MUN5312DW1, NSBC124EPDXV6, NSBC124EPDP6 Complementary Bias Resistor Transistors R1 = 22 kW, R2 = 22 kW http://onsemi.com NPN and PNP Transistors with Monolithic Bias Resistor Network This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. Features Simplifies Circuit Design Reduces Board Space Reduces Component Count S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant PIN CONNECTIONS (3) (2) R1 (1) R2 Q1 Q2 R2 (4) R1 (5) (6) MARKING DIAGRAMS 6 SOT−363 CASE 419B 12 M G G 1 MAXIMUM RATINGS (TA = 25C both polarities Q1 (PNP) & Q2 (NPN), unless otherwise noted) Rating Max Unit Collector-Base Voltage VCBO 50 Vdc Collector-Emitter Voltage VCEO 50 Vdc IC 100 mAdc Input Forward Voltage VIN(fwd) 40 Vdc Input Reverse Voltage VIN(rev) 10 Vdc Collector Current − Continuous Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1 SOT−963 CASE 527AD 12/R M G 12 M G G 1 MG G = Specific Device Code = Date Code* = Pb-Free Package (Note: Microdot may be in either location) ORDERING INFORMATION Package Shipping† MUN5312DW1T1G, SMUN5312DW1T1G SOT−363 3,000/Tape & Reel MUN5312DW1T2G SOT−363 3,000/Tape & Reel NSBC124EPDXV6T1G SOT−563 4,000/Tape & Reel NSBC124EPDXV6T5G SOT−563 8,000/Tape & Reel NSBC124EPDP6T5G SOT−963 8,000/Tape & Reel Device SOT−563 CASE 463A R Symbol *Date Code orientation may vary depending upon manufacturing location. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Semiconductor Components Industries, LLC, 2012 September, 2012 − Rev. 0 1 Publication Order Number: DTC124EP/D MUN5312DW1, NSBC124EPDXV6, NSBC124EPDP6 THERMAL CHARACTERISTICS Characteristic Symbol Max Unit 187 256 1.5 2.0 mW MUN5312DW1 (SOT−363) ONE JUNCTION HEATED Total Device Dissipation TA = 25C (Note 1) (Note 2) (Note 1) (Note 2) Derate above 25C Thermal Resistance, Junction to Ambient (Note 1) (Note 2) PD RqJA mW/C 670 490 C/W 250 385 2.0 3.0 mW MUN5312DW1 (SOT−363) BOTH JUNCTION HEATED (Note 3) Total Device Dissipation TA = 25C (Note 1) (Note 2) (Note 1) (Note 2) Derate above 25C Thermal Resistance, Junction to Ambient (Note 1) (Note 2) Thermal Resistance, Junction to Lead (Note 1) (Note 2) Junction and Storage Temperature Range PD RqJA RqJL TJ, Tstg 493 325 188 208 mW/C C/W C/W −55 to +150 C 357 2.9 mW mW/C NSBC124EPDXV6 (SOT−563) ONE JUNCTION HEATED Total Device Dissipation TA = 25C Derate above 25C (Note 1) (Note 1) Thermal Resistance, Junction to Ambient (Note 1) PD RqJA 350 C/W NSBC124EPDXV6 (SOT−563) BOTH JUNCTION HEATED (Note 3) Total Device Dissipation TA = 25C Derate above 25C (Note 1) (Note 1) Thermal Resistance, Junction to Ambient (Note 1) Junction and Storage Temperature Range PD RqJA TJ, Tstg 500 4.0 250 mW mW/C C/W −55 to +150 C 231 269 1.9 2.2 MW NSBC124EPDP6 (SOT−963) ONE JUNCTION HEATED Total Device Dissipation TA = 25C (Note 4) (Note 5) (Note 4) (Note 5) Derate above 25C Thermal Resistance, Junction to Ambient (Note 4) (Note 5) PD RqJA 540 464 mW/C C/W NSBC124EPDP6 (SOT−963) BOTH JUNCTION HEATED (Note 3) Total Device Dissipation TA = 25C (Note 4) (Note 5) (Note 4) (Note 5) Derate above 25C Thermal Resistance, Junction to Ambient (Note 4) (Note 5) Junction and Storage Temperature Range 1. 2. 3. 4. 5. PD RqJA TJ, Tstg FR−4 @ Minimum Pad. FR−4 @ 1.0 1.0 Inch Pad. Both junction heated values assume total power is sum of two equally powered channels. FR−4 @ 100 mm2, 1 oz. copper traces, still air. FR−4 @ 500 mm2, 1 oz. copper traces, still air. http://onsemi.com 2 339 408 2.7 3.3 369 306 −55 to +150 MW mW/C C/W C MUN5312DW1, NSBC124EPDXV6, NSBC124EPDP6 ELECTRICAL CHARACTERISTICS (TA = 25C both polarities Q1 (PNP) & Q2 (NPN), unless otherwise noted) Symbol Characteristic Min Typ Max − − 100 − − 500 − − 0.2 50 − − 50 − − 60 100 − − − 0.25 − − 1.2 1.2 − − − − 1.9 2.0 − − − − 0.2 4.9 − − Unit OFF CHARACTERISTICS Collector-Base Cutoff Current (VCB = 50 V, IE = 0) ICBO Collector-Emitter Cutoff Current (VCE = 50 V, IB = 0) ICEO Emitter-Base Cutoff Current (VEB = 6.0 V, IC = 0) IEBO Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0) V(BR)CBO Collector-Emitter Breakdown Voltage (Note 6) (IC = 2.0 mA, IB = 0) V(BR)CEO nAdc nAdc mAdc Vdc Vdc ON CHARACTERISTICS hFE DC Current Gain (Note 6) (IC = 5.0 mA, VCE = 10 V) Collector-Emitter Saturation Voltage (Note 6) (IC = 10 mA, IB = 0.3 mA) VCE(sat) Input Voltage (Off) (VCE = 5.0 V, IC = 100 mA) (NPN) (VCE = 5.0 V, IC = 100 mA) (PNP) Vi(off) Input Voltage (On) (VCE = 0.2 V, IC = 5.0 mA) (NPN) (VCE = 0.2 V, IC = 5.0 mA) (PNP) Vi(on) Output Voltage (On) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW) VOL Output Voltage (Off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW) VOH Input Resistor R1 15.4 22 28.6 Resistor Ratio R1/R2 0.8 1.0 1.2 6. Pulsed Condition: Pulse Width = 300 ms, Duty Cycle 2%. PD, POWER DISSIPATION (mW) 400 350 300 250 200 (1) SOT−363; 1.0 1.0 Inch Pad (2) SOT−563; Minimum Pad (3) SOT−963; 100 mm2, 1 oz. Copper Trace (1) (2) (3) 150 100 50 0 −50 −25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE (C) Figure 1. Derating Curve http://onsemi.com 3 V Vdc Vdc Vdc Vdc kW MUN5312DW1, NSBC124EPDXV6, NSBC124EPDP6 1 1000 IC/IB = 10 25C 25C hFE, DC CURRENT GAIN VCE(sat), COLLECTOR−EMITTER VOLTAGE (V) TYPICAL CHARACTERISTICS − NPN TRANSISTOR MUN5312DW1, NSBC124EPDXV6 TA = −25C 0.1 75C 0.01 0.001 20 Figure 2. VCE(sat) vs. IC Figure 3. DC Current Gain IC, COLLECTOR CURRENT (mA) 100 f = 10 kHz IE = 0 A TA = 25C 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0 100 IC, COLLECTOR CURRENT (mA) 10 75C 0.1 0.01 VO = 5 V 0 2 4 6 Vin, INPUT VOLTAGE (V) VO = 0.2 V 10 75C 25C 1 0 10 8 Figure 5. Output Current vs. Input Voltage TA = −25C 0.1 TA = −25C 1 Figure 4. Output Capacitance 100 25C 10 0.001 50 20 30 40 VR, REVERSE VOLTAGE (V) Vin, INPUT VOLTAGE (V) Cob, OUTPUT CAPACITANCE (pF) 10 1 IC, COLLECTOR CURRENT (mA) 3.2 0 100 50 40 TA = 75C −25C 10 0 VCE = 10 V 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 6. Input Voltage vs. Output Current http://onsemi.com 4 50 10 MUN5312DW1, NSBC124EPDXV6, NSBC124EPDP6 10 IC/IB = 10 TA = −25C 25C 1 75C 0.1 0.01 40 20 60 IC, COLLECTOR CURRENT (mA) 0 80 hFE, DC CURRENT GAIN (NORMALIZED) VCE(sat), COLLECTOR−EMITTER VOLTAGE (V) TYPICAL CHARACTERISTICS − PNP TRANSISTOR MUN5312DW1, NSBC124EPDXV6 1000 VCE = 10 V TA = 75C 100 10 10 1 Figure 8. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) f = 10 kHz lE = 0 A TA = 25C 7 6 5 4 3 2 1 0 0 10 10 TA = −25C 1 0.1 0.01 VO = 5 V 0 1 Figure 9. Output Capacitance 100 25C 75C 0.001 50 20 30 40 VR, REVERSE VOLTAGE (V) Vin, INPUT VOLTAGE (V) Cob, OUTPUT CAPACITANCE (pF) 10 8 2 3 4 5 6 7 Vin, INPUT VOLTAGE (V) VO = 0.2 V TA = −25C 25C 75C 1 0 8 9 Figure 10. Output Current vs. Input Voltage 10 0.1 100 IC, COLLECTOR CURRENT (mA) Figure 7. VCE(sat) vs. IC 9 25C −25C 10 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 11. Input Voltage vs. Output Current http://onsemi.com 5 50 10 MUN5312DW1, NSBC124EPDXV6, NSBC124EPDP6 1 1000 IC/IB = 10 VCE = 10 V hFE, DC CURRENT GAIN VCE(sat), COLLECTOR−EMITTER VOLTAGE (V) TYPICAL CHARACTERISTICS − NPN TRANSISTOR NSBC124EPDP6 25C 0.1 150C −55C 0.01 0 30 10 20 40 IC, COLLECTOR CURRENT (mA) −55C 10 1 10 IC, COLLECTOR CURRENT (mA) 0.1 Figure 12. VCE(sat) vs. IC 100 IC, COLLECTOR CURRENT (mA) f = 10 kHz IE = 0 A TA = 25C 2.0 1.6 1.2 0.8 0.4 0 10 20 30 40 VR, REVERSE VOLTAGE (V) 150C 25C 1 0.1 VO = 5 V 0.01 50 −55C 10 0 Figure 14. Output Capacitance 2 4 6 10 12 8 Vin, INPUT VOLTAGE (V) 25C 10 −55C 150C 1 VO = 0.2 V 0.1 0 14 Figure 15. Output Current vs. Input Voltage 100 Vin, INPUT VOLTAGE (V) Cob, OUTPUT CAPACITANCE (pF) 100 Figure 13. DC Current Gain 2.4 0 150C 100 1 50 25C 10 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 16. Input Voltage vs. Output Current http://onsemi.com 6 50 16 MUN5312DW1, NSBC124EPDXV6, NSBC124EPDP6 1 1000 25C 25C hFE, DC CURRENT GAIN IC/IB = 10 150C 0.1 −55C 0.01 0 10 20 30 40 100 −55C 10 10 1 100 Figure 17. VCE(sat) vs. IC Figure 18. DC Current Gain 100 f = 10 kHz IE = 0 A TA = 25C 5 4 3 2 1 10 20 30 40 −55C 10 25C 1 0.1 VO = 5 V 0.01 50 150C 0 2 4 6 8 10 12 VR, REVERSE VOLTAGE (V) Vin, INPUT VOLTAGE (V) Figure 19. Output Capacitance Figure 20. Output Current vs. Input Voltage 100 Vin, INPUT VOLTAGE (V) 0 0.1 IC, COLLECTOR CURRENT (mA) 6 0 1 50 IC, COLLECTOR CURRENT (mA) 7 Cob, OUTPUT CAPACITANCE (pF) 150C VCE = 10 V IC, COLLECTOR CURRENT (mA) VCE(sat), COLLECTOR−EMITTER VOLTAGE (V) TYPICAL CHARACTERISTICS − PNP TRANSISTOR NSBC124EPDP6 25C 10 −55C 150C 1 0.1 VO = 0.2 V 0 10 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 21. Input Voltage vs. Output Current http://onsemi.com 7 50 14 MUN5312DW1, NSBC124EPDXV6, NSBC124EPDP6 PACKAGE DIMENSIONS SC−88/SC70−6/SOT−363 CASE 419B−02 ISSUE W NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419B−01 OBSOLETE, NEW STANDARD 419B−02. D e 6 5 DIM A A1 A3 b C D E e L HE 4 HE −E− 1 2 3 b 6 PL 0.2 (0.008) M E M MILLIMETERS MIN NOM MAX 0.80 0.95 1.10 0.00 0.05 0.10 0.20 REF 0.10 0.21 0.30 0.10 0.14 0.25 1.80 2.00 2.20 1.15 1.25 1.35 0.65 BSC 0.10 0.20 0.30 2.00 2.10 2.20 A3 C A A1 L SOLDERING FOOTPRINT* 0.50 0.0197 0.65 0.025 0.65 0.025 0.40 0.0157 1.9 0.0748 SCALE 20:1 mm Ǔ ǒinches SC−88/SC70−6/SOT−363 *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 8 INCHES NOM MAX 0.037 0.043 0.002 0.004 0.008 REF 0.004 0.008 0.012 0.004 0.005 0.010 0.070 0.078 0.086 0.045 0.049 0.053 0.026 BSC 0.004 0.008 0.012 0.078 0.082 0.086 MIN 0.031 0.000 MUN5312DW1, NSBC124EPDXV6, NSBC124EPDP6 PACKAGE DIMENSIONS SOT−563, 6 LEAD CASE 463A ISSUE F D −X− 6 5 1 e 2 A 4 E −Y− 3 b NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. L DIM A b C D E e L HE HE C 5 PL 6 0.08 (0.003) M X Y MILLIMETERS MIN NOM MAX 0.50 0.55 0.60 0.17 0.22 0.27 0.08 0.12 0.18 1.50 1.60 1.70 1.10 1.20 1.30 0.5 BSC 0.10 0.20 0.30 1.50 1.60 1.70 SOLDERING FOOTPRINT* 0.3 0.0118 0.45 0.0177 1.35 0.0531 1.0 0.0394 0.5 0.5 0.0197 0.0197 SCALE 20:1 mm Ǔ ǒinches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 9 INCHES NOM MAX 0.021 0.023 0.009 0.011 0.005 0.007 0.062 0.066 0.047 0.051 0.02 BSC 0.004 0.008 0.012 0.059 0.062 0.066 MIN 0.020 0.007 0.003 0.059 0.043 MUN5312DW1, NSBC124EPDXV6, NSBC124EPDP6 PACKAGE DIMENSIONS SOT−963 CASE 527AD ISSUE E D X Y 6 5 4 1 2 3 HE E e 6X 6X BOTTOM VIEW DIM A b C D E e HE L L2 C SIDE VIEW TOP VIEW 6X L2 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. A L MILLIMETERS MIN NOM MAX 0.34 0.37 0.40 0.10 0.15 0.20 0.07 0.12 0.17 0.95 1.00 1.05 0.75 0.80 0.85 0.35 BSC 0.95 1.00 1.05 0.19 REF 0.05 0.10 0.15 b 0.08 X Y RECOMMENDED MOUNTING FOOTPRINT* 6X 6X 0.35 0.20 PACKAGE OUTLINE 1.20 0.35 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 10 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative DTC124EP/D