Cirrus CS42448-DQZR 108 db, 192 khz 6-in, 8-out codec Datasheet

CS42448
108 dB, 192 kHz 6-In, 8-Out CODEC
FEATURES
GENERAL DESCRIPTION
 Six 24-bit A/D, Eight 24-bit D/A Converters
The CS42448 CODEC provides six multi-bit analog-todigital and eight multi-bit digital-to-analog delta-sigma
converters. The CODEC is capable of operation with either differential or single-ended inputs and outputs, in a
64-pin LQFP package.
 ADC Dynamic Range
–
–
105 dB Differential
102 dB Single-Ended
Six fully differential, or single-ended, inputs are available on stereo ADC1, ADC2, and ADC3. When
operating in Single-ended Mode, an internal MUX before ADC3 allows selection from up to four single-ended
inputs. Digital volume control is provided for each ADC
channel, with selectable overflow detection.
 DAC Dynamic Range
–
–
108 dB Differential
105 dB Single-Ended
 ADC/DAC THD+N
–
–
-98 dB Differential
-95 dB Single-Ended
All eight DAC channels provide digital volume control
and can operate with differential or single-ended
outputs.
 Compatible with Industry-Standard Time
An auxiliary serial input is available for an additional two
channels of PCM data.
Division Multiplexed (TDM) Serial Interface
 System Sampling Rates up to 192 kHz
The CS42448 is available in a 64-pin LQFP package in
Commercial (-10° to +70°) and Automotive (-40° to
+105°) grades. The CDB42448 Customer Demonstration board is also available for device evaluation and
implementation suggestions. Please refer to “Ordering
Information” on page 64 for complete ordering
information.
 Programmable ADC High-Pass Filter for DC
Offset Calibration
 Logarithmic Digital Volume Control
 I²C® & SPI™ Host Control Port
The CS42448 is ideal for audio systems requiring wide
dynamic range, negligible distortion and low noise, such
as A/V receivers, DVD receivers, and automotive audio
systems.
 Supports Logic Levels Between 5 V and 1.8 V
 Popguard® Technology
Interrupt
Reset
Auxilliary Serial
Audio Input
Input Master
Clock
Analog Supply =
3.3 V to 5 V
Internal Voltage
Reference
ADC Overflow
& Clock Error
Interrupt
Volume
Controls
Digital
Filters
High Pass
Filter
High Pass
Filter
ΔΣ
Modulators
External
Mute Control
Multibit
DAC1-4 and
Analog Filters
Digital
Filters
Multibit
Oversampling
ADC1&2
Digital
Filters
Multibit
Oversampling
ADC3
Mute
Control
8
8
Differential or
Single-Ended
Outputs
4
4
4:2*
Serial Audio
Output
Level Translator
Serial Audio
Input
Digital Supply =
3.3 V to 5 V
Register
Configuration
PCM or TDM Serial
Interface
I2C/SPI
Software Mode
Control Data
Level Translator
Control Port & Serial
Audio Port Supply =
1.8 V to 5 V
2
Differential or
Single-Ended
Analog Inputs
2
*Optional MUX allows selection from up to 4 single-ended inputs.
http://www.cirrus.com
Copyright © Cirrus Logic, Inc. 2006
(All Rights Reserved)
NOVEMBER '06
DS648F2
CS42448
TABLE OF CONTENTS
1. PIN DESCRIPTIONS
.................................................................................................................... 6
1.1 Digital I/O Pin Characteristics ........................................................................................................... 8
2. TYPICAL CONNECTION DIAGRAM
............................................................................................. 9
3. CHARACTERISTICS AND SPECIFICATIONS..................................................................................... 10
RECOMMENDED OPERATING CONDITIONS ................................................................................... 10
ABSOLUTE MAXIMUM RATINGS ....................................................................................................... 10
ANALOG INPUT CHARACTERISTICS (COMMERCIAL) .................................................................... 11
ANALOG INPUT CHARACTERISTICS (AUTOMOTIVE) ..................................................................... 12
ADC DIGITAL FILTER CHARACTERISTICS ....................................................................................... 13
ANALOG OUTPUT CHARACTERISTICS (COMMERCIAL) ................................................................ 14
ANALOG OUTPUT CHARACTERISTICS (AUTOMOTIVE) ................................................................. 15
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE .............................. 17
SWITCHING SPECIFICATIONS - ADC/DAC PORT ............................................................................ 18
SWITCHING CHARACTERISTICS - AUX PORT ................................................................................. 20
SWITCHING SPECIFICATIONS - CONTROL PORT - I²C MODE ....................................................... 21
SWITCHING SPECIFICATIONS - CONTROL PORT - SPI FORMAT ................................................. 22
DC ELECTRICAL CHARACTERISTICS .............................................................................................. 23
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS ..................................................... 23
4. APPLICATIONS .................................................................................................................................... 24
4.1 Overview ......................................................................................................................................... 24
4.2 Analog Inputs .................................................................................................................................. 24
4.2.1 Line-Level Inputs ................................................................................................................... 24
4.2.2 ADC3 Analog Input ................................................................................................................ 25
4.2.3 High-Pass Filter and DC Offset Calibration ........................................................................... 26
4.3 Analog Outputs ............................................................................................................................... 26
4.3.1 Initialization ............................................................................................................................ 26
4.3.2 Output Transient Control ....................................................................................................... 28
4.3.3 Popguard ............................................................................................................................... 28
4.3.3.1 Power-Up ................................................................................................................... 28
4.3.3.2 Power-Down .............................................................................................................. 28
4.3.4 Mute Control .......................................................................................................................... 28
4.3.5 Line-Level Outputs and Filtering ............................................................................................ 29
4.3.6 Digital Volume Control ........................................................................................................... 29
4.3.7 De-Emphasis Filter ................................................................................................................ 29
4.4 System Clocking ............................................................................................................................. 30
4.5 CODEC Digital Interface Formats ................................................................................................... 31
4.5.1 I²S .......................................................................................................................................... 32
4.5.2 Left-Justified .......................................................................................................................... 32
4.5.3 Right-Justified ........................................................................................................................ 32
4.5.4 OLM #1 .................................................................................................................................. 32
4.5.5 OLM #2 .................................................................................................................................. 33
4.5.6 TDM ....................................................................................................................................... 33
4.5.7 I/O Channel Allocation ........................................................................................................... 34
4.6 AUX Port Digital Interface Formats ................................................................................................. 34
4.6.1 I²S .......................................................................................................................................... 34
4.6.2 Left-Justified .......................................................................................................................... 34
4.7 Control Port Description and Timing ............................................................................................... 35
4.7.1 SPI Mode ............................................................................................................................... 35
4.7.2 I²C Mode ................................................................................................................................ 36
4.8 Interrupts ......................................................................................................................................... 37
4.9 Recommended Power-Up Sequence ............................................................................................. 37
4.10 Reset and Power-Up .................................................................................................................... 38
2
DS648F2
CS42448
4.11 Power Supply, Grounding, and PCB Layout ................................................................................. 38
5. REGISTER QUICK REFERENCE ......................................................................................................... 39
6. REGISTER DESCRIPTION ................................................................................................................... 41
6.1 Memory Address Pointer (MAP) ..................................................................................................... 41
6.1.1 Increment (INCR) .................................................................................................................. 41
6.1.2 Memory Address Pointer (MAP[6:0]) ..................................................................................... 41
6.2 Chip I.D. and Revision Register (Address 01h) (Read Only) .......................................................... 41
6.2.1 Chip I.D. (CHIP_ID[3:0]) ........................................................................................................ 41
6.2.2 Chip Revision (REV_ID[3:0]) ................................................................................................. 41
6.3 Power Control (Address 02h) ......................................................................................................... 42
6.3.1 Power Down ADC Pairs (PDN_ADCX) ................................................................................. 42
6.3.2 Power Down DAC Pairs (PDN_DACX) ................................................................................. 42
6.3.3 Power Down (PDN) ............................................................................................................... 42
6.4 Functional Mode (Address 03h) ...................................................................................................... 43
6.4.1 DAC Functional Mode (DAC_FM[1:0]) .................................................................................. 43
6.4.2 ADC Functional Mode (ADC_FM[1:0]) .................................................................................. 43
6.4.3 MCLK Frequency (MFREQ[2:0]) ........................................................................................... 43
6.5 Interface Formats (Address 04h) .................................................................................................... 44
6.5.1 Freeze Controls (FREEZE) ................................................................................................... 44
6.5.2 Auxiliary Digital Interface Format (AUX_DIF) ........................................................................ 44
6.5.3 DAC Digital Interface Format (DAC_DIF[2:0]) ....................................................................... 44
6.5.4 ADC Digital Interface Format (ADC_DIF[2:0]) ....................................................................... 45
6.6 ADC Control & DAC De-Emphasis (Address 05h) ......................................................................... 45
6.6.1 ADC1-2 High-Pass Filter Freeze (ADC1-2_HPF FREEZE) .................................................. 45
6.6.2 ADC3 High Pass Filter Freeze (ADC3_HPF FREEZE) ......................................................... 46
6.6.3 DAC De-Emphasis Control (DAC_DEM) ............................................................................... 46
6.6.4 ADC1 Single-Ended Mode (ADC1 SINGLE) ......................................................................... 46
6.6.5 ADC2 Single-Ended Mode (ADC2 SINGLE) ......................................................................... 46
6.6.6 ADC3 Single-Ended Mode (ADC3 SINGLE) ......................................................................... 47
6.6.7 Analog Input Ch. 5 Multiplexer (AIN5_MUX) ......................................................................... 47
6.6.8 Analog Input Ch. 6 Multiplexer (AIN6_MUX) ......................................................................... 47
6.7 Transition Control (Address 06h) .................................................................................................... 47
6.7.1 Single Volume Control (DAC_SNGVOL, ADC_SNGVOL) .................................................... 47
6.7.2 Soft Ramp and Zero Cross Control (ADC_SZC[1:0], DAC_SZC[1:0]) .................................. 48
6.7.3 Auto-Mute (AMUTE) .............................................................................................................. 48
6.7.4 Mute ADC Serial Port (MUTE ADC_SP) ............................................................................... 49
6.8 DAC Channel Mute (Address 07h) ................................................................................................. 49
6.8.1 Independent Channel Mute (AOUTX_MUTE) ....................................................................... 49
6.9 AOUTX Volume Control (Addresses 08h- 0Fh) .......................................................................... 49
6.9.1 Volume Control (AOUTX_VOL[7:0]) ...................................................................................... 49
6.10 DAC Channel Invert (Address 10h) .............................................................................................. 50
6.10.1 Invert Signal Polarity (INV_AOUTX) .................................................................................... 50
6.11 AINX Volume Control (Address 11h-16h) ..................................................................................... 50
6.11.1 AINX Volume Control (AINX_VOL[7:0]) .............................................................................. 50
6.12 ADC Channel Invert (Address 17h) .............................................................................................. 50
6.12.1 Invert Signal Polarity (INV_AINX) ........................................................................................ 50
6.13 When enabled, these bits will invert the signal polarity of their respective channels.Status Control
(Address 18h) ....................................................................................................................................... 51
6.13.1 Interrupt Pin Control (INT[1:0]) ............................................................................................ 51
6.14 Status (Address 19h) (Read Only) ................................................................................................ 51
6.14.1 DAC CLOCK ERROR (DAC_CLK ERROR) ........................................................................ 51
6.14.2 ADC CLOCK ERROR (ADC_CLK ERROR) ........................................................................ 51
6.14.3 ADC Overflow (ADCX_OVFL) ............................................................................................. 51
6.15 Status Mask (Address 1Ah) .......................................................................................................... 52
DS648F2
3
CS42448
6.16 MUTEC Pin Control (Address 1Bh) .............................................................................................. 52
6.17 MUTEC Polarity Select (MCPOLARITY) ...................................................................................... 52
6.18 MUTE CONTROL ACTIVE (MUTEC ACTIVE) ............................................................................. 52
7. EXTERNAL FILTERS............................................................................................................................ 53
7.1 ADC Input Filter .............................................................................................................................. 53
7.1.1 Passive Input Filter ................................................................................................................ 54
7.1.2 Passive Input Filter w/Attenuation ......................................................................................... 54
7.2 DAC Output Filter ........................................................................................................................... 56
8. ADC FILTER PLOTS............................................................................................................................. 57
9. DAC FILTER PLOTS............................................................................................................................. 59
10. PARAMETER DEFINITIONS............................................................................................................... 61
11. REFERENCES..................................................................................................................................... 62
12. PACKAGE INFORMATION................................................................................................................. 63
12.1 Thermal Characteristics ............................................................................................................... 63
13. ORDERING INFORMATION ............................................................................................................... 64
14. REVISION HISTORY ........................................................................................................................... 64
LIST OF FIGURES
Figure 1.Typical Connection Diagram ......................................................................................................... 9
Figure 2.Output Test Circuit for Maximum Load ....................................................................................... 16
Figure 3.Maximum Loading ....................................................................................................................... 16
Figure 4.Serial Audio Interface Slave Mode Timing .................................................................................. 18
Figure 5.TDM Serial Audio Interface Timing ............................................................................................. 18
Figure 6.Serial Audio Interface Master Mode Timing ................................................................................ 19
Figure 7.Serial Audio Interface Slave Mode Timing .................................................................................. 20
Figure 8.Control Port Timing - I²C Format ................................................................................................. 21
Figure 9.Control Port Timing - SPI Format ................................................................................................ 22
Figure 10.Full-Scale Input ......................................................................................................................... 25
Figure 11.ADC3 Input Topology ................................................................................................................ 25
Figure 12.Audio Output Initialization Flow Chart ....................................................................................... 27
Figure 13.Full-Scale Output ...................................................................................................................... 29
Figure 14.De-Emphasis Curve .................................................................................................................. 30
Figure 15.I²S Format ................................................................................................................................. 32
Figure 16.Left Justified Format ................................................................................................................. 32
Figure 17.Right Justified Format ............................................................................................................... 32
Figure 18.One-Line Mode #1 Format ........................................................................................................ 32
Figure 19.One Line Mode #2 Format ........................................................................................................ 33
Figure 20.TDM Format .............................................................................................................................. 33
Figure 21.AUX I²S Format ......................................................................................................................... 34
Figure 22.AUX Left-Justified Format ......................................................................................................... 35
Figure 23.Control Port Timing in SPI Mode .............................................................................................. 36
Figure 24.Control Port Timing, I²C Write ................................................................................................... 36
Figure 25.Control Port Timing, I²C Read ................................................................................................... 37
Figure 26.Single to Differential Active Input Filter ..................................................................................... 53
Figure 27.Single-Ended Active Input Filter ................................................................................................ 53
Figure 28.Passive Input Filter ................................................................................................................... 54
Figure 29.Passive Input Filter w/Attenuation ............................................................................................. 55
Figure 30.Active Analog Output Filter ....................................................................................................... 56
Figure 31.Passive Analog Output Filter .................................................................................................... 56
Figure 32.SSM Stopband Rejection .......................................................................................................... 57
Figure 33.SSM Transition Band ................................................................................................................ 57
Figure 34.SSM Transition Band (Detail) ................................................................................................... 57
Figure 35.SSM Passband Ripple .............................................................................................................. 57
4
DS648F2
CS42448
Figure 36.DSM Stopband Rejection .......................................................................................................... 57
Figure 37.DSM Transition Band ................................................................................................................ 57
Figure 38.DSM Transition Band (Detail) ................................................................................................... 58
Figure 39.DSM Passband Ripple .............................................................................................................. 58
Figure 40.QSM Stopband Rejection ......................................................................................................... 58
Figure 41.QSM Transition Band ................................................................................................................ 58
Figure 42.QSM Transition Band (Detail) ................................................................................................... 58
Figure 43.QSM Passband Ripple .............................................................................................................. 58
Figure 44.SSM Stopband Rejection .......................................................................................................... 59
Figure 45.SSM Transition Band ................................................................................................................ 59
Figure 46.SSM Transition Band (detail) .................................................................................................... 59
Figure 47.SSM Passband Ripple .............................................................................................................. 59
Figure 48.DSM Stopband Rejection .......................................................................................................... 59
Figure 49.DSM Transition Band ................................................................................................................ 59
Figure 50.DSM Transition Band (detail) .................................................................................................... 60
Figure 51.DSM Passband Ripple .............................................................................................................. 60
Figure 52.QSM Stopband Rejection ......................................................................................................... 60
Figure 53.QSM Transition Band ................................................................................................................ 60
Figure 54.QSM Transition Band (detail) .................................................................................................... 60
Figure 55.QSM Passband Ripple .............................................................................................................. 60
LIST OF TABLES
Table 1. I/O Power Rails ............................................................................................................................. 8
Table 2. Single-Speed Mode Common Frequencies ................................................................................ 30
Table 3. Double-Speed Mode Common Frequencies ............................................................................... 30
Table 4. Quad-Speed Mode Common Frequencies ................................................................................. 30
Table 5. I²S, LJ, RJ Clock Ratios .............................................................................................................. 31
Table 6. OLM#1 Clock Ratios ................................................................................................................... 31
Table 7. OLM#2 Clock Ratios ................................................................................................................... 31
Table 8. TDM Clock Ratios ....................................................................................................................... 31
Table 9. Serial Audio Interface Channel Allocations ................................................................................. 34
Table 10. MCLK Frequency Settings for I²S, Left and Right Justified Interface Formats .......................... 43
Table 12. DAC Digital Interface Formats .................................................................................................. 44
Table 11. MCLK Frequency Settings for TDM & OLM Interface Formats ................................................. 44
Table 13. ADC Digital Interface Formats .................................................................................................. 45
Table 14. Example AOUT Volume Settings .............................................................................................. 49
Table 15. Example AIN Volume Settings .................................................................................................. 50
DS648F2
5
CS42448
AIN3-
AIN3+
AIN4-
AIN4+
FILT+_DAC
VA
FILT+_ADC
AIN5-/AIN5B
AGND
AIN5+/AIN5A
AIN6-/AIN6B
AIN6+/AIN6A
INT
DGND
SCL/CCLK
SDA/CDOUT
1. PIN DESCRIPTIONS
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
AD0/CS
1
48
AD1/CDIN
2
47
AIN2-
RST
3
46
AIN1+
AIN2+
VLC
4
45
AIN1-
ADC_LRCK
5
44
VA
VD
6
43
VQ
DGND
7
42
AGND
VLS
8
41
AOUT8-
ADC_SCLK
9
40
AOUT8+
42448
MCLK
10
39
AOUT7+
ADC_SDOUT3
11
38
AOUT7-
ADC_SDOUT2
12
37
AOUT6-
ADC_SDOUT1
13
36
AOUT6+
DAC_SDIN4
14
35
MUTEC
DAC_SDIN3
15
34
AOUT5+
DAC_SDIN2
16
33
AOUT5-
Pin Name
AOUT4-
AOUT4+
AOUT3-
AOUT3+
AOUT2-
AOUT2+
AOUT1+
AOUT1-
VD
DGND
AUX_SDIN
AUX_SCLK
AUX_LRCK
DAC_LRCK
DAC_SCLK
DAC_SDIN1
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#
Pin Description
AD0/CS
1
Address Bit [0]/ Chip Select (Input) - Chip address bit in I²C Mode. Control signal used to select
the chip in SPI Mode.
AD1/CDIN
2
Address Bit [1]/ SPI Data Input (Input) - Chip address bit in I²C Mode. Input for SPI data.
RST
3
Reset (Input) - The device enters a low power mode and all internal registers are reset to their
default settings when low.
VLC
4
Control Port Power (Input) - Determines the required signal level for the control port. See “Digital
I/O Pin Characteristics” on page 8.
ADC_LRCK
5
ADC Left/Right Clock (Input/Output) - Determines which channel, Left or Right, is currently
active on the ADC serial audio data line. Signals the start of a new TDM frame in the TDM digital
interface format.
VD
6, 24 Digital Power (Input) - Positive terminal of the power supply for the digital section.
DGND
7, 23,
Digital Ground (Input) - Ground terminal of the power supply for the digital section.
62
VLS
8
Serial Port Interface Power (Input) - Determines the required signal level for the serial interfaces. See “Digital I/O Pin Characteristics” on page 8.
ADC_SCLK
9
ADC Serial Clock (Input/Output) - Serial clock for the ADC serial audio interface. Input frequency
must be 256xFs in the TDM digital interface format.
MCLK
10
Master Clock (Input) - Clock source for the delta-sigma modulators and digital filters.
ADC_SDOUT1
ADC_SDOUT2
ADC_SDOUT3
13
12
11
Serial Audio Data Output (Output) - Outputs for two’s complement serial audio data.
6
DS648F2
CS42448
DAC_SDIN1
DAC_SDIN2
DAC_SDIN3
DAC_SDIN4
17
16
15
14
DAC Serial Audio Data Input (Input) - Input for two’s complement serial audio data.
DAC_SCLK
18
DAC Serial Clock (Input/Output) - Serial clock for the DAC serial audio interface. Input frequency
must be 256xFs in the TDM digital interface format.
DAC_LRCK
19
DAC Left/Right Clock (Input/Output) - Determines which channel, Left or Right, is currently
active on the DAC serial audio data line. Signals the start of a new TDM frame in the TDM digital
interface format.
AUX_LRCK
20
Auxiliary Left/Right Clock (Output) - Determines which channel, Left or Right, is currently active
on the Auxiliary serial audio data line. Derived from the ADC serial port and equals Fs.
AUX_SCLK
21
Auxiliary Serial Clock (Output) - Serial clock for the Auxiliary serial audio interface.
AUX_SDIN
22
Auxiliary Serial Input (Input) - Provides an additional serial input for two’s complement serial
audio data. Used only in the TDM digital interface format.
AOUT1 +,AOUT2 +,AOUT3 +,AOUT4 +,AOUT5 +,AOUT6 +,AOUT7 +,AOUT8 +,-
26,25
27,28
30,29
31,32 Differential Analog Output (Output) - The full-scale analog output level is specified in the Analog
34,33 Characteristics table. Each leg of the differential outputs may also be used single-ended.
36,37
39,38
40,41
AGND
42,56 Analog Ground (Input) - Ground reference for the analog section
VQ
43
Quiescent Voltage (Output) - Filter connection for internal quiescent reference voltage.
VA
44,53
AIN1 +,AIN2 +,AIN3 +,AIN4 +,AIN5 +,AIN6 +,-
46,45
48,47
Differential Analog Input (Input) - Signals are presented differentially or single-ended to the
50,49
delta-sigma modulators. The full-scale input level is specified in the Analog Characteristics speci52,51
fication table. See below for a description of AIN5-AIN6 in Single-Ended Mode.
58,57
60,59
AIN5 A,B
AIN6 A,B
Single-Ended Analog Input (Input) - When stereo ADC3 is in Single-Ended Mode, an internal
58,57 analog mux allows selection between 2 channels for both analog inputs AIN5 and AIN6 (see Sec60,59 tion 4.2.3 on page 26 for details). The unused leg of each input is internally connected to common
mode. The full-scale input level is specified in the Analog Characteristics table.
Analog Power (Input) - Positive power supply for the analog section. See “Digital I/O Pin Characteristics” on page 8.
MUTEC
35
Mute Control (Output) - Used as a control for external mute circuits to prevent the clicks and
pops that can occur in any single supply system.
FILT+_DAC
54
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits of the DAC.
FILT+_ADC
55
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits of the ADC.
INT
61
Interrupt (Output) - Signals either an ADC overflow condition has occurred in one or more of the
ADC inputs, or a clocking error has occurred in the DAC/ADC as specified in the Interrupt register.
SCL/CCLK
63
Serial Control Port Clock (Input) - Serial clock for the control port interface.
SDA/CDOUT
64
Serial Control Data I/O (Input/Output) - Input/Output for I²C data. Output for SPI data.
DS648F2
7
CS42448
1.1
Digital I/O Pin Characteristics
Various pins on the CS42448 are powered from separate power supply rails. The logic level for each input
should adhere to the corresponding power rail and should not exceed the maximum ratings.
Power
Rail
Pin Name
I/O
Driver
Receiver
VLC
RST
Input
-
1.8 V - 5.0 V, CMOS
SCL/CCLK
Input
-
1.8 V - 5.0 V, CMOS, with Hysteresis
SDA/CDOUT
Input/
Output
1.8 V - 5.0 V, CMOS/Open Drain
1.8 V - 5.0 V, CMOS, with Hysteresis
VLS
VA
AD0/CS
Input
-
1.8 V - 5.0 V, CMOS
AD1/CDIN
Input
-
1.8 V - 5.0 V, CMOS
INT
Output
1.8 V - 5.0 V, CMOS/Open Drain
-
MCLK
Input
-
1.8 V - 5.0 V, CMOS
ADC_LRCK
Input/
Output
1.8 V - 5.0 V, CMOS
1.8 V - 5.0 V, CMOS
ADC_SCLK
Input/
Output
1.8 V - 5.0 V, CMOS
1.8 V - 5.0 V, CMOS
ADC_SDOUT1-3
Input/
Output
1.8 V - 5.0 V, CMOS
-
DAC_LRCK
Input/
Output
1.8 V - 5.0 V, CMOS
1.8 V - 5.0 V, CMOS
DAC_SCLK
Input/
Output
1.8 V - 5.0 V, CMOS
1.8 V - 5.0 V, CMOS
DAC_SDIN1-4
Input
-
1.8 V - 5.0 V, CMOS
AUX_LRCK
Output
1.8 V - 5.0 V, CMOS
-
AUX_SCLK
Output
1.8 V - 5.0 V, CMOS
-
AUX_SDIN
Input
-
1.8 V - 5.0 V, CMOS
MUTEC
Output
3.3 V - 5.0 V, CMOS
-
Table 1. I/O Power Rails
8
DS648F2
CS42448
2. TYPICAL CONNECTION DIAGRAM
+3.3 V to +5 V
10 µF
0.1 µF
+
0.1 µF
0.01 µF
0.01 µF
6
VD
8
VA
VLS
0.01 µF
22
21
20
CS5341
A/D
Converter
AUX_SDIN
AUX_SCLK
AUX_LRCK
CS8416
Receiver
S/PDIF
OSC
RMCK
optional
connection
10
9
5
+1.8 V
to +5.0 V
13
12
11
Digital Audio
Processor
18
19
17
16
15
14
61
3
MicroController
**
2 kΩ
+1.8 V
to +5 V
0.1 µF
0.01 µF
0.1 µF
VA
AOUT1+
AOUT1-
26
25
Analog Output Filter 2
AOUT2+
AOUT2-
27
28
Analog Output Filter2
AOUT3+
AOUT3-
30
29
Analog Output Filter 2
AOUT4+
AOUT4-
31
32
Analog Output Filter 2
AOUT5+
AOUT5-
34
33
Analog Output Filter 2
AOUT6+
AOUT6-
36
37
Analog Output Filter 2
AOUT7+
AOUT7-
39
38
Analog Output Filter 2
AOUT8+
AOUT8-
40
41
Analog Output Filter 2
MUTEC
35
AIN1+
46
AIN1-
45
AIN2+
48
AIN2-
47
DAC_SCLK
AIN3+
50
DAC_LRCK
DAC_SDIN1
DAC_SDIN2
DAC_SDIN3
DAC_SDIN4
AIN3-
49
ADC_SCLK
ADC_LRCK
ADC_SDOUT1
ADC_SDOUT2
ADC_SDOUT3
AIN4+
52
AIN4-
51
AIN5+/AIN5A
58
AIN5-/AIN5B
57
INT
RST
AIN6+/AIN6A
SCL/CCLK
64
SDA/CDOUT
Mute
Drive
(optional)
2
AD1/CDIN
1
AD0/CS
AIN6-/AIN6B
60
59
**
2 kΩ
0.1 µF
+3.3 V to +5 V
10 µF
MCLK
63
4
+
44
53
24
VD
0.01 µF
VL
C
** Resistors are required
for I2C control port
operation
VQ
FILT+_ADC
FILT+_DAC
Input
Filter 1
Analog Input 1
Input
Filter 1
Analog Input 2
Input
Filter 1
Analog Input 3
Input
Filter 1
Analog Input 4
Input
Filter 1
Analog Input 5
Input
Filter 1
Analog Input 6
Input
Filter 1
Analog Input 5A
Input
Filter 1
Analog Input 5B
Input
Filter 1
Analog Input 6A
Input
Filter 1
Analog Input 6B
43
55
54
+
+
DGND DGND DGND
7
23
62
AGND
56
AGND
0.1 µF
100 µF
0.1 µF
+
22 µF
0.1 µF
4.7 µF
42
Connect DGND and AGND near CODEC
1. See the ADC Input Filter section in the Appendix.
2. See the DAC Output Filter section in the Appendix.
Figure 1. Typical Connection Diagram
DS648F2
9
CS42448
3. CHARACTERISTICS AND SPECIFICATIONS
RECOMMENDED OPERATING CONDITIONS
(AGND=DGND=0 V, all voltages with respect to ground.)
Parameters
DC Power Supply
Analog
Digital
Serial Audio Interface
Control Port Interface
Ambient Temperature
Commercial
Automotive
(Note 1)
(Note 2)
-CQZ
-DQZ
Symbol
Min
Max
Units
VA
VD
VLS
VLC
3.14
3.14
1.71
1.71
5.25
5.25
5.25
5.25
V
V
V
V
TA
-10
-40
+70
+105
°C
°C
Symbol
VA
VD
VLS
VLC
Iin
VIN
VIND-S
VIND-C
TA
Min
-0.3
-0.3
-0.3
-0.3
AGND-0.7
-0.3
-0.3
-50
Max
6.0
6.0
6.0
6.0
±10
VA+0.7
VLS+ 0.4
VLC+ 0.4
+125
Units
V
V
V
V
mA
V
V
V
°C
Tstg
-65
+150
°C
ABSOLUTE MAXIMUM RATINGS
(AGND = DGND = 0 V; all voltages with respect to ground.)
Parameters
DC Power Supply
Input Current
Analog Input Voltage
Digital Input Voltage
(Note 4)
Ambient Operating Temperature
(power applied)
Storage Temperature
Analog
Digital
Serial Port Interface
Control Port Interface
(Note 3)
(Note 4)
Serial Port Interface
Control Port Interface
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
Notes:
1. Typical Analog input/output performance will slightly degrade at VA = 3.3 V.
2. The ADC_SDOUT may not meet timing requirements in TDM, Double-Speed Mode.
3. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause
SCR latch-up.
4. The maximum over/under voltage is limited by the input current.
10
DS648F2
CS42448
ANALOG INPUT CHARACTERISTICS (COMMERCIAL)
(Test Conditions (unless otherwise specified): TA = -10 to +70°C; VD = VLS = VLC = 3.3 V±5%, VA = 5 V±5%;
Full-scale input sine wave: 1 kHz through the active input filter in Figure 26 on page 53 and Figure 27 on page 53;
Measurement Bandwidth is 10 Hz to 20 kHz.)
Differential
Parameter
Fs=48 kHz, 96 kHz, 192 kHz
Dynamic Range
Min
Typ
Single-Ended
Max
Min
Typ
Max
Unit
A-weighted
99
105
96
102
dB
unweighted
96
102
93
99
dB
40 kHz bandwidth unweighted
99
96
dB
dB
-89
-95
-92
-98
Total Harmonic Distortion + Noise
-1 dB
dB
-79
-82
(Note 5)
-20 dB
dB
-39
-42
-60 dB
dB
-90
-90
40 kHz bandwidth
-1 dB
ADC1-3 Interchannel Isolation
90
90
dB
ADC3 MUX Interchannel Isolation
90
90
dB
DC Accuracy
Interchannel Gain Mismatch
0.1
0.1
dB
Gain Drift
±100
±100
ppm/°C
Analog Input
Full-Scale Input Voltage
1.06*VA 1.12*VA 1.18*VA 0.53*VA 0.56*VA 0.59*VA
Vpp
Differential Input Impedance (Note 6)
18
kΩ
Single-Ended Input Impedance (Note 7)
18
kΩ
Common Mode Rejection Ratio (CMRR)
82
dB
DS648F2
11
CS42448
ANALOG INPUT CHARACTERISTICS (AUTOMOTIVE)
(Test Conditions (unless otherwise specified): TA = -40 to +85°C; VD = VLS = VLC = 3.3 V±5%, VA = 5 V±5%;
Full-scale input sine wave: 1 kHz through the active input filter in Figure 26 on page 53 and Figure 27 on page 53;
Measurement Bandwidth is 10 Hz to 20 kHz.)
Differential
Parameter
Fs=48 kHz, 96 kHz, 192 kHz
Dynamic Range
Min
Typ
Single-Ended
Max
Min
Typ
Max
Unit
A-weighted
97
105
94
102
dB
unweighted
94
102
91
99
dB
40 kHz bandwidth unweighted
99
96
dB
dB
-87
-95
-90
-98
Total Harmonic Distortion + Noise
-1 dB
dB
-79
-82
(Note 5)
-20 dB
dB
-39
-42
-60 dB
dB
-87
-87
40 kHz bandwidth
-1 dB
ADC1-3 Interchannel Isolation
90
90
dB
ADC3 MUX Interchannel Isolation
85
85
dB
DC Accuracy
Interchannel Gain Mismatch
0.1
0.1
dB
Gain Drift
±100
±100
ppm/°C
Analog Input
Full-Scale Input Voltage
1.04*VA 1.12*VA 1.20*VA 0.52*VA 0.56*VA 0.60*VA
Vpp
Differential Input Impedance
(Note 6)
18
kΩ
Single-Ended Input Impedance
(Note 7)
18
kΩ
Common Mode Rejection Ratio (CMRR)
82
dB
Notes:
5. Referred to the typical full-scale voltage.
6. Measured between AINx+ and AINx-.
7. Measured between AINxx and AGND.
12
DS648F2
CS42448
ADC DIGITAL FILTER CHARACTERISTICS
Parameter (Notes 8, 9)
Min
Typ
Max
Unit
0
-
0.4896
Fs
-
-
0.08
dB
0.5688
-
-
Fs
70
-
-
dB
-
12/Fs
-
s
0
-
0.4896
Fs
Single-Speed Mode (Note 9)
Passband (Frequency Response)
to -0.1 dB corner
Passband Ripple
Stopband
Stopband Attenuation
Total Group Delay
Double-Speed Mode (Note 9)
Passband (Frequency Response)
to -0.1 dB corner
Passband Ripple
Stopband
Stopband Attenuation
Total Group Delay
-
-
0.16
dB
0.5604
-
-
Fs
69
-
-
dB
-
9/Fs
-
s
0
-
0.2604
Fs
-
-
0.16
dB
0.5000
-
-
Fs
60
-
-
dB
-
5/Fs
-
s
-
Hz
Hz
Quad-Speed Mode (Note 9)
Passband (Frequency Response)
Passband Ripple
Stopband
Stopband Attenuation
Total Group Delay
to -0.1 dB corner
High-Pass Filter Characteristics
Frequency Response
-3.0 dB
-0.13 dB
-
1
20
Phase Deviation
@ 20 Hz
-
10
-
Deg
-
-
0
dB
-
105/Fs
0
s
Passband Ripple
Filter Settling Time
Notes:
8. Filter response is guaranteed by design.
9. Response is clock-dependent and will scale with Fs. Note that the response plots (Figures 32 to 43) have
been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.
DS648F2
13
CS42448
ANALOG OUTPUT CHARACTERISTICS (COMMERCIAL)
(Test Conditions (unless otherwise specified): TA = -10 to +70°C; VD = VLS = VLC = 3.3 V±5%, VA = 5 V±5%;
Full-scale 997 Hz output sine wave (see Note 11) into passive filter in Figure 32 on page 57 and active filter in Figure 32 on page 57; Measurement Bandwidth is 10 Hz to 20 kHz.)
Parameter
Min
Fs = 48 kHz, 96 kHz, 192 kHz
Dynamic Range
102
18 to 24-Bit
A-weighted
99
unweighted
16-Bit
A-weighted
unweighted
Total Harmonic Distortion + Noise
18 to 24-Bit
0 dB
-20 dB
-60 dB
16-Bit
0 dB
-20 dB
-60 dB
Interchannel Isolation
(1 kHz)
Analog Output
Full-Scale Output
1.235•VA
Interchannel Gain Mismatch
Gain Drift
Output Impedance
DC Current draw from an AOUT pin
(Note 10)
AC-Load Resistance (RL) (Note 12)
3
Load Capacitance (CL)
14
(Note 12)
-
Differential
Typ
Max
Min
Single-Ended
Typ
Max
Unit
108
105
99
96
-
99
96
-
105
102
96
93
-
dB
dB
dB
dB
-98
-85
-45
-93
-76
-36
100
-92
-
-
-95
-82
-42
-90
-73
-33
100
-89
-
dB
dB
dB
dB
dB
dB
dB
-
1.300•VA 1.365•VA 0.618•VA 0.650•VA 0.683•VA
Vpp
0.1
0.25
0.1
0.25
dB
±100
±100
ppm/°C
100
100
Ω
10
10
μA
-
-
3
-
-
kΩ
-
100
-
-
100
pF
DS648F2
CS42448
ANALOG OUTPUT CHARACTERISTICS (AUTOMOTIVE)
(Test Conditions (unless otherwise specified): TA = -40 to +85°C; VD = VLS = VLC = 3.3 V±5%, VA = 5 V±5%;
Full-scale 997 Hz output sine wave (see Note 11) in Figure 32 on page 57 and Figure 32 on page 57; Measurement Bandwidth is 10 Hz to 20 kHz.)
Parameter
Min
Fs = 48 kHz, 96 kHz, 192 kHz
Dynamic Range
100
18 to 24-Bit
A-weighted
97
unweighted
16-Bit
A-weighted
unweighted
Total Harmonic Distortion + Noise
18 to 24-Bit
0 dB
-20 dB
-60 dB
16-Bit
0 dB
-20 dB
-60 dB
Interchannel Isolation
(1 kHz)
Analog Output
Full-Scale Output
1.210•VA
Interchannel Gain Mismatch
Gain Drift
Output Impedance
DC Current draw from an AOUT pin
(Note 10)
AC-Load Resistance (RL) (Note 12)
3
Load Capacitance (CL)
(Note 12)
-
Differential
Typ
Max
Min
Single-Ended
Typ
Max
Unit
108
105
99
96
-
97
94
-
105
102
96
93
-
dB
dB
dB
dB
-98
-85
-45
-93
-76
-36
100
-90
-
-
-95
-82
-42
-90
-73
-33
100
-87
-
dB
dB
dB
dB
dB
dB
dB
1.300•VA 1.392•VA 0.605•VA 0.650•VA 0.696•VA
Vpp
0.1
0.25
0.1
0.25
dB
±100
±100
ppm/°C
100
100
Ω
10
10
μA
-
-
3
-
-
kΩ
-
100
-
-
100
pF
Notes:
10. Guaranteed by design. The DC current draw represents the allowed current draw from the AOUT pin
due to typical leakage through the electrolytic DC-blocking capacitors.
11. One-half LSB of triangular PDF dither is added to data.
12. Guaranteed by design. See Figure 2. RL and CL reflect the recommended minimum resistance and
maximum capacitance required for the internal op-amp's stability and signal integrity. In this circuit topology, CL will effectively move the dominant pole of the two-pole amp in the output stage. Increasing
this value beyond the recommended 100 pF can cause the internal op-amp to become unstable. See
“External Filters” on page 53 for a recommended output filter.
DS648F2
15
CS42448
DAC1-4
AOUTxx
3.3 µF
Analog
Output
+
RL
CL
Capacitive Load -- C L (pF)
125
100
75
Safe Operating
Region
50
25
AGND
2.5
3
Figure 2. Output Test Circuit for Maximum Load
16
5
10
15
20
Resistive Load -- RL (kΩ )
Figure 3. Maximum Loading
DS648F2
CS42448
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
Parameter (Notes 8, 13)
Min
Typ
Max
Unit
0
0
-
0.4780
0.4996
Fs
Fs
-0.2
-
+0.08
dB
0.5465
-
-
Fs
50
-
-
dB
-
s
Single-Speed Mode
Passband (Frequency Response)
to -0.05 dB corner
to -3 dB corner
Frequency Response 10 Hz to 20 kHz
StopBand
StopBand Attenuation
(Note 14)
Group Delay
De-emphasis Error (Note 15)
-
10/Fs
Fs = 32 kHz
Fs = 44.1 kHz
Fs = 48 kHz
-
-
to -0.1 dB corner
to -3 dB corner
0
0
-
0.4650
0.4982
Fs
Fs
+1.5/+0
dB
+0.05/-0.25 dB
-0.2/-0.4
dB
Double-Speed Mode
Passband (Frequency Response)
Frequency Response 10 Hz to 20 kHz
-0.2
-
+0.7
dB
0.5770
-
-
Fs
55
-
-
dB
-
5/Fs
-
s
0
0
-
0.397
0.476
Fs
Fs
Frequency Response 10 Hz to 20 kHz
-0.2
-
+0.05
dB
StopBand
0.7
-
-
Fs
51
-
-
dB
-
2.5/Fs
-
s
StopBand
StopBand Attenuation
(Note 14)
Group Delay
Quad-Speed Mode
Passband (Frequency Response)
StopBand Attenuation
to -0.1 dB corner
to -3 dB corner
(Note 14)
Group Delay
Notes:
13. Response is clock-dependent and will scale with Fs. Note that the response plots (Figures 44 to 55) have
been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.
14. Single- and Double-Speed Mode Measurement Bandwidth is from Stopband to 3 Fs.
Quad-Speed Mode Measurement Bandwidth is from Stopband to 1.34 Fs.
15. De-emphasis is only available in Single-Speed Mode.
DS648F2
17
CS42448
SWITCHING SPECIFICATIONS - ADC/DAC PORT
(Inputs: Logic 0 = DGND, Logic 1 = VLS, ADC_SDOUT CLOAD = 15 pF.)
Parameters (Note 20)
Symbol
Min
Max
Units
1
0.512
45
4
50
100
45
45
8
8
5
-
ms
50
55
50
100
200
55
55
-
MHz
%
kHz
kHz
kHz
%
%
ns
ns
ns
16
3
5
5
10
15
35
-
ns
ns
ns
ns
ns
ns
ns
45
45
3
5
MCLK / 256
55
64 x Fs
55
5
35
-
kHz
%
MHz
%
ns
ns
ns
ns
Slave Mode
RST pin Low Pulse Width
MCLK Frequency
MCLK Duty Cycle
Input Sample Rate (LRCK)
(Note 16)
(Note 17)
Single-Speed Mode
Double-Speed Mode (Note 18)
Quad-Speed Mode (Note 19)
Fs
Fs
Fs
LRCK Duty Cycle
SCLK Duty Cycle
SCLK High Time
SCLK Low Time
tsckh
tsckl
tfss
tlcks
tfsh
tdpd
tds
tdh
tdh1
tdh2
tdval
LRCK Rising Edge to SCLK Rising Edge
SCLK Rising Edge to LRCK Falling Edge
SCLK Falling Edge to ADC_SDOUT Output Valid
DAC_SDIN Setup Time Before SCLK Rising Edge
DAC_SDIN Hold Time After SCLK Rising Edge
DAC_SDIN Hold Time After SCLK Rising Edge
ADC_SDOUT Hold Time After SCLK Rising Edge
ADC_SDOUT Valid Before SCLK Rising Edge
Master Mode
Output Sample Rate (LRCK)
All Speed Modes
LRCK Duty Cycle
SCLK Frequency
SCLK Duty Cycle
LRCK Edge to SCLK Rising Edge
SCLK Falling Edge to ADC_SDOUT Output Valid
DAC_SDIN Setup Time Before SCLK Rising Edge
DAC_SDIN Hold Time After SCLK Rising Edge
Fs
tlcks
tdpd
tds
tdh1
LRCK
LRCK
(input)
tlcks
t sckh
tsckl
tfss
tfsh
(input)
tds
DAC_SDINx
t dh
MSB
tds
MSB-1
tdh1
DAC_SDIN1
tdh2
MSB
MSB-1
Figure 4. Serial Audio Interface Slave Mode Timing
ADC_SDOUT1
MSB-1
MSB
tdpd
18
tsckl
SCLK
SCLK
ADC_SDOUTx
tsckh
MSB
tdval
MSB-1
Figure 5. TDM Serial Audio Interface Timing
DS648F2
CS42448
Notes:
16. After powering up the CS42448, RST should be held low after the power supplies and clocks are settled.
17. See Table 10 on page 43 and Table 11 on page 44 for suggested MCLK frequencies.
18. When operating in TDM interface format, VLS is limited to nominal 2.5 V to 5.0 V operation only.
19. ADC - I²S, Left-Justified, Right-Justified interface formats only. DAC - I²S, Left-Justified, Right-Justified
and Time Division Multiplexed interface formats only.
20. “LRCK” and “SCLK” shall refer to the ADC and DAC left/right clock and serial clock, respectively.
LRCK
tlcks
SCLK
tds
DAC_SDINx
tdh
MSB
MSB-1
MSB
MSB-1
tdpd
ADC_SDOUTx
Figure 6. Serial Audio Interface Master Mode Timing
DS648F2
19
CS42448
SWITCHING CHARACTERISTICS - AUX PORT
(Inputs: Logic 0 = DGND, Logic 1 = VLS.)
Parameters
Symbol
Min
Fs
Max
Units
Master Mode
Output Sample Rate (AUX_LRCK)
All Speed Modes
-
ADC_LRCK
kHz
AUX_SCLK Frequency
-
64·ADC_LRCK
kHz
AUX_SCLK Duty Cycle
45
55
%
AUX_LRCK Edge to SCLK Rising Edge
tlcks
-
5
ns
AUX_SDIN Setup Time Before SCLK Rising Edge
tds
3
-
ns
AUX_SDIN Hold Time After SCLK Rising Edge
tdh
5
-
ns
AUX_LRCK
tlcks
tsckh
tsckl
AUX_SCLK
tds
AUX_SDIN
tdh
MSB
MSB-1
Figure 7. Serial Audio Interface Slave Mode Timing
20
DS648F2
CS42448
SWITCHING SPECIFICATIONS - CONTROL PORT - I²C MODE
(VLC = 1.8 V - 5.0 V, VLS = VD = 3.3 V, VA = 5.0 V; Inputs: Logic 0 = DGND, Logic 1 = VLC, SDA CL = 30 pF)
Parameter
Symbol
Min
Max
Unit
SCL Clock Frequency
fscl
-
100
kHz
RST Rising Edge to Start
tirs
500
-
ns
Bus Free Time Between Transmissions
tbuf
4.7
-
µs
Start Condition Hold Time (prior to first clock pulse)
thdst
4.0
-
µs
Clock Low time
tlow
4.7
-
µs
Clock High Time
thigh
4.0
-
µs
Setup Time for Repeated Start Condition
tsust
4.7
-
µs
thdd
0
-
µs
tsud
250
-
ns
SDA Hold Time from SCL Falling
(Note 21)
SDA Setup time to SCL Rising
Rise Time of SCL and SDA
(Note 22)
trc
-
1
µs
Fall Time SCL and SDA
(Note 22)
tfc
-
300
ns
Setup Time for Stop Condition
tsusp
4.7
-
µs
Acknowledge Delay from SCL Falling
tack
300
1000
ns
Notes:
21. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
22. Guaranteed by design.
RST
t
irs
Stop
R e p e a te d
Sta rt
Start
t rd
t fd
Stop
SDA
t
buf
t
t
hdst
t
high
t fc
hdst
t susp
SCL
t
lo w
t
hdd
t sud
t ack
t sust
t rc
Figure 8. Control Port Timing - I²C Format
DS648F2
21
CS42448
SWITCHING SPECIFICATIONS - CONTROL PORT - SPI FORMAT
(VLC = 1.8 V - 5.0 V, VLS = VD = 3.3 V, VA = 5.0 V; Inputs: Logic 0 = DGND, Logic 1 = VLC, CDOUT CL = 30 pF)
Parameter
Symbol
Min
Max
Units
CCLK Clock Frequency
fsck
0
6.0
MHz
RST Rising Edge to CS Falling
tsrs
20
-
ns
CS Falling to CCLK Edge
tcss
20
-
ns
CS High Time Between Transmissions
tcsh
1.0
-
μs
CCLK Low Time
tscl
66
-
ns
CCLK High Time
tsch
66
-
ns
CDIN to CCLK Rising Setup Time
tdsu
40
-
ns
tdh
15
-
ns
CCLK Falling to CDOUT Stable
tpd
-
50
ns
Rise Time of CDOUT
tr1
-
25
ns
Fall Time of CDOUT
tf1
-
25
ns
CCLK Rising to DATA Hold Time
(Note 23)
Rise Time of CCLK and CDIN
(Note 24)
tr2
-
100
ns
Fall Time of CCLK and CDIN
(Note 24)
tf2
-
100
ns
Notes:
23. Data must be held for sufficient time to bridge the transition time of CCLK.
24. For fsck <1 MHz.
RST
tsrs
CS
tcss
tsch
tcsh
tscl
tr2
CCLK
tf2
tdsu
CDIN
tdh
MSB
tpd
CDOUT
MSB
Figure 9. Control Port Timing - SPI Format
22
DS648F2
CS42448
DC ELECTRICAL CHARACTERISTICS
(AGND = 0 V; all voltages with respect to ground.)
Parameters
Normal Operation (Note 25)
Power Supply Current
Power Dissipation
Power Supply Rejection Ratio
(Note 27)
Power-Down Mode (Note 28)
Power Dissipation
VQ Characteristics
Nominal Voltage
Output Impedance
DC Current Source/Sink (Note 29)
FILT+_ADC Nominal Voltage
FILT+_DAC Nominal Voltage
Symbol
Min
Typ
Max
Units
VA = 5.0 V
IA
-
80
-
mA
VLS = VLC = VD = 3.3 V
(Note 26)
All Supplies = 5 V
1 kHz
60 Hz
IDT
-
60.6
-
mA
PSRR
-
600
60
40
850
-
mW
dB
dB
-
1.25
-
mW
-
0.5•VA
23
VA
VA
10
-
V
kΩ
μA
V
V
All Supplies = VA = 5 V
Notes:
25. Normal operation is defined as RST = HI with a 997 Hz, 0 dBFS input to the DAC and AUX port, and a
1 kHz, -1 dB analog input to the ADC port sampled at the highest Fs for each speed mode. DAC outputs
are open, unless otherwise specified.
26. IDT measured with no external loading on pin 64 (SDA).
27. Valid with the recommended capacitor values on FILT+ and VQ. Increasing the capacitance will also
increase the PSRR.
28. Power-Down Mode is defined as RST = LO with all clocks and data lines held static and no analog input.
29. Guaranteed by design. The DC current draw represents the allowed current draw from the VQ pin due
to typical leakage through the electrolytic de-coupling capacitors.
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS
Parameters (Note 30)
High-Level Output Voltage at Io=2 mA
Low-Level Output Voltage at Io=2 mA
High-Level Input Voltage
Low-Level Input Voltage
Leakage Current
Input Capacitance (Note 22)
MUTEC Drive Current
Symbol
Serial Port
Control Port
MUTEC
Serial Port
Control Port
MUTEC
Serial Port
Control Port
Serial Port
Control Port
VOH
VOL
VIH
VIL
Iin
Min
VLS-1.0
VLC-1.0
VA-1.0
0.7xVLS
0.7xVLC
-
Typ
3
Max
0.4
0.4
0.4
0.2xVLS
0.2xVLC
±10
10
-
Units
V
V
V
V
V
V
V
V
V
V
μA
pF
mA
Notes:
30. See “Digital I/O Pin Characteristics” on page 8 for serial and control port power rails.
DS648F2
23
CS42448
4. APPLICATIONS
4.1
Overview
The CS42448 is a highly integrated mixed signal 24-bit audio CODEC comprised of 6 analog-to-digital converters (ADC) implemented using multi-bit delta-sigma techniques and 8 digital-to-analog converters (DAC)
also implemented using multi-bit delta-sigma techniques.
Other functions integrated within the CODEC include independent digital volume controls for each DAC, digital de-emphasis filters for the DAC, digital volume control with gain on each ADC channel, ADC high-pass
filters, an on-chip voltage reference, and Popguard technology that minimizes the effects of output transients on power-up and power-down.
All serial data is transmitted through two independent serial ports: the DAC serial port and the ADC serial
port. Each serial port can be configured independently to operate at different sample and clock rates, but
both must run synchronous to each other.
The serial audio interface ports allow up to 8 DAC channels and 8 ADC channels in a Time-Division Multiplexed (TDM) interface format. In the One-Line Mode (OLM) interface format, the CS42448 will allow up to
6 ADC channels on one data line and up to 8 DAC channels on 2 data lines.
The CS42448 features an Auxiliary Port used to accommodate an additional two channels of PCM data on
the ADC_SDOUT data line in the TDM digital interface format. See “AUX Port Digital Interface Formats” on
page 34 for details.
The CS42448 operates in one of three oversampling modes based on the input sample rate. When operating the CODEC as a slave, mode selection is determined automatically based on the MCLK frequency setting. When operating as a master, mode selection is determined by the ADC and DAC FM bits in register
“Functional Mode (Address 03h)” on page 43. Single-Speed Mode (SSM) supports input sample rates up
to 50 kHz and uses a 128x oversampling ratio. Double-Speed Mode (DSM) supports input sample rates up
to 100 kHz and uses an oversampling ratio of 64x. Quad-Speed Mode (QSM) supports input sample rates
up to 200 kHz and uses an oversampling ratio of 32x (Note: QSM for the ADC is only supported in the I²S,
Left-Justified, Right-Justified interface formats. QSM for the DAC is supported in the I²S, Left-Justified,
Right-Justified and Time Division Multiplexed interface formats).
All functions can be configured through software via a serial control port operable in SPI Mode or in I²C
Mode.
Figure 2 on page 16 shows the recommended connections for the CS42448. See “Register Description” on
page 41 for the default register settings and options.
4.2
4.2.1
Analog Inputs
Line-Level Inputs
AINx+ and AINx- are the line-level differential analog inputs internally biased to VQ, approximately VA/2.
Figure 10 on page 25 shows the full-scale analog input levels. The CS42448 also accommodates singleended signals on all inputs, AIN1-AIN6. See “ADC Input Filter” on page 53 for the recommended input
filters.
For single-ended operation on ADC1-ADC3 (AIN1 to AIN6), the ADCx_SINGLE bit in the register “ADC
Control & DAC De-Emphasis (Address 05h)” on page 45 must be set appropriately (see Figure 27 on
page 53 for required external components).
The gain/attenuation of the signal can be adjusted for each AINx independently through the “AINX Volume
Control (Address 11h-16h)” on page 50.
24
DS648F2
CS42448
The ADC output data is in 2’s complement binary format. For inputs above positive full scale or below negative full scale, the ADC will output 7FFFFFH or 800000H, respectively, and cause the ADC Overflow bit
in the register “Status (Address 19h) (Read Only)” on page 51 to be set to a ‘1’.
5.0 V
3.9 V
VA
2.5 V
AINx+
2.5 V
AINx-
1.1 V
3.9 V
1.1 V
Full-Scale Differential Input Level =
(AINx+) - (AINx-) = 5.6 VPP = 1.98 VRMS
Figure 10. Full-Scale Input
4.2.2
ADC3 Analog Input
ADC3 accommodates differential as well as single-ended inputs. In Single-Ended Mode, an internal MUX
selects from up to four single-ended inputs.
AIN5A
AIN5B
ADC3
Single-Ended Input Filter
AIN5_MUX
ADC3 SINGLE
Single-Ended Input Filter
1
0
1
58
AIN5+/-
Differential
Input Filter
0
57
0
VQ
+
-
AIN5
1
AIN6_MUX
1
0
1
60
AIN6+/-
Differential
Input Filter
0
59
0
VQ
AIN6A
AIN6B
+
-
AIN6
1
Single-Ended Input Filter
Single-Ended Input Filter
Figure 11. ADC3 Input Topology
Single-Ended Mode is selected using the ADC3_SINGLE bit. Analog input selection is then made via the
AINx_MUX bits. See register “ADC Control & DAC De-Emphasis (Address 05h)” on page 45 for all bit selections. Refer to Figure 12 on page 27 for the internal ADC3 analog input topology.
DS648F2
25
CS42448
4.2.3
High-Pass Filter and DC Offset Calibration
The high-pass filter continuously subtracts a measure of the DC offset from the output of the decimation
filter. If the high-pass filter is disabled during normal operation, the current value of the DC offset for the
corresponding channel is frozen and this DC offset will continue to be subtracted from the conversion result. This feature makes it possible to perform a system DC offset calibration by:
1. Running the CS42448 with the high-pass filter enabled until the filter settles. See the Digital Filter
Characteristics for filter settling time.
Disabling the high-pass filter and freezing the stored DC offset.The high-pass filter for ADC1/ADC2 can
be enabled and disabled. The high pass filter for ADC3 can be independently enabled and disabled. The high-pass filters are controlled using the HPF_FREEZE bit in the register “ADC Control & DAC
De-Emphasis (Address 05h)” on page 45.
4.3
4.3.1
Analog Outputs
Initialization
The initialization and Power-Down sequence flow chart is shown in Figure 12 on page 27. The CS42448
enters a power-down state upon initial power-up. The interpolation and decimation filters, delta-sigma
modulators and control port registers are reset. The internal voltage reference, multi-bit digital-to-analog
and analog-to-digital converters and switched-capacitor low-pass filters are powered down.
The device remains in the power-down state until the RST pin is brought high. The control port is accessible once RST is high, and the desired register settings can be loaded per the interface descriptions in
the “Control Port Description and Timing” on page 35.
Once MCLK is valid, VQ will ramp up to VA/2, and the internal voltage references, FILT+_ADC and
FILT+_DAC, will begin powering up to normal operation. Power is applied to the D/A converters and
switched-capacitor filters, and the analog outputs are clamped to the quiescent voltage, VQ. Once LRCK is
valid, MCLK occurrences are counted over one LRCK period to determine the MCLK/LRCK frequency ratio. After an approximate 2000 sample period delay, normal operation begins.
26
DS648F2
CS42448
No Power
1. VQ = ?
2. Aout bias = ?
3. No audio signal
generated.
PDN bit = '1'b?
Yes
Power-Down Mode
1. VQ = 0 V.
2. Aout bias = VQ.
3. No audio signal generated.
4. Control Port Registers retain
settings.
No
Power-Down (Power Applied)
1. VQ = 0 V.
2. Aout = VQ.
3. No audio signal generated.
4. Control Port Registers reset
to default.
PopGuard®
Power-Up Ramp
1. VQ ramp up to VA/2.
2. Aout bias = VQ.
400 ms delay
Power-Down Ramp
1. VQ ramp down to 0 V.
2. Aout bias = VQ.
250 ms delay
Yes
RST = Low?
No
Control Port
Active
Sub-Clocks Applied
1. LRCK valid.
2. SCLK valid.
3. Audio samples
processed.
No
Control Port
Access Detected?
Yes
No
No Power Transition
1. VQ = 0 V.
2. Aout bias = VQ.
3. Audible pops.
Hardware Mode not supported.
Codec will power up in an
unknown state once all clocks
and data are valid. It is
recommended that the user
setup up the codec via the
control port before applying
MCLK.
Valid
MCLK/LRCK
Ratio?
Software Mode
Registers setup to
desired settings.
Yes
No
Valid MCLK
Applied?
2000 LRCK delay
Yes
Power-Down Transition
1. VQ = 0 V.
2. Aout bias = VQ.
3. Audible pops.
RST = Low
ERROR: Power removed
ERROR: MCLK/LRCK ratio change
Analog Output Mute
1. VQ = VA/2.
2. Aout bias = VQ.
3. DAC outputs muted.
4. No audio signal generated.
Normal Operation
1. VQ = VA/2.
2. Aout bias = VQ.
3. Audio signal generated per register settings.
PDN bit set
to '1'b
ERROR: MCLK removed
Analog Output Freeze
1. VQ = VA/2.
2. Aout bias = VQ + last audio sample.
3. DAC Modulators stop operation.
4. Audible pops.
Figure 12. Audio Output Initialization Flow Chart
DS648F2
27
CS42448
4.3.2
Output Transient Control
The 42448 uses Popguard technology to minimize the effects of output transients during power-up and
power-down. This technique eliminates the audio transients commonly produced by single-ended singlesupply converters when it is implemented with external DC-blocking capacitors connected in series with
the audio outputs. To make best use of this feature, it is necessary to understand its operation. See “Popguard” on page 28 for details.
A Mute Control pin is also available for use with an optional mute circuit to mask output transients on the
analog outputs. See “Mute Control” on page 28 for details.
When changing clock ratio or sample rate, it is recommended that zero data (or near zero data) be present
on DAC_SDINx for at least 10 LRCK samples before the change is made. During the clocking change,
the DAC outputs will always be in a zero-data state. If no zero audio is present at the time of switching, a
slight click or pop may be heard as the DAC output automatically goes to its zero-data state.
4.3.3
Popguard
4.3.3.1
Power-Up
When the device is initially powered up, the audio outputs, AOUTxx, are clamped to VQ which is initially
low. After the RST pin is brought high and MCLK is applied, the outputs begin to ramp with VQ towards
the nominal quiescent voltage. This ramp takes approximately 400 ms to complete. The gradual voltage
ramping allows time for the external DC-blocking capacitors to charge to VQ, effectively blocking the quiescent DC voltage. Once valid DAC_LRCK, DAC_SCLK and DAC_SDINx are applied, audio output begins approximately 2000 sample periods later.
4.3.3.2
Power-Down
To prevent audio transients at power-down, the DC-blocking capacitors must fully discharge before turning off the power. In order to do this, the PDN bit in register “Power Control (Address 02h)” on page 42
must be set to ‘1’ for a period of about 250 ms before removing power. During this time, voltage on VQ
and the audio outputs discharge gradually to AGND. If power is removed before this 250 ms time period
has passed, a transient will occur when the VA supply drops below that of VQ. There is no minimum time
for a power cycle. Power may be re-applied at any time.
4.3.4
Mute Control
The Mute Control pin, MUTEC, is typically connected to an external mute control circuit. The use of external mute circuits is not mandatory, but may be desired for designs requiring the absolute minimum in
extraneous clicks and pops.
MUTEC is in high-impedance mode during power up or when the 42448 is in Power-Down Mode by setting the PDN bit in the register “Power Control (Address 02h)” on page 42 to a ‘1’. Once out of PowerDown Mode, the pin can be controlled by the user via the control port (see “MUTEC Pin Control (Address
1Bh)” on page 52) or automatically asserted to the active state when zero data is present on all DAC inputs, when all DAC outputs are muted, or when serial port clock errors occur.
To prevent large transients on the output, it is recommended to mute the DAC outputs before the Mute
Control pin is asserted.
28
DS648F2
CS42448
4.3.5
Line-Level Outputs and Filtering
The CS42448 contains on-chip buffer amplifiers capable of producing line-level differential as well as single-ended outputs on AOUT1-AOUT8. These amplifiers are biased to a quiescent DC level of approximately VQ.
The delta-sigma conversion process produces high-frequency noise beyond the audio passband, most of
which is removed by the on-chip analog filters. The remaining out-of-band noise can be attenuated using
an off-chip low-pass filter.
See “DAC Output Filter” on page 56 for recommended output filter. The active filter configuration accounts
for the normally differing AC loads on the AOUTx+ and AOUTx- differential output pins. Also shown is a
passive filter configuration which minimizes costs and the number of components.
Figure 13 shows the full-scale analog output levels. All outputs are internally biased to VQ, approximately
VA/2.
5.0 V
4.125 V
VA
AOUTx+
2.5 V
0.875 V
4.125 V
AOUTx-
2.5 V
0.875 V
Full-Scale Differential Output Level =
(AOUTx+) - (AOUTx-) = 6.5 VPP = 2.3 VRMS
Figure 13. Full-Scale Output
4.3.6
Digital Volume Control
Each DAC’s output level is controlled via the Volume Control registers operating over the range of 0 to
-127.5 dB attenuation with 0.5 dB resolution. See “AOUTX Volume Control (Addresses 08h- 0Fh)” on
page 49. Volume control changes are programmable to ramp in increments of 0.125 dB at the rate controlled by the SZC[1:0] bits in the Digital Volume Control register. See “Transition Control (Address 06h)”
on page 47.
Each output can be independently muted via mute control bits in the register “DAC Channel Mute (Address 07h)” on page 49. When enabled, each AOUTx_MUTE bit attenuates the corresponding DAC to its
maximum value (-127.5 dB). When the AOUTx_MUTE bit is disabled, the corresponding DAC returns to
the attenuation level set in the Volume Control register. The attenuation is ramped up and down at the
rate specified by the SZC[1:0] bits.
4.3.7
De-Emphasis Filter
The CS42448 includes on-chip digital de-emphasis optimized for a sample rate of 44.1 kHz. The filter response is shown in Figure 14. The de-emphasis feature is included to accommodate audio recordings
that utilize 50/15 μs pre-emphasis equalization as a means of noise reduction.
DS648F2
29
CS42448
De-emphasis is only available in Single-Speed Mode. Please see “DAC De-Emphasis Control
(DAC_DEM)” on page 46 for de-emphasis control.
Gain
dB
T1=50 µs
0dB
T2 = 15 µs
-10dB
F1
3.183 kHz
Frequency
F2
10.61 kHz
Figure 14. De-Emphasis Curve
4.4
System Clocking
The CODEC (ADC & DAC) serial audio interface ports operate both as a slave or master. The serial ports
accept externally generated clocks in slave mode and will generate synchronous clocks derived from an input master clock in master mode. In the TDM format the ADC and DAC serial ports will only operate as a
slave. In OLM #2 the serial ports will accept or output a 256Fs SCLK. See the registers “DAC Functional
Mode (DAC_FM[1:0])” on page 43 and “ADC Functional Mode (ADC_FM[1:0])” on page 43 for setting up
master/slave mode.
The CODEC requires external generation of the master clock (MCLK). The frequency of this clock must be
an integer multiple of, and synchronous with, the system sample rate, Fs.
The required integer ratios, along with some common frequencies, are illustrated in tables Tables 2 to 4.
The frequency range of MCLK must be specified using the MFREQ bits in register “MCLK Frequency
(MFREQ[2:0])” on page 43.
Sample Rate
(kHz)
256x
384x
32
44.1
48
8.1920
11.2896
12.2880
12.2880
16.9344
18.4320
MCLK (MHz)
512x
16.3840
22.5792
24.5760
768x
1024x
24.5760
33.8688
36.8640
32.7680
45.1584
49.1520
Table 2. Single-Speed Mode Common Frequencies
Sample Rate
(kHz)
128x
192x
64
88.2
96
8.1920
11.2896
12.2880
12.2880
16.9344
18.4320
MCLK (MHz)
256x
16.3840
22.5792
24.5760
384x
512x
24.5760
33.8688
36.8640
32.7680
45.1584
49.1520
Table 3. Double-Speed Mode Common Frequencies
Sample Rate
(kHz)
64x
96x
MCLK (MHz)
128x
192x
256x
176.4
192
11.2896
12.2880
16.9344
18.4320
22.5792
24.5760
33.8688
36.8640
45.1584
49.1520
Table 4. Quad-Speed Mode Common Frequencies
30
DS648F2
CS42448
4.5
CODEC Digital Interface Formats
The ADC and DAC serial ports support the I²S, Left-Justified, Right-Justified, One-Line Mode (OLM) and
TDM digital interface formats with varying bit depths from 16 to 32 as shown in Figures 15-19. Data is
clocked out of the ADC on the falling edge of SCLK and clocked into the DAC on the rising edge. The serial
bit clock, DAC_SCLK and/or ADC_SCLK, must be synchronously derived from the master clock and be
equal to 256x, 128x, 64x, 48x or 32x Fs, depending on the interface format selected and desired speed
mode. One-Line Mode #1 and One-Line Mode #2 will operate in master or slave mode. Refer to Table 5 for
required clock ratios. The SCLK to sample rate (LRCK) ratios are shown in Tables 5 through 8.
I²S, Left-Justified, Right-Justified
Ratio
SSM
DSM
QSM
256x, 384x, 512x,
768x, 1024x
128x, 192x, 256x, 384x,
512x
64x, 96x, 128x, 192x,
256x
SCLK/LRCK (Slave Mode)
32x, 48x, 64x
32x, 48x, 64x
32x, 48x, 64x
SCLK/LRCK (Master Mode)
64x
64x
64x
MCLK/LRCK
Table 5. I²S, LJ, RJ Clock Ratios
OLM #1
SSM
DSM
QSM
256x, 384x, 512x,
768x, 1024x
256x, 384x, 512x
N/A
SCLK/LRCK (Slave Mode)
128x
128x
N/A
SCLK/LRCK (Master Mode)
128x
128x
N/A
MCLK/LRCK
Table 6. OLM#1 Clock Ratios
OLM #2
SSM
DSM
QSM
256x, 384x, 512x,
768x, 1024x
256x, 384x, 512x
N/A
SCLK/LRCK (Slave Mode)
256x
256x
N/A
SCLK/LRCK (Master Mode)
256x
256x
N/A
MCLK/LRCK
Table 7. OLM#2 Clock Ratios
TDM
SSM
DSM
QSM (DAC only)
256x, 384x, 512x,
768x, 1024x
256x, 384x, 512x
256x
SCLK/LRCK (Slave Mode)
256X
256X
256X
SCLK/LRCK (Master Mode)
N/A
N/A
N/A
MCLK/LRCK
Table 8. TDM Clock Ratios
DS648F2
31
CS42448
4.5.1
I²S
ADC/DAC_LRCK
L eft C h a n n el
Rig ht C h a n n el
ADC/DAC_SCLK
DAC_SDINx
ADC_SDOUTx
MSB
M SB
LS B
MSB
LS B
AOUT 2, 4, 6 or 8
AIN 2, 4, or 6
AOUT 1, 3, 5 or 7
AIN 1, 3, or 5
Figure 15. I²S Format
4.5.2
Left-Justified
ADC/DAC_LRCK
L eft C h a n n el
Rig ht C h a n n el
ADC/DAC_SCLK
DAC_SDINx
ADC_SDOUTx
MSB
LS B
M SB
LS B
MSB
AOUT 2, 4, 6 or 8
AIN 2, 4, or 6
AOUT 1, 3, 5 or 7
AIN 1, 3, or 5
Figure 16. Left Justified Format
4.5.3
Right-Justified
ADC/DAC_LRCK
L eft C h a n n el
R ig ht C h a n n el
ADC/DAC_SCLK
DAC_SDINx
ADC_SDOUTx
M SB
MSB
LSB
LSB
AOUT 2, 4, 6 or 8
AIN 2, 4, or 6
AOUT 1, 3, 5 or 7
AIN 1, 3, or 5
Figure 17. Right Justified Format
4.5.4
OLM #1
OLM #1 serial audio interface format operates in Single- or Double-Speed Mode only and will master or
slave ADC/DAC_SCLK at 128 Fs.
ADC/DAC_LRCK
64 clks
64 clks
Left Channel
Right Channel
ADC/DAC_SCLK
DAC_SDIN1
DAC_SDIN4
ADC_SDOUT1
MSB
LSB MSB
LSB MSB
LSB
MSB
LSB MSB
LSB MSB
LSB
AOUT1
AOUT3
AOUT5
AOUT2
AOUT4
AOUT6
20 clks
20 clks
20 clks
20 clks
20 clks
20 clks
AOUT7
AOUT8
20 clks
20 clks
AIN1
AIN3
20 clks
20 clks
-
20 clks
AIN2
AIN4
20 clks
20 clks
MSB
-
20 clks
Figure 18. One-Line Mode #1 Format
32
DS648F2
CS42448
4.5.5
OLM #2
OLM #2 serial audio interface format operates in Single- or Double-Speed Mode and will master or slave
ADC/DAC_SCLK at 256Fs.
128 clks
128 clks
Left Channel
ADC/DAC_LRCK
Right Channel
ADC/DAC_SCLK
MSB
DAC_SDIN1
LSB MSB
LSB MSB
LSB
MSB
LSB MSB
LSB MSB
LSB
AOUT1
AOUT3
AOUT5
AOUT2
AOUT4
AOUT6
24 clks
24 clks
24 clks
24 clks
24 clks
24 clks
AOUT7
AOUT8
24 clks
24 clks
DAC_SDIN4
ADC_SDOUT1
AIN1
AIN3
AIN5
AIN2
AIN4
AIN6
24 clks
24 clks
24 clks
24 clks
24 clks
24 clks
MSB
Figure 19. One Line Mode #2 Format
4.5.6
TDM
TDM data is received most significant bit (MSB) first, on the second rising edge of the DAC_SCLK occurring after a DAC_LRCK rising edge. All data is valid on the rising edge of DAC_SCLK. The AIN1 MSB is
transmitted early, but is guaranteed valid for a specified time after SCLK rises. All other bits are transmitted on the falling edge of ADC_SCLK. Each time slot is 32 bits wide, with the valid data sample left ‘justified within the time slot. Valid data lengths are 16, 18, 20, or 24.
ADC/DAC_SCLK must operate at 256Fs. ADC/DAC_LRCK identifies the start of a new frame and is equal
to the sample rate, Fs.
ADC/DAC_LRCK is sampled as valid on the rising ADC/DAC_SCLK edge preceding the most significant
bit of the first data sample and must be held valid for at least 1 ADC/DAC_SCLK period.
Note:
The ADC does not meet the timing requirements for proper operation in Quad-Speed Mode.
256 clks
Bit or Word Wide
ADC/DAC_LRCK
ADC/DAC_SCLK
DAC_SDIN1
LSB MSB
LSB MSB
AOUT1
32 clks
ADC_SDOUT1
MSB
LSB MSB
AOUT2
LSB MSB
AOUT3
LSB MSB
AOUT4
LSB MSB
AOUT5
LSB MSB
AOUT6
LSB MSB
LSB MSB
AOUT7
AOUT8
32 clks
32 clks
32 clks
32 clks
32 clks
32 clks
32 clks
LSB MSB
LSB MSB
LSB MSB
LSB MSB
LSB MSB
LSB MSB
LSB MSB
LSB MSB
AIN1
AIN2
AIN3
AIN4
AIN5
AIN6
AUX1
AUX2
32 clks
32 clks
32 clks
32 clks
32 clks
32 clks
32 clks
32 clks
Figure 20. TDM Format
DS648F2
33
CS42448
4.5.7
I/O Channel Allocation
Digital Input/Output
DAC_SDIN1
DAC_SDIN2
DAC_SDIN3
DAC_SDIN4
ADC_SDOUT1
ADC_SDOUT2
ADC_SDOUT3
Interface
Format
I²S, LJ, RJ
OLM
TDM
I²S, LJ, RJ
OLM
TDM
I²S, LJ, RJ
OLM
TDM
I²S, LJ, RJ
OLM
TDM
I²S, LJ, RJ
OLM
TDM
I²S, LJ, RJ
OLM
TDM
I²S, LJ, RJ
OLM
TDM
Analog Output/Input Channel Allocation
from/to Digital I/O
AOUT 1,2
AOUT 1,2,3,4,5,6
AOUT 1,2,3,4,5,6,7,8
AOUT 3,4
Not Used
Not Used
AOUT 5,6
Not Used
Not Used
AOUT 7,8
AOUT 7,8
Not Used
AIN 1,2
AIN 1,2,3,4,5,6
AIN 1,2,3,4,5,6; (2 additional channels from AUX_SDIN)
AIN 3,4
Not Used
Not Used
AIN 5,6
Not Used
Not Used
Table 9. Serial Audio Interface Channel Allocations
4.6
AUX Port Digital Interface Formats
These serial data lines are used when supporting the TDM Mode of operation with an external ADC or
S/PDIF receiver attached. The AUX serial port operates only as a clock master. The AUX_SCLK will operate
at 64xFs, where Fs is equal to the ADC sample rate (ADC_LRCK). If the AUX_SDIN signal is not being
used, it should be tied to AGND via a pull-down resistor.
The AUX port will operate in either the Left-Justified or I²S digital interface format with bit depths ranging
from 16 to 24 bits. Settings for the AUX port are made through the register “Interface Formats (Address
04h)” on page 44.
4.6.1
I²S
AUX_LRCK
L eft C h a n n el
R ig ht C h a n n el
AUX_SCLK
AUX_SDIN
MSB
LS B
M SB
LS B
MSB
AUX2
AUX1
Figure 21. AUX I²S Format
4.6.2
34
Left-Justified
DS648F2
CS42448
AUX_LRCK
L e ft C h a n n el
R ig ht C h a n n el
AUX_SCLK
AUX_SDIN
MSB
LS B
M SB
LS B
MSB
AUX2
AUX1
Figure 22. AUX Left-Justified Format
4.7
Control Port Description and Timing
The control port is used to access the registers allowing the CS42448 to be configured for the desired operational modes and formats. The operation of the control port may be completely asynchronous with respect to the audio sample rates. However, to avoid potential interference problems, the control port pins
should remain static if no operation is required.
The control port has two modes: SPI and I²C, with the CS42448 acting as a slave device. SPI Mode is selected if there is a high-to-low transition on the AD0/CS pin, after the RST pin has been brought high. I²C
Mode is selected by connecting the AD0/CS pin through a resistor to VLC or DGND, thereby permanently
selecting the desired AD0 bit address state.
4.7.1
SPI Mode
In SPI Mode, CS is the CS42448 chip-select signal, CCLK is the control port bit clock (input into the
CS42448 from the microcontroller), CDIN is the input data line from the microcontroller, CDOUT is the
output data line to the microcontroller. Data is clocked in on the rising edge of CCLK and out on the falling
edge.
Figure 23 shows the operation of the control port in SPI Mode. To write to a register, bring CS low. The
first seven bits on CDIN form the chip address and must be 1001111. The eighth bit is a read/write indicator (R/W), which should be low to write. The next eight bits form the Memory Address Pointer (MAP),
which is set to the address of the register that is to be updated. The next eight bits are the data which will
be placed into the register designated by the MAP. During writes, the CDOUT output stays in the Hi-Z
state. It may be externally pulled high or low with a 47 kΩ resistor, if desired.
There is a MAP auto-increment capability, enabled by the INCR bit in the MAP register. If INCR is a zero,
the MAP will stay constant for successive read or writes. If INCR is set to a 1, the MAP will auto-increment
after each byte is read or written, allowing block reads or writes of successive registers.
To read a register, the MAP has to be set to the correct address by executing a partial write cycle which
finishes (CS high) immediately after the MAP byte. The MAP auto-increment bit (INCR) may be set or not,
as desired. To begin a read, bring CS low, send out the chip address and set the read/write bit (R/W) high.
The next falling edge of CCLK will clock out the MSB of the addressed register (CDOUT will leave the high
impedance state). If the MAP auto-increment bit is set to 1, the data for successive registers will appear
consecutively.
DS648F2
35
CS42448
CS
CC LK
C H IP
ADDRESS
MAP
1001111
C D IN
C H IP
ADDRESS
DATA
1001111
LSB
MSB
R/W
b y te 1
R/W
b y te n
High Impedance
LSB MSB
MSB
CDOUT
LSB
MAP = Memory Address Pointer, 8 bits, MSB first
Figure 23. Control Port Timing in SPI Mode
4.7.2
I²C Mode
In I²C Mode, SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL.
There is no CS pin. Pins AD0 and AD1 form the two least-significant bits of the chip address and should
be connected through a resistor to VLC or DGND as desired. The state of the pins is sensed while the
CS42448 is being reset.
The signal timings for a read and write cycle are shown in Figure 24 and Figure 25. A Start condition is
defined as a falling transition of SDA while the clock is high. A Stop condition is a rising transition while
the clock is high. All other transitions of SDA occur while the clock is low. The first byte sent to the
CS42448 after a Start condition consists of a 7-bit chip address field and a R/W bit (high for a read, low
for a write). The upper 5 bits of the 7-bit address field are fixed at 10010. To communicate with a CS42448,
the chip address field, which is the first byte sent to the CS42448, should match 10010 followed by the
settings of the AD1 and AD0. The eighth bit of the address is the R/W bit. If the operation is a write, the
next byte is the Memory Address Pointer (MAP) which selects the register to be read or written. If the operation is a read, the contents of the register pointed to by the MAP will be output. Setting the auto-increment bit in MAP allows successive reads or writes of consecutive registers. Each byte is separated by an
acknowledge bit. The ACK bit is output from the CS42448 after each input byte is read, and is input to the
CS42448 from the microcontroller after each transmitted byte.
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18
19
24 25 26 27 28
SCL
CHIP ADDRESS (WRITE)
1
SDA
0
0
1
0 AD1 AD0 0
MAP BYTE
INCR
ACK
6
5
4
3
1
0
7
ACK
6
1
DATA +n
DATA +1
DATA
2
0
7
ACK
START
6
1
0
7
6
1
0
ACK
STOP
Figure 24. Control Port Timing, I²C Write
36
DS648F2
CS42448
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16
17 18
19
20 21 22 23 24 25 26 27 28
SCL
CHIP ADDRESS (WRITE)
SDA
1
0
0
1
STOP
MAP BYTE
0 AD1 AD0 0
INCR
6
5
4
3
2
1
ACK
CHIP ADDRESS (READ)
1
0
ACK
START
0
0
1
DATA
0 AD1 AD0 1
7
ACK
START
DATA +1
0
7
ACK
0
DATA + n
7
0
NO
ACK
STOP
Figure 25. Control Port Timing, I²C Read
Since the read operation cannot set the MAP, an aborted write operation is used as a preamble. As shown
in Figure 25, the write operation is aborted after the acknowledge for the MAP byte by sending a stop condition. The following pseudocode illustrates an aborted write operation followed by a read operation.
Send start condition.
Send 10010xx0 (chip address & write operation).
Receive acknowledge bit.
Send MAP byte, auto increment off.
Receive acknowledge bit.
Send stop condition, aborting write.
Send start condition.
Send 10010xx1(chip address & read operation).
Receive acknowledge bit.
Receive byte, contents of selected register.
Send acknowledge bit.
Send stop condition.
Setting the auto-increment bit in the MAP allows successive reads or writes of consecutive registers. Each
byte is separated by an acknowledge bit.
4.8
Interrupts
The 42448 has a comprehensive interrupt capability. The INT output pin is intended to drive the interrupt
input pin on the host microcontroller. The INT pin may be configured as an active low or active high CMOS
driver or an open-drain driver. This last mode is used for active low, wired-OR hook-ups, with multiple peripherals connected to the microcontroller interrupt input pin.
Many conditions can cause an interrupt, as listed in the interrupt status register descriptions. See “Status
(Address 19h) (Read Only)” on page 51. Each source may be masked off through mask register bits. In addition, each source may be set to rising edge, falling edge, or level sensitive. Combined with the option of
level sensitive or edge sensitive modes within the microcontroller, many different configurations are possible, depending on the needs of the system designer.
4.9
Recommended Power-Up Sequence
1. Hold RST low until the power supply and clocks are stable. In this state, the control port is reset to its
default settings and VQ will remain low.
DS648F2
37
CS42448
2. Bring RST high. The device will initially be in a low power state with VQ low. All features will default as
described in the “Register Quick Reference” on page 39.
3. Perform a write operation to the Power Control register (“Power Control (Address 02h)” on page 42) to
set bit 0 to a ‘1’b. This will place the device in a power down state.
4. Load the desired register settings while keeping the PDN bit set to ‘1’b.
5. Mute all DACs. Muting the DACs suppresses any noise associated with the CODEC's first initialization
after power is applied.
6. Set the PDN bit in the power control register to ‘0’b. VQ will ramp to approximately VA/2 according to
the Popguard specification in section “Popguard” on page 28.
7. Following approximately 2000 LRCK cycles, the device is initialized and ready for normal operation.
8. After the CODEC is initialized, wait ~90 LRCK cycles (~1.9 ms @48 kHz) and then unmute the DACs.
9. Normal operation begins.
4.10
Reset and Power-Up
It is recommended that reset be activated if the analog or digital supplies drop below the recommended operating condition to prevent power-glitch-related issues.
The delta-sigma modulators settle in a matter of microseconds after the analog section is powered, either
through the application of power or by setting the RST pin high. However, the voltage reference will take
much longer to reach a final value due to the presence of external capacitance on the ADC/DAC_FILT+
pins. A time delay of approximately 400 ms is required after applying power to the device or after exiting a
reset state. During this voltage reference ramp delay, all serial ports and DAC outputs will be automatically
muted.
4.11
Power Supply, Grounding, and PCB Layout
As with any high-resolution converter, the CS42448 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 2 shows the recommended power arrangements, with VA connected to clean supplies. VD, which powers the digital circuitry, may be run from
the system logic supply. Alternatively, VD may be powered from the analog supply via a ferrite bead. In this
case, no additional devices should be powered from VD.
Extensive use of power and ground planes, ground plane fill in unused areas and surface mount decoupling
capacitors are recommended. Decoupling capacitors should be as near to the pins of the CS42448 as possible. The low value ceramic capacitor should be the nearest to the pin and should be mounted on the same
side of the board as the CS42448 to minimize inductance effects. All signals, especially clocks, should be
kept away from the ADC/DAC_FILT+, VQ pins in order to avoid unwanted coupling into the modulators. The
ADC/DAC_FILT+ and VQ decoupling capacitors, particularly the 0.1 µF, must be positioned to minimize the
electrical path from ADC/DAC_FILT+ and AGND. The CDB42448 evaluation board demonstrates the optimum layout and power supply arrangements.
For optimal heat dissipation from the package, it is recommended that the area directly under the part be
filled with copper and tied to the ground plane. The use of vias connecting the topside ground to the backside ground is also recommended.
38
DS648F2
CS42448
5. REGISTER QUICK REFERENCE
Note: The default value in all “Reserved” registers must be preserved.
Addr Function
7
6
5
4
3
2
1
0
Chip_ID3
Chip_ID2
Chip_ID1
Chip_ID0
Rev_ID3
Rev_ID2
Rev_ID1
Rev_ID0
01h
ID
p 41 default
0
0
0
0
0
0
0
1
02h
Power Control
PDN_ADC3
PDN_ADC2
PDN_ADC1
PDN_DAC4
PDN_DAC3
PDN_DAC2
PDN_DAC1
PDN
p 42 default
03h
Functional
Mode
p 43 default
0
0
0
0
0
0
0
0
DAC_FM1
DAC_FM0
ADC_FM1
ADC_FM0
MFreq2
MFreq1
MFreq0
Reserved
1
1
1
1
0
0
0
0
FREEZE
AUX_DIF
DAC_DIF2
DAC_DIF1
DAC_DIF0
ADC_DIF2
ADC_DIF1
ADC_DIF0
04h
Interface
Formats
p 44 default
0
0
1
1
0
1
1
0
05h
ADC Control
ADC1-2_HPF
FREEZE
ADC3_HPF
FREEZE
DAC_DEM
ADC1
SINGLE
ADC2
SINGLE
ADC3
SINGLE
AIN5_MUX
AIN6_MUX
(w/DAC_DEM)
p 45 default
0
0
0
0
0
0
0
0
DAC_SNG
VOL
DAC_SZC1
DAC_SZC0
AMUTE
MUTE
ADC_SP
ADC_SNG
VOL
ADC_SZC1
ADC_SZC0
06h
Transition
Control
07h
Channel
Mute
p 49 default
0
0
0
0
0
0
0
0
08h
Vol. Control
AOUT1
AOUT1
VOL7
AOUT1
VOL6
AOUT1
VOL5
AOUT1
VOL4
AOUT1
VOL3
AOUT1
VOL2
AOUT1
VOL1
AOUT1
VOL0
p 49 default
0
0
0
0
0
0
0
0
09h
Vol. Control
AOUT2
AOUT2
VOL7
AOUT2
VOL6
AOUT2
VOL5
AOUT2
VOL4
AOUT2
VOL3
AOUT2
VOL2
AOUT2
VOL1
AOUT2
VOL0
p 49 default
0
0
0
0
0
0
0
0
0Ah
Vol. Control
AOUT3
AOUT3
VOL7
AOUT3
VOL6
AOUT3
VOL5
AOUT3
VOL4
AOUT3
VOL3
AOUT3
VOL2
AOUT3
VOL1
AOUT3
VOL0
p 49 default
0
0
0
0
0
0
0
0
0Bh
Vol. Control
AOUT4
AOUT4
VOL7
AOUT4
VOL6
AOUT4
VOL5
AOUT4
VOL4
AOUT4
VOL3
AOUT4
VOL2
AOUT4
VOL1
AOUT4
VOL0
p 49 default
0
0
0
0
0
0
0
0
0Ch
Vol. Control
AOUT5
AOUT5
VOL7
AOUT5
VOL6
AOUT5
VOL5
AOUT5
VOL4
AOUT5
VOL3
AOUT5
VOL2
AOUT5
VOL1
AOUT5
VOL0
p 49 default
0
0
0
0
0
0
0
0
0Dh
Vol. Control
AOUT6
AOUT6
VOL7
AOUT6
VOL6
AOUT6
VOL5
AOUT6
VOL4
AOUT6
VOL3
AOUT6
VOL2
AOUT6
VOL1
AOUT6
VOL0
p 49 default
0
0
0
0
0
0
0
0
0Eh
Vol. Control
AOUT7
AOUT7
VOL7
AOUT7
VOL6
AOUT7
VOL5
AOUT7
VOL4
AOUT7
VOL3
AOUT7
VOL2
AOUT7
VOL1
AOUT7
VOL0
p 47 default
0
0
0
1
0
0
0
0
AOUT8 MUTE
AOUT7
MUTE
AOUT6
MUTE
AOUT5
MUTE
AOUT4
MUTE
AOUT3
MUTE
AOUT2
MUTE
AOUT1
MUTE
p 49 default
0
0
0
0
0
0
0
0
0Fh
Vol. Control
AOUT8
AOUT8
VOL7
AOUT8
VOL6
AOUT8
VOL5
AOUT8
VOL4
AOUT8
VOL3
AOUT8
VOL2
AOUT8
VOL1
AOUT8
VOL0
0
0
0
0
0
0
10h
DAC Channel Invert
p 49 default
p 50 default
DS648F2
0
0
INV_AOUT8
INV_AOUT7
0
0
INV_AOUT6 INV_AOUT5 INV_AOUT4 INV_AOUT3 INV_AOUT2 INV_AOUT1
0
0
0
0
0
0
39
CS42448
Addr Function
11h
12h
13h
14h
15h
16h
17h
18h
19h
1Ah
1Bh
7
6
5
4
3
2
1
0
Vol. Control
AIN1
AIN1
VOL7
AIN1
VOL6
AIN1
VOL5
AIN1
VOL4
AIN1
VOL3
AIN1
VOL2
AIN1
VOL1
AIN1
VOL0
p 49 default
0
0
0
0
0
0
0
0
Vol. Control
AIN2
AIN2
VOL7
AIN2
VOL6
AIN2
VOL5
AIN2
VOL4
AIN2
VOL3
AIN2
VOL2
AIN2
VOL1
AIN2
VOL0
p 50 default
0
0
0
0
0
0
0
0
Vol. Control
AIN3
AIN3
VOL7
AIN3
VOL6
AIN3
VOL5
AIN3
VOL4
AIN3
VOL3
AIN3
VOL2
AIN3
VOL1
AIN3
VOL0
p 49 default
0
0
0
0
0
0
0
0
Vol. Control
AIN4
AIN4
VOL7
AIN4
VOL6
AIN4
VOL5
AIN4
VOL4
AIN4
VOL3
AIN4
VOL2
AIN4
VOL1
AIN4
VOL0
p 50 default
0
0
0
0
0
0
0
0
Vol. Control
AIN5
AIN5
VOL7
AIN5
VOL6
AIN5
VOL5
AIN5
VOL4
AIN5
VOL3
AIN5
VOL2
AIN5
VOL1
AIN5
VOL0
p 49 default
0
0
0
0
0
0
0
0
Vol. Control
AIN6
AIN6
VOL7
AIN6
VOL6
AIN6
VOL5
AIN6
VOL4
AIN6
VOL3
AIN6
VOL2
AIN6
VOL1
AIN6
VOL0
p 50 default
0
0
0
0
0
0
0
0
Reserved
Reserved
INV_A6
INV_A5
INV_A4
INV_A3
INV_A2
INV_A1
p 50 default
0
0
0
0
0
0
0
0
Status Control
Reserved
Reserved
Reserved
Reserved
INT1
INT0
Reserved
Reserved
p 51 default
0
0
0
0
0
0
0
0
Reserved
Reserved
Reserved
DAC_CLK
Error
ADC_CLK
Error
ADC3
OVFL
ADC2
OVFL
ADC1
OVFL
p 51 default
0
0
0
X
X
X
X
X
Status Mask
Reserved
Reserved
Reserved
DAC_CLK
Error_M
ADC_CLK
Error_M
ADC3
OVFL_M
ADC2
OVFL_M
ADC1
OVFL_M
p 52 default
0
0
0
0
0
0
0
0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
MCPolarity
MUTEC
Active
0
0
0
0
0
0
0
0
ADC Channel Invert
Status
MUTEC
p 52 default
40
DS648F2
CS42448
6. REGISTER DESCRIPTION
All registers are read/write except for the I.D. and Revision Register and Interrupt Status Register which are read
only. See the following bit-definition tables for bit assignment information. The default state of each bit after a powerup sequence or reset is listed in each bit description.
6.1
Memory Address Pointer (MAP)
Not a register
7
6
5
4
3
2
1
0
INCR
MAP6
MAP5
MAP4
MAP3
MAP2
MAP1
MAP0
6.1.1
Increment (INCR)
Default = 1
Function:
Memory address pointer auto increment control
0 - MAP is not incremented automatically.
1 - Internal MAP is automatically incremented after each read or write.
6.1.2
Memory Address Pointer (MAP[6:0])
Default = 0000001
Function:
Memory address pointer (MAP). Sets the register address that will be read or written by the control port.
6.2
Chip I.D. and Revision Register (Address 01h) (Read Only)
7
6
5
4
3
2
1
0
Chip_ID3
Chip_ID2
Chip_ID1
Chip_ID0
Rev_ID3
Rev_ID2
Rev_ID1
Rev_ID0
6.2.1
Chip I.D. (CHIP_ID[3:0])
Default = 0000
Function:
I.D. code for the CS42448. Permanently set to 0000.
6.2.2
Chip Revision (REV_ID[3:0])
Default = 0001
Function:
CS42448 revision level. Revision A is coded as 0001.
DS648F2
41
CS42448
6.3
Power Control (Address 02h)
7
6
5
4
3
2
1
0
PDN_ADC3
PDN_ADC2
PDN_ADC1
PDN_DAC4
PDN_DAC3
PDN_DAC2
PDN_DAC1
PDN
6.3.1
Power Down ADC Pairs (PDN_ADCX)
Default = 0
0 - Disable
1 - Enable
Function:
When enabled, the respective ADC channel pair (ADC1 - AIN1/AIN2; ADC2 - AIN3/AIN4; and ADC3 AIN5/AIN6) will remain in a reset state.
6.3.2
Power Down DAC Pairs (PDN_DACX)
Default = 0
0 - Disable
1 - Enable
Function:
When enabled, the respective DAC channel pair (DAC1 - AOUT1/AOUT2; DAC2 - AOUT3/AOUT4; DAC3
- AOUT5/AOUT6; and DAC4 - AOUT7/AOUT8) will remain in a reset state. It is advised that any change
of these bits be made while the DACs are muted or the power down bit (PDN) is enabled to eliminate the
possibility of audible artifacts.
6.3.3
Power Down (PDN)
Default = 0
0 - Disable
1 - Enable
Function:
The entire device will enter a low-power state when this function is enabled. The contents of the control
registers are retained in this mode.
42
DS648F2
CS42448
6.4
Functional Mode (Address 03h)
7
6
5
4
3
2
1
0
DAC_FM1
DAC_FM0
ADC_FM1
ADC_FM0
MFreq2
MFreq1
MFreq0
Reserved
6.4.1
DAC Functional Mode (DAC_FM[1:0])
Default = 11
Master Mode
00 - Single-Speed Mode (4 to 50 kHz sample rates)
01 - Double-Speed Mode (50 to 100 kHz sample rates)
10 - Quad-Speed Mode (100 to 200 kHz sample rates)
Slave Mode
11 - (Auto-detect sample rates)
Function:
Selects the required range of sample rates for the DAC serial port.
6.4.2
ADC Functional Mode (ADC_FM[1:0])
Default = 11
Master Mode
00 - Single-Speed Mode (4 to 50 kHz sample rates)
01 - Double-Speed Mode (50 to 100 kHz sample rates)
10 - Quad-Speed Mode (100 to 200 kHz sample rates)
Slave Mode
11 - (Auto-detect sample rates)
Function:
Selects the required range of sample rates for the ADC serial port.
6.4.3
MCLK Frequency (MFREQ[2:0])
Default = 000
Function:
Sets the appropriate frequency for the supplied MCLK. For TDM and OLM #2 operation, ADC/DAC_SCLK
must equal 256Fs. For OLM #1 operation, ADC/DAC_SCLK must equal 128Fs. MCLK can be equal to or
greater than the higher frequency of ADC_SCLK or DAC_SCLK.
MFreq2
MFreq1
MFreq0
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Description
1.0290 MHz to 12.8000 MHz
1.5360 MHz to 19.2000 MHz
2.0480 MHz to 25.6000 MHz
3.0720 MHz to 38.4000 MHz
4.0960 MHz to 51.2000 MHz
SSM
256
384
512
768
1024
Ratio (xFs)
DSM
128
192
256
384
512
QSM
64
96
128
192
256
Table 10. MCLK Frequency Settings for I²S, Left and Right Justified Interface Formats
DS648F2
43
CS42448
MFreq2
MFreq1
MFreq0
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Description
1.0290 MHz to 12.8000 MHz
1.5360 MHz to 19.2000 MHz
2.0480 MHz to 25.6000 MHz
3.0720 MHz to 38.4000 MHz
4.0960 MHz to 51.2000 MHz
SSM
256
384
512
768
1024
Ratio (xFs)
DSM
N/A
N/A
256
384
512
QSM
N/A
N/A
N/A
N/A
256
Table 11. MCLK Frequency Settings for TDM & OLM Interface Formats
6.5
Interface Formats (Address 04h)
7
6
5
4
3
2
1
0
FREEZE
AUX_DIF
DAC_DIF2
DAC_DIF1
DAC_DIF0
ADC_DIF2
ADC_DIF1
ADC_DIF0
6.5.1
Freeze Controls (FREEZE)
Default = 0
Function:
This function will freeze the previous settings of, and allow modifications to be made to the channel mutes,
the DAC and ADC Volume Control/Channel Invert registers without the changes taking effect until the
FREEZE is disabled. To have multiple changes in these control port registers take effect simultaneously,
enable the FREEZE bit, make all register changes, then disable the FREEZE bit.
6.5.2
Auxiliary Digital Interface Format (AUX_DIF)
Default = 0
0 - Left Justified
1 - I²S
Function:
This bit selects the digital interface format used for the AUX Serial Port. The required relationship between
the Left/Right clock, serial clock and serial data is defined by the Digital Interface Format and the options
are detailed in Figures 23-24.
6.5.3
DAC Digital Interface Format (DAC_DIF[2:0])
Default = 110
Function:
These bits select the digital interface format used for the DAC Serial Port. The required relationship between
the Left/Right clock, serial clock and serial data is defined by the Digital Interface Format; the options are
detailed in the section “CODEC Digital Interface Formats” on page 31.
Refer to Table 9, “Serial Audio Interface Channel Allocations,” on page 34.
DAC_DIF2
DAC_DIF1
DAC_DIF0
0
0
0
0
0
1
0
1
0
Description
Left Justified, up to 24-bit data
I²S, up to 24-bit data
Right Justified, 24-bit data
Format
Figure
0
1
2
Figure 16
Figure 15
Figure 17
Table 12. DAC Digital Interface Formats
44
DS648F2
CS42448
DAC_DIF2
DAC_DIF1
DAC_DIF0
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Description
Right Justified, 16-bit data
One-Line #1, 20-bit
One-Line #2, 24-bit
TDM Mode, 24-bit (slave only)
Reserved
Format
Figure
3
4
5
6
-
Figure 17
Figure 18
Figure 19
Figure 20
-
Table 12. DAC Digital Interface Formats
6.5.4
ADC Digital Interface Format (ADC_DIF[2:0])
Default = 110
Function:
These bits select the digital interface format used for the ADC serial port. The required relationship between
the Left/Right clock, serial clock and serial data is defined by the Digital Interface Format and the options
are detailed in the section “CODEC Digital Interface Formats” on page 31. Refer to Table 9, “Serial Audio
Interface Channel Allocations,” on page 34.
Note:
The ADC does not meet Quad-Speed Mode timing specifications in the TDM interface format.
ADC_DIF2 ADC_DIF1 ADC_DIF0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
Description
Left Justified, up to 24-bit data
I²S, up to 24-bit data
Right Justified, 24-bit data
Right Justified, 16-bit data
One-Line #1, 20-bit
One-Line #2, 24-bit
TDM Mode, 24-bit (slave only)
Reserved
0
1
0
1
0
1
0
1
Format
Figure
0
1
2
3
4
5
6
-
Figure 16
Figure 15
Figure 17
Figure 17
Figure 18
Figure 19
Figure 20
-
Table 13. ADC Digital Interface Formats
6.6
ADC Control & DAC De-Emphasis (Address 05h)
7
6
5
4
3
2
1
0
ADC1-2_HPF
FREEZE
ADC3_HPF
FREEZE
DAC_DEM
ADC1
SINGLE
ADC2
SINGLE
ADC3
SINGLE
AIN5_MUX
AIN6_MUX
6.6.1
ADC1-2 High-Pass Filter Freeze (ADC1-2_HPF FREEZE)
Default = 0
Function:
When this bit is set, the internal high-pass filter will be disabled for ADC1 and ADC2.The current DC offset
value will be frozen and continue to be subtracted from the conversion result. See “ADC Digital Filter
Characteristics” on page 13.
DS648F2
45
CS42448
6.6.2
ADC3 High Pass Filter Freeze (ADC3_HPF FREEZE)
Default = 0
Function:
When this bit is set, the internal high-pass filter will be disabled for ADC3.The current DC offset value will
be frozen and continue to be subtracted from the conversion result. See “ADC Digital Filter Characteristics” on page 13.
6.6.3
DAC De-Emphasis Control (DAC_DEM)
Default = 0
0 - No De-Emphasis
1 - De-Emphasis Enabled (Auto-Detect Fs)
Function:
Enables the digital filter to maintain the standard 15μs/50μs digital de-emphasis filter response at the
auto-detected sample rate of either 32, 44.1, or 48 kHz. De-emphasis will not be enabled, regardless of
this register setting, at any other sample rate.
6.6.4
ADC1 Single-Ended Mode (ADC1 SINGLE)
Default = 0
0 - Disabled; Differential input to ADC1
1 - Enabled; Single-Ended input to ADC1
Function:
When enabled, this bit allows the user to apply a single-ended input to the positive terminal of ADC1. A
+6 dB digital gain is automatically applied to the serial audio data of ADC1. The negative leg must be driven to the common mode of the ADC. See Figure 27 on page 53 for a graphical description.
6.6.5
ADC2 Single-Ended Mode (ADC2 SINGLE)
Default = 0
0 - Disabled; Differential input to ADC2
1 - Enabled; Single-Ended input to ADC2
Function:
When enabled, this bit allows the user to apply a single-ended input to the positive terminal of ADC2. A
+6 dB digital gain is automatically applied to the serial audio data of ADC2. The negative leg must be driven to the common mode of the ADC. See Figure 27 on page 53 for a graphical description.
46
DS648F2
CS42448
6.6.6
ADC3 Single-Ended Mode (ADC3 SINGLE)
Default = 0
0 - Disabled; Differential input to ADC
1 - Enabled; Single-Ended input to ADC
Function:
When disabled, this bit removes the 4:2 multiplexer from the signal path of ADC3 allowing a differential
input. When enabled, this bit allows the user to choose between four single-ended inputs to ADC3, using
the AIN5_MUX and AIN6_MUX bits. See Figure 12 on page 27 and Figure 27 on page 53 for graphical
descriptions.
6.6.7
Analog Input Ch. 5 Multiplexer (AIN5_MUX)
Default = 0
0 - Single-Ended Input AIN5A
1 - Single-Ended Input AIN5B
Function:
ADC3 can accept single-ended input signals when the ADC3 SINGLE bit is enabled. The AIN5_MUX bit
selects between two input channels (AIN5A or AIN5B) to be sent to ADC3 in Single-Ended Mode. This bit
is ignored when the ADC3_SINGLE bit is disabled. See Figure 12 on page 27 for a graphical description.
6.6.8
Analog Input Ch. 6 Multiplexer (AIN6_MUX)
Default = 0
0 - Single-Ended Input AIN6A
1 - Single-Ended Input AIN6B
Function:
ADC3 can accept a single-ended input signal when the ADC3 SINGLE bit is enabled. The AIN6_MUX bit
selects between two input channels (AIN6A or AIN6B) to be sent to ADC3 in Single-Ended Mode. This bit
is ignored when the ADC3_SINGLE bit is disabled. See Figure 12 on page 27 for a graphical description.
6.7
Transition Control (Address 06h)
7
6
5
4
3
2
1
0
DAC_SNGVOL
DAC_SZC1
DAC_SZC0
AMUTE
MUTE ADC_SP
ADC_SNGVOL
ADC_SZC1
ADC_SZC0
6.7.1
Single Volume Control (DAC_SNGVOL, ADC_SNGVOL)
Default = 0
Function:
The individual channel volume levels are independently controlled by their respective Volume Control registers when this function is disabled. When enabled, the volume on all channels is determined by the
AOUT1 and AIN1 Volume Control register and the other Volume Control registers are ignored.
DS648F2
47
CS42448
6.7.2
Soft Ramp and Zero Cross Control (ADC_SZC[1:0], DAC_SZC[1:0])
Default = 00
00 - Immediate Change
01 - Zero Cross
10 - Soft Ramp
11 - Soft Ramp on Zero Crossings
Function:
Immediate Change
When Immediate Change is selected, all volume-level changes will take effect immediately in one step.
Zero Cross
Zero Cross Enable dictates that signal level changes, either by gain changes, attenuation changes or muting, will occur on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample
rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored
and implemented for each channel.
Soft Ramp
Soft Ramp allows level changes, either by gain changes, attenuation changes or muting, to be implemented by incrementally ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per
8 left/right clock periods.
Soft Ramp on Zero Crossing
Soft Ramp and Zero Cross Enable dictates that signal level changes, either by gain changes, attenuation
changes or muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB
level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms
at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel.
6.7.3
Auto-Mute (AMUTE)
Default = 1
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converters of the CS42448 will mute the output following the reception of 8192 consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. Detection
and muting is done independently for each channel. The quiescent voltage on the output will be retained
and the MUTEC pin will go active during the mute period. The muting function is affected, similar to volume control changes, by the Soft and Zero Cross bits (SZC[1:0]).
48
DS648F2
CS42448
6.7.4
Mute ADC Serial Port (MUTE ADC_SP)
Default = 0
0 - Disabled
1 - Enabled
Function:
When enabled, the ADC Serial Port will be muted.
6.8
DAC Channel Mute (Address 07h)
7
6
5
4
3
2
1
0
AOUT8_MUTE
AOUT7_MUTE
AOUT6_MUTE
AOUT5_MUTE
AOUT4_MUTE
AOUT3_MUTE
AOUT2_MUTE
AOUT1_MUTE
6.8.1
Independent Channel Mute (AOUTX_MUTE)
Default = 0
0 - Disabled
1 - Enabled
Function:
The respective Digital-to-Analog converter outputs of the CS42448 will mute when enabled. The quiescent voltage on the outputs will be retained. The muting function is affected by the DAC Soft and Zero
Cross bits (DAC_SZC[1:0]). When all channels are muted, the MUTEC pin will become active.
6.9
AOUTX Volume Control (Addresses 08h- 0Fh)
7
6
5
4
3
2
1
0
AOUTx_VOL7
AOUTx_VOL6
AOUTx_VOL5
AOUTx_VOL4
AOUTx_VOL3
AOUTx_VOL2
AOUTx_VOL1
AOUTx_VOL0
6.9.1
Volume Control (AOUTX_VOL[7:0])
Default = 00h
Function:
The AOUTx Volume Control registers allow independent setting of the signal levels in 0.5 dB increments
from 0 dB to -127.5 dB. Volume settings are decoded as shown in Table 14. The volume changes are
implemented as dictated by the Soft and Zero Cross bits (DAC_SZC[1:0]). All volume settings less than
-127.5 dB are equivalent to enabling the AOUTx_MUTE bit for the given channel.
Binary Code
00000000
00101000
01010000
01111000
10110100
Volume Setting
0 dB
-20 dB
-40 dB
-60 dB
-90 dB
Table 14. Example AOUT Volume Settings
DS648F2
49
CS42448
6.10
DAC Channel Invert (Address 10h)
7
6
5
4
3
2
1
0
INV_AOUT8
INV_AOUT7
INV_AOUT6
INV_AOUT5
INV_AOUT4
INV_AOUT3
INV_AOUT2
INV_AOUT1
6.10.1 Invert Signal Polarity (INV_AOUTX)
Default = 0
0 - Disabled
1 - Enabled
Function:
When enabled, these bits will invert the signal polarity of their respective channels.
6.11
AINX Volume Control (Address 11h-16h)
7
6
5
4
3
2
1
0
AINx_VOL7
AINx_VOL6
AINx_VOL5
AINx_VOL4
AINx_VOL3
AINx_VOL2
AINx_VOL1
AINx_VOL0
6.11.1
AINX Volume Control (AINX_VOL[7:0])
Default = 00h
Function:
The level of AIN1 - AIN6 can be adjusted in 0.5 dB increments as dictated by the ADC Soft and Zero Cross
bits (ADC_SZC[1:0]) from +24 to -64 dB. Levels are decoded in two’s complement, as shown in Table 15.
Binary Code
0111 1111
···
0011 0000
···
0000 0000
1111 1111
1111 1110
···
1000 0000
Volume Setting
+24 dB
···
+24 dB
···
0 dB
-0.5 dB
-1 dB
···
-64 dB
Table 15. Example AIN Volume Settings
6.12
ADC Channel Invert (Address 17h)
7
6
5
4
3
2
1
0
Reserved
Reserved
INV_AIN6
INV_AIN5
INV_AIN4
INV_AIN3
INV_AIN2
INV_AIN1
6.12.1 Invert Signal Polarity (INV_AINX)
Default = 0
0 - Disabled
1 - Enabled
Function:
50
DS648F2
CS42448
6.13
When enabled, these bits will invert the signal polarity of their respective channels.Status
Control
(Address 18h)
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
Reserved
INT1
INT0
Reserved
Reserved
6.13.1 Interrupt Pin Control (INT[1:0])
Default = 00
00 - Active high; high output indicates interrupt condition has occurred
01 - Active low, low output indicates an interrupt condition has occurred
10 - Open drain, active low. Requires an external pull-up resistor on the INT pin.
11 - Reserved
Function:
Determines how the Interrupt pin (INT) will indicate an interrupt condition.
For DAC and ADC clock errors, the INT pin is set to “Level Active Mode” and will become active during
the clock error. For the ADCx_OVFL error, the INT pin is set to Level Active Mode and will become active
during the overflow error.
6.14
Status (Address 19h) (Read Only)
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
DAC_CLK Error
ADC_CLK Error
ADC3_OVFL
ADC2_OVFL
ADC1_OVFL
For all bits in this register, a “1” means the associated error condition has occurred at least once since the
register was last read. A”0” means the associated error condition has NOT occurred since the last reading
of the register. Reading the register resets all bits to 0. Status bits that are masked off in the associated
mask register will always be “0” in this register.
6.14.1 DAC CLOCK ERROR (DAC_CLK ERROR)
Default = x
Function:
Indicates an invalid MCLK to DAC_LRCK ratio. This status flag is set to “Level Active Mode” and becomes
active during the error condition. See “System Clocking” on page 30 for valid clock ratios.
6.14.2 ADC CLOCK ERROR (ADC_CLK ERROR)
Default = x
Function:
Indicates an invalid MCLK to ADC_LRCK ratio. This status flag is set to “Level Active Mode” and becomes
active during the error condition. See “System Clocking” on page 30 for valid clock ratios.
6.14.3 ADC Overflow (ADCX_OVFL)
Default = x
Function:
Indicates that there is an over-range condition anywhere in the CS42448 ADC signal path of each of the
associated ADC’s. These status flags become active on the arrival of the error condition.
DS648F2
51
CS42448
6.15
Status Mask (Address 1Ah)
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
DAC_CLK
Error_M
ADC_CLK
Error_M
ADC3_OV
FL_M
ADC2_OVFL_M
ADC1_OVFL_M
Default = 00000
Function:
The bits of this register serve as a mask for the error sources found in the register “Status (Address 19h)
(Read Only)” on page 51. If a mask bit is set to 1, the error is unmasked, meaning that its occurrence will
affect the INT pin and the status register. If a mask bit is set to 0, the error is masked, meaning that its occurrence will not affect the INT pin or the status register. The bit positions align with the corresponding bits
in the Status register.
6.16
MUTEC Pin Control (Address 1Bh)
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
MCPolarity
MUTEC
ACTIVE
6.17
MUTEC Polarity Select (MCPOLARITY)
Default = 0
0 - Active low
1 - Active high
Function:
Determines the polarity of the MUTEC pin.
6.18
MUTE CONTROL ACTIVE (MUTEC ACTIVE)
Default = 0
0 - MUTEC pin is not active.
1 - MUTEC pin is active.
Function:
The MUTEC pin will go high or low (depending on the MUTEC Polarity Select bit) when this bit is enabled.
52
DS648F2
CS42448
7. EXTERNAL FILTERS
7.1
ADC Input Filter
The analog modulator samples the input at 6.144 MHz (internal MCLK=12.288 MHz). The digital filter will
reject signals within the stopband of the filter. However, there is no rejection for input signals which are multiples of the digital passband frequency (n × 6.144 MHz), where n=0,1,2,... Refer to Figures 26 and 27 for
a recommended analog input filter that will attenuate any noise energy at 6.144 MHz, in addition to providing
the optimum source impedance for the modulators. Refer to Figures 28 and 29 for low-cost, low-componentcount passive input filters. The use of capacitors that have a large voltage coefficient (such as general-purpose ceramics) must be avoided since these can degrade signal linearity
634 Ω
470 pF
C0G
4.7 μF
100 k Ω
VA
ADC1-3
-
91 Ω
AINx+
+
634 Ω
634 Ω
2700 pF
C0G
470 pF
C0G
10 k Ω
100 k Ω
91 Ω
-
AINx-
+
100 k Ω
0.1 μF
100 μF
332 Ω
Figure 26. Single to Differential Active Input Filter
634 Ω
VA
100 kΩ
-
4.7 μF
100 kΩ
470 pF
C0G
ADC1-2
91 Ω
AIN1+,2+,3+,4+
+
2700 pF
C0G
100 kΩ
4.7 μF
AIN1-,2-,3-,4-
634 Ω
VA
100 kΩ
470 pF
-
4.7 μF
C0G
ADC3
91 Ω
AIN5A,6A
+
100 kΩ
2700 pF
C0G
100 kΩ
634 Ω
VA
100 kΩ
4.7 μF
100 kΩ
100 kΩ
470 pF
-
C0G
91 Ω
AIN5B,6B
+
2700 pF
C0G
Figure 27. Single-Ended Active Input Filter
DS648F2
53
CS42448
7.1.1
Passive Input Filter
The passive filter implementation shown in Figure 28 will attenuate any noise energy at 6.144 MHz but
will not provide optimum source impedance for the ADC modulators. Full analog performance will therefore not be realized using a passive filter. Figure 28 illustrates the unity gain, passive input filter solution.
In this topology the distortion performance is affected, but the dynamic range performance is not limited.
150 Ω
ADC1-2
10 μF
AIN1+,2+,3+,4+
2700 pF
100 kΩ
C0G
AIN1-,2-,3-,44.7 μF
150 Ω
ADC3
10 μF
AIN5A,6A
2700 pF
100 kΩ
C0G
150 Ω
10 μF
AIN5B,6B
2700 pF
100 kΩ
C0G
Figure 28. Passive Input Filter
7.1.2
Passive Input Filter w/Attenuation
Some applications may require signal attenuation prior to the ADC. The full-scale input voltage will scale
with the analog power supply voltage. For VA = 5.0 V, the full-scale input voltage is approximately
2.8 Vpp, or 1 Vrms (most consumer audio line-level outputs range from 1.5 to 2 Vrms).
Figure 29 shows a passive input filter with 6 dB of signal attenuation. Due to the relatively high input impedance on the analog inputs, the full distortion performance cannot be realized. Also, the resistor divider
circuit will determine the input impedance into the input filter. In the circuit shown in Figure 29, the input
impedance is approximately 5 kΩ. By doubling the resistor values, the input impedance will increase to
10 kΩ. However, in this case the distortion performance will drop due to the increase in series resistance
on the analog inputs.
54
DS648F2
CS42448
10 μF
2.5 kΩ
ADC1-2
AIN1+,2+,3+,4+
2.5 k Ω
2700 pF
C0G
AIN1-,2-,3-,44.7 μF
10 μF
2.5 kΩ
ADC3
AIN5A,6A
2.5 k Ω
2700 pF
C0G
10 μF
2.5 kΩ
AIN5B,6B
2.5 k Ω
2700 pF
C0G
Figure 29. Passive Input Filter w/Attenuation
DS648F2
55
CS42448
7.2
DAC Output Filter
The CS42448 is a linear phase design and does not include phase or amplitude compensation for an external filter. Therefore, the DAC system phase and amplitude response will be dependent on the external analog circuitry. Shown below is the recommended active and passive output filters.
1800 pF
DAC1-4
4.75 kΩ
390 pF
C0G
AOUTx AOUTx +
5.49 kΩ
2.94 kΩ
1.65 kΩ
887 Ω
C0G
+
562Ω
47.5 k Ω
1200 pF
5600 pF
C0G
22 μF
C0G
1.87 kΩ
22 μF
Figure 30. Active Analog Output Filter
DAC1-4
3.3 µF
AOUTx+
560 Ω
+
10 kΩ
C
C=
R ext
Rext+ 560
4 πFSRext560
Figure 31. Passive Analog Output Filter
56
DS648F2
CS42448
8. ADC FILTER PLOTS
Figure 33. SSM Transition Band
0
0.10
-1
0.08
-2
0.06
-3
0.04
Amplitude (dB)
Amplitude (dB)
Figure 32. SSM Stopband Rejection
-4
-5
-6
-7
0.02
0.00
-0.02
-0.04
-8
-0.06
-9
-0.08
-10
0.45
-0.10
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0.55
0
0.05
Figure 34. SSM Transition Band (Detail)
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Figure 35. SSM Passband Ripple
0
0
-10
-10
-20
-20
-30
-30
-40
-40
Amplitude (dB)
Amplitude (dB)
0.1
Frequency (normalized to Fs)
Frequency (normalized to Fs)
-50
-60
-70
-80
-90
-100
-50
-60
-70
-80
-90
-100
-110
-110
-120
-120
-130
-130
-140
-140
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Frequency (normalized to Fs)
Figure 36. DSM Stopband Rejection
DS648F2
1.0
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
Frequency (normalized to Fs)
Figure 37. DSM Transition Band
57
CS42448
‘
0
0 .10
0 .0 8
-2
0 .0 6
-3
0 .0 4
Amplitude (dB)
Amplitude (dB)
-1
-4
-5
-6
-7
0 .0 2
0 .0 0
-0 .0 2
-0 .0 4
-0 .0 6
-8
-0 .0 8
-9
-10
0.46
-0 .10
0 .0 0
0.47
0.48
0.49
0.50
0.51
0.52
0 .10
0 .15
0 .2 0
0 .2 5
0 .3 0
0 .3 5 0 .4 0
0 .4 5
0 .50
Fr e que ncy (norm alize d to Fs )
Frequency (normalized to Fs)
Figure 38. DSM Transition Band (Detail)
Figure 39. DSM Passband Ripple
0
0
-10
-2 0
-3 0
-4 0
-50
-6 0
-70
-8 0
-9 0
-10
-2 0
-3 0
Amplitude (dB)
Amplitude (dB)
0 .0 5
-10 0
-110
-12 0
-13 0
-14 0
-4 0
-50
-6 0
-70
-8 0
-9 0
-10 0
-110
-12 0
-13 0
-14 0
0 .0
0 .1
0 .2
0 .3
0 .4
0 .5
0 .6
0 .7
0 .8
0 .9
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
1.0
Fre que ncy (norm alize d to Fs )
Fre que ncy (norm alize d to Fs )
Figure 40. QSM Stopband Rejection
Figure 41. QSM Transition Band
0 .10
-2
0 .0 8
-3
0 .0 6
-4
0 .0 4
Amplitude (dB)
Amplitude (dB)
0
-1
-5
-6
-7
-8
-0 .0 4
-0 .0 8
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Frequency (normalized to Fs)
Figure 42. QSM Transition Band (Detail)
58
0 .0 0
-0 .0 2
-0 .0 6
-9
-10
0.10
0 .0 2
-0 .10
0 .0 0 0 .0 3 0 .0 5 0 .0 8 0 .10
0 .13
0 .15 0 .18 0 .2 0 0 .2 3 0 .2 5 0 .2 8
Fr e que ncy (norm alize d to Fs )
Figure 43. QSM Passband Ripple
DS648F2
CS42448
9. DAC FILTER PLOTS
Figure 44. SSM Stopband Rejection
Figure 45. SSM Transition Band
0.05
0
Amplitude dB
-0.05
-0. 1
-0.15
-0. 2
-0.25
0
0.05
0.1
0.15
0.2
0.25
0.3
Frequency (normalized to Fs)
0.35
0.4
0.45
Figure 46. SSM Transition Band (detail)
Figure 47. SSM Passband Ripple
Figure 48. DSM Stopband Rejection
Figure 49. DSM Transition Band
DS648F2
0.5
59
CS42448
0.8
0.7
0.6
0.5
Amplitude dB
0.4
0.3
0.2
0.1
0
-0. 1
-0. 2
0
Figure 50. DSM Transition Band (detail)
0.05
0.1
0.15
0.2
0.25
0.3
Frequency (normalized to Fs)
0.35
0.4
0.45
0.5
Figure 51. DSM Passband Ripple
0
0
-10
-10
-20
-30
-20
Amplitude (dB)
Amplitude (dB)
-40
-50
-60
-30
-40
-70
-50
-80
-60
-90
-100
0
0.1
0.2
0.3
0.4
0.5
0.6
Frequency(normalized to Fs)
0.7
0.8
0.9
1
0.35
Figure 52. QSM Stopband Rejection
0.4
0.45
0.5
0.55
0.6
Frequency(normalized to Fs)
0.65
0.7
0.75
Figure 53. QSM Transition Band
0
0
-5
-10
-0. 5
-20
Amplitude dB
Amplitude (dB)
-15
-25
-30
-1
-35
-40
-45
-50
0.4
0.45
0.5
0.55
0.6
Frequency(normalized to Fs)
0.65
Figure 54. QSM Transition Band (detail)
60
0.7
-1. 5
0
0.05
0.1
0.15
0.2
0.25
0.3
Frequency (normalized to Fs)
0.35
0.4
0.45
0.5
Figure 55. QSM Passband Ripple
DS648F2
CS42448
10.PARAMETER DEFINITIONS
Dynamic Range
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified band width made with
a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This
technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991,
and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.
Total Harmonic Distortion + Noise
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
band width (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured
at -1 and -20 dBFS as suggested in AES17-1991 Annex A.
Frequency Response
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at
1 kHz. Units in decibels.
Interchannel Isolation
A measure of crosstalk between the left and right channel pairs. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in
decibels.
Interchannel Gain Mismatch
The gain difference between left and right channel pairs. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog output for a full-scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
Offset Error
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV.
DS648F2
61
CS42448
11.REFERENCES
1. Cirrus Logic, AN18: Layout and Design Rules for Data Converters and Other Mixed Signal Devices,
Version 6.0, February 1998.
2. Cirrus Logic, Techniques to Measure and Maximize the Performance of a 120 dB, 96 kHz A/D Converter
Integrated Circuit, by Steven Harris, Steven Green and Ka Leung. Presented at the 103rd Convention of the
Audio Engineering Society, September 1997.
3. Cirrus Logic, A Stereo 16-bit Delta-Sigma A/D Converter for Digital Audio, by D.R. Welland, B.P. Del Signore, E.J. Swanson, T. Tanaka, K. Hamashita, S. Hara, K. Takasuka. Paper presented at the 85th Convention
of the Audio Engineering Society, November 1988.
4. Cirrus Logic, The Effects of Sampling Clock Jitter on Nyquist Sampling Analog-to-Digital Converters, and
on Oversampling Delta Sigma ADC's, by Steven Harris. Paper presented at the 87th Convention of the Audio Engineering Society, October 1989.
5. Cirrus Logic, An 18-Bit Dual-Channel Oversampling Delta-Sigma A/D Converter, with 19-Bit Mono Application Example, by Clif Sanchez. Paper presented at the 87th Convention of the Audio Engineering Society,
October 1989.
6. Cirrus Logic, How to Achieve Optimum Performance from Delta-Sigma A/D and D/A Converters, by Steven
Harris. Presented at the 93rd Convention of the Audio Engineering Society, October 1992.
7. Cirrus Logic, A Fifth-Order Delta-Sigma Modulator with 110 dB Audio Dynamic Range, by I. Fujimori, K. Hamashita and E.J. Swanson. Paper presented at the 93rd Convention of the Audio Engineering Society, October 1992.
8. Philips Semiconductor, The I²C-Bus Specification: Version 2.1, January 2000.
http://www.semiconductors.philips.com
62
DS648F2
CS42448
12.PACKAGE INFORMATION
64L LQFP PACKAGE DRAWING
E
E1
D D1
1
e
B
∝
A
A1
L
INCHES
DIM
MIN
NOM
MAX
MIN
NOM
MAX
A
A1
B
D
D1
E
E1
e*
L
--0.002
0.007
0.461
0.390
0.461
0.390
0.016
0.018
0.000°
0.55
0.004
0.008
0.472 BSC
0.393 BSC
0.472 BSC
0.393 BSC
0.020 BSC
0.024
4°
0.063
0.006
0.011
0.484
0.398
0.484
0.398
0.024
0.030
7.000°
--0.05
0.17
11.70
9.90
11.70
9.90
0.40
0.45
0.00°
1.40
0.10
0.20
12.0 BSC
10.0 BSC
12.0 BSC
10.0 BSC
0.50 BSC
0.60
4°
1.60
0.15
0.27
12.30
10.10
12.30
10.10
0.60
0.75
7.00°
∝
12.1
MILLIMETERS
* Nominal pin pitch is 0.50 mm
Controlling dimension is mm.
JEDEC Designation: MS026
Thermal Characteristics
Parameter
Junction to Ambient Thermal Impedance
DS648F2
2 Layer Board
4 Layer Board
Symbol
Min
Typ
Max
Units
qJA
θJA
-
50
37
-
°C/Watt
°C/Watt
63
CS42448
13.ORDERING INFORMATION
Product
Description
Package
Pb-Free
CS42448
6-in, 8-out CODEC for
Surround Sound Apps
64L-LQFP
YES
-
-
CDB42448 CS42448 Evaluation Board
Grade
Temp Range
Container
Order #
Rail
CS42448-CQZ
Commercial -10° to +70° C
Tape & Reel CS42448-CQZR
Rail
CS42448-DQZ
Automotive -40° to +105° C
Tape & Reel CS42448-DQZR
CDB42448
14.REVISION HISTORY
Revision
Changes
F1
Updated temperature and voltage specifications in the “Recommended Operating Conditions” on page 10.
Added test conditions to the Analog Input and Analog Output Characteristics tables.
F2
Corrected polarities for pin numbers 31, 32, 38, 39 in the “Typical Connection Diagram” on page 9 and corrected the number designations for the AOUT7+ and AOUT7- pins in the Pin Descriptions table on page 6.
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.
To find the one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED,
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT
THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL
APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND
OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION
WITH THESE USES.
Cirrus Logic, Cirrus, the Cirrus Logic logo designs, and Popguard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be
trademarks or service marks of their respective owners.
I²C is a registered trademark of Philips Semiconductor.
Popguard is a registered trademark of Cirrus Logic, Inc.
SPI is a registered trademark of Motorola, Inc.
64
DS648F2
Similar pages