1): RF Input Voltage. Referenced to VCC. A coupling capacitor must be used to connect to the RF signal source. The frequency range is 300MHz to 7GHz. This pin has an internal 500Ω termination, an internal Schottky diode detector and a peak detector capacitor. VOS (Pin 3): VOUT Offset Voltage Adjustment. From 0V to 120mV, VOUT does not change. Above 120mV, VOUT will track VOS. VM (Pin 4): Negative Input to Buffer Amplifier. VOUT (Pin 5): Detector Output. GND (Pin 2): Ground. VCC (Pin 6): Power Supply Voltage, 2.7V to 6V. VCC should be bypassed appropriately with ceramic capacitors. W BLOCK DIAGRA RFSOURCE 12pF TO 200pF (DEPENDING ON APPLICATION) VCC 6 + BUFFER 500Ω RFIN 5 VOUT 4 VM 3 VOS – 1 500Ω BIAS 31k 25pF 24k 50µA GND 2 50µA + RF DET + 80k – – 80k 120mV + 5532 BD 5532i 8 LTC5532 U W U U APPLICATIO S I FOR ATIO reference voltage. When the internal detector output voltage (which is connected to the positive input of the buffer amplifier) exceeds the external voltage on VM, VOUT will switch high. Operation The LTC5532 RF detector integrates several functions to provide RF power detection over frequencies ranging from 300MHz to 7GHz. These functions include an internal frequency compensated buffer amplifier, an RF Schottky diode peak detector and a level shift amplifier to convert the RF input signal to DC. The LTC5532 has both gain setting and voltage offset adjustment capabilities. The VOS input controls the DC input voltage to the buffer amplifier. VOS must be connected to ground if the DC output voltage is not to be changed. The buffer is initially trimmed to 120mV (Gain = 2x) with VOS connected to ground. Buffer Amplifier The VOS pin is used to change the initial VOUT starting voltage. This function, in combination with gain adjustment enables the LTC5532 output to span the input range of a variety of analog-to-digital converters. VOUT will not change until VOS exceeds 120mV. The starting voltage at VOUT for VOS >120mV is: The output buffer amplifier is capable of supplying typically 4mA into a load. The negative terminal VM is brought out to a pin for gain selection. External resistors connected between VOUT and VM (RA) and VM to ground (RB) will set the gain of this amplifier. Gain = 1 + RA/RB VOUT = 0.5 • VOS • Gain The amplifier is unity gain stable; however a minimum gain of two is recommended to improve low output voltage accuracy. The amplifier has a bandwidth of 2MHz with a gain of 2. For increased gain applications, the bandwidth is reduced according to the formula: where gain is the output buffer gain. For a buffer gain of 2x, VOUT will exactly track VOS above 120mV. RF Detector The internal RF Schottky diode peak detector and level shift amplifier converts the RF input signal to a low frequency signal. The detector demonstrates excellent efficiency and linearity over a wide range of input power. The Schottky diode is biased at about 55µA and drives a 25pF internal peak detector capacitor. Bandwidth = 4MHz/(Gain) = 4MHz • RB/(RA + RB) A capacitor can be placed across the feedback resistor RA to shape the frequency response. In addition, the amplifier can be used as a comparator. VM can be connected to a Demo Board Schematic VCC 2.7V TO 6V RFIN C4 39pF 1 R1 (OPT) 2 3 OFFSET ADJUSTMENT C1 0.1µF LTC5532ES6 RFIN VCC GND VOUT VOS VM 6 C2 100pF 5 4 C3 (OPT) VOUT R2 10k 1% R3 10k 1% GND 5532 DB 5532i 9 LTC5532 U W U U APPLICATIO S I FOR ATIO Applications control, using the LTC5532 with a capacitive tap to the power amplifier. A 0.5pF capacitor (C1) followed by a 200Ω resistor (R1) form a coupling circuit with about 20dB loss at 900MHz referenced to the LTC5532 RF input pin. In the actual product implementation, component values for the capacitive tap may be different depending on parts placement, PCB parasitics and parameters of the antenna. The LTC5532 can be used as a self-standing signal strength measuring receiver for a wide range of input signals from –32dBm to 8dBm for frequencies from 300MHz to 7GHz. The LTC5532 can be used as a demodulator for AM and ASK modulated signals with data rates up to 2MHz. Depending on specific application needs, the RSSI output can be split between two branches, providing AC-coupled data (or audio) output and DC-coupled RSSI output for signal strength measurements and AGC. The LTC5532 can be configured as a comparator for RF power detection and RF power alarms. The characterization data includes a plot of the LTC5532 output delay in response to a positive input step of varying RF level. The LTC5532 can be used for RF power detection and control. Figure 1 is an example of a transmitter power 0.1µF LTC5532ES6 1 2 OFFSET ADJUSTMENT 3 RFIN VCC GND VOUT VOS VM Li-Ion TX PA MODULE R1 200Ω 1% C1 0.5pF 5% CELL BAND 6 DIPLEXER 5 4 PCS BAND R2 R3 MOBILE PHONE DSP VPC BSE 5532 F01 Figure 1. Mobile Phone TX Power Control Application Diagram with a Capacitive Tap 5532i 10 LTC5532 U PACKAGE DESCRIPTIO S6 Package 6-Lead Plastic TSOT-23 (Reference LTC DWG # 05-08-1636) 0.62 MAX 2.90 BSC (NOTE 4) 0.95 REF 1.22 REF 3.85 MAX 2.62 REF 1.4 MIN 2.80 BSC 1.50 – 1.75 (NOTE 4) PIN ONE ID RECOMMENDED SOLDER PAD LAYOUT PER IPC CALCULATOR 0.30 – 0.45 6 PLCS (NOTE 3) 0.95 BSC 0.80 – 0.90 0.20 BSC 0.01 – 0.10 1.00 MAX DATUM ‘A’ 0.30 – 0.50 REF 0.09 – 0.20 (NOTE 3) 1.90 BSC S6 TSOT-23 0302 NOTE: 1. DIMENSIONS ARE IN MILLIMETERS 2. DRAWING NOT TO SCALE 3. DIMENSIONS ARE INCLUSIVE OF PLATING 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR 5. MOLD FLASH SHALL NOT EXCEED 0.254mm 6. JEDEC PACKAGE REFERENCE IS MO-193 5532i 11 LTC5532 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC1757A RF Power Controller Single/Dual Band GSM/DCS/GPRS Mobile Phones LTC1758 RF Power Controller Single/Dual Band GSM/DCS/GPRS Mobile Phones LTC1957 RF Power Controller Single/Dual Band GSM/DCS/GPRS Mobile Phones LTC4400 RF Power Controller in SOT-23 Package Single/Dual Band GSM/DCS/GPRS Phones, 45dB Dynamic Range, 450kHz Loop BW LTC4401 RF Power Controller in SOT-23 Package Single/Dual Band GSM/DCS/GPRS Phones, 45dB Dynamic Range, 250kHz Loop BW LTC4403 RF Power Controller for EDGE/TDMA Multiband GSM/GPRS/EDGE Mobile Phones LT5500 1.8GHz to 2.7GHz RF Front End Dual LNA gain Setting +13.5dB/–14dB at 2.5GHz, Double-Balanced Mixer, 1.8V ≤ VSUPPLY ≤ 5.25V LT5502 400MHz Quadrature Demodulator with RSSI 1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain, 90dB RSSI Range LT5503 1.2GHz to 2.7GHz Direct IQ Modulator and Up Converting Mixer 1.8V to 5.25V Supply, Four-Step RF Power Control, 120MHz Modulation Bandwidth LT5504 800MHz to 2.7GHz RF Measuring Receiver 80dB Dynamic Range, Temperature Compensated, 2.7V to 5.5V Supply LTC5505 300MHz to 3.5GHz RF Power Detector >40dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply LT5506 500MHz Quadrature IF Demodulator with VGA 1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB Linear Power Gain LTC5507 100kHz to 1GHz RF Power Detector 48dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply LTC5508 300MHz to 7GHz RF Power Detector SC70 Package LTC5509 300MHz to 3GHz RF Power Detector SC70 Package LT5511 High Signal Level Up Converting Mixer RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer LT5512 High Signal Level Down Converting Mixer DC-3GHz, 20dBm IIP3, Integrated LO Buffer LTC5515 1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator 20dBm IIP3, Integrated LO Quadrature Generator LTC5516 0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator 21.5dBm IIP3, Integrated LO Quadrature Generator 5532i 12 Linear Technology Corporation LT/TP 0803 1K • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LINEAR TECHNOLOGY CORPORATION 2003