LPC1315/16/17/45/46/47 32-bit ARM Cortex-M3 microcontroller; up to 64 kB flash; up to 12 kB SRAM; USB device; USART; EEPROM Rev. 3 — 20 September 2012 Product data sheet 1. General description The LPC1315/16/17/45/46/47 are ARM Cortex-M3 based microcontrollers for embedded applications featuring a high level of integration and low power consumption. The ARM Cortex-M3 is a next generation core that offers system enhancements such as enhanced debug features and a higher level of support block integration. The LPC1315/16/17/45/46/47 operate at CPU frequencies of up to 72 MHz. The ARM Cortex-M3 CPU incorporates a 3-stage pipeline and uses a Harvard architecture with separate local instruction and data buses as well as a third bus for peripherals. The ARM Cortex-M3 CPU also includes an internal prefetch unit that supports speculative branching. Equipped with a highly flexible and configurable Full-Speed USB 2.0 device controller available on the LPC1345/46/47, this series brings unparalleled design flexibility and seamless integration to today’s demanding connectivity solutions. The peripheral complement of the LPC1315/16/17/45/46/47 includes up to 64 kB of flash memory, 8 kB or 10 kB of SRAM data memory, one Fast-mode Plus I2C-bus interface, one RS-485/EIA-485 USART with support for synchronous mode and smart card interface, two SSP interfaces, four general purpose counter/timers, an 8-channel, 12-bit ADC, and up to 51 general purpose I/O pins. 2. Features and benefits System: ARM Cortex-M3 r2p1 processor, running at frequencies of up to 72 MHz. ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC). Non Maskable Interrupt (NMI) input selectable from several input sources. System tick timer. Memory: Up to 64 kB on-chip flash program memory with a 256 byte page erase function. In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software. Flash updates via USB supported. Up to 4 kB on-chip EEPROM data memory with on-chip API support. Up to 12 kB SRAM data memory. 16 kB boot ROM with API support for USB API, power control, EEPROM, and flash IAP/ISP. NXP Semiconductors LPC1315/16/17/45/46/47 32-bit ARM Cortex-M3 microcontroller Debug options: Standard JTAG test interface for BSDL. Serial Wire Debug. Support for ETM ARM Cortex-M3 debug time stamping. Digital peripherals: Up to 51 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors, repeater mode, input inverter, and pseudo open-drain mode. Eight pins support programmable glitch filter. Up to 8 GPIO pins can be selected as edge and level sensitive interrupt sources. Two GPIO grouped interrupt modules enable an interrupt based on a programmable pattern of input states of a group of GPIO pins. High-current source output driver (20 mA) on one pin (P0_7). High-current sink driver (20 mA) on true open-drain pins (P0_4 and P0_5). Four general purpose counter/timers with a total of up to 8 capture inputs and 13 match outputs. Programmable Windowed WatchDog Timer (WWDT) with a internal low-power WatchDog Oscillator (WDO). Repetitive Interrupt Timer (RI Timer). Analog peripherals: 12-bit ADC with eight input channels and sampling rates of up to 500 kSamples/s. Serial interfaces: USB 2.0 full-speed device controller (LPC1345/46/47) with on-chip ROM-based USB driver library. USART with fractional baud rate generation, internal FIFO, a full modem control handshake interface, and support for RS-485/9-bit mode and synchronous mode. USART supports an asynchronous smart card interface (ISO 7816-3). Two SSP controllers with FIFO and multi-protocol capabilities. I2C-bus interface supporting the full I2C-bus specification and Fast-mode Plus with a data rate of up to 1 Mbit/s with multiple address recognition and monitor mode. Clock generation: Crystal Oscillator with an operating range of 1 MHz to 25 MHz (system oscillator) with failure detector. 12 MHz high-frequency Internal RC oscillator (IRC) trimmed to 1 % accuracy over the entire voltage and temperature range. The IRC can optionally be used as a system clock. Internal low-power, low-frequency WatchDog Oscillator (WDO) with programmable frequency output. PLL allows CPU operation up to the maximum CPU rate with the system oscillator or the IRC as clock sources. A second, dedicated PLL is provided for USB (LPC1345/46/47). Clock output function with divider that can reflect the crystal oscillator, the main clock, the IRC, or the watchdog oscillator. Power control: Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down. Power profiles residing in boot ROM allow optimized performance and minimized power consumption for any given application through one simple function call. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 2 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Processor wake-up from Deep-sleep and Power-down modes via reset, selectable GPIO pins, watchdog interrupt, or USB port activity. Processor wake-up from Deep power-down mode using one special function pin. Integrated PMU (Power Management Unit) to minimize power consumption during Sleep, Deep-sleep, Power-down, and Deep power-down modes. Power-On Reset (POR). Brownout detect with up to four separate thresholds for interrupt and forced reset. Unique device serial number for identification. Single 3.3 V power supply (2.0 V to 3.6 V). Temperature range 40 C to +85 C. Available as LQFP64, LQFP48, and HVQFN33 package. 3. Applications Consumer peripherals Medical Industrial control Handheld scanners USB audio devices 4. Ordering information Table 1. Ordering information Type number Package Name Description LPC1345FHN33 HVQFN33 plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a body 7 7 0.85 mm LPC1345FBD48 LQFP48 plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm LPC1346FHN33 HVQFN33 plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a body 7 7 0.85 mm LPC1346FBD48 LQFP48 plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm LPC1347FHN33 HVQFN33 plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a body 7 7 0.85 mm LPC1347FBD48 LQFP48 plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2 LPC1347FBD64 LQFP64 LQFP64: plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm SOT314-2 LPC1315FHN33 HVQFN33 plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a body 7 7 0.85 mm LPC1315FBD48 LQFP48 plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm LPC1316FHN33 HVQFN33 plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a body 7 7 0.85 mm LPC1316FBD48 LQFP48 plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm LPC1317FHN33 HVQFN33 plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a body 7 7 0.85 mm LPC1317FBD48 LQFP48 plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2 LPC1317FBD64 LQFP64 LQFP64: plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm SOT314-2 LPC1315_16_17_45_46_47 Product data sheet Version All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 SOT313-2 SOT313-2 SOT313-2 SOT313-2 © NXP B.V. 2012. All rights reserved. 3 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 4.1 Ordering options Table 2. Ordering options Type number Flash [kB] SRAM [kB] SRAM0 USB SRAM SRAM1 EEPROM USB SSP I2C/ FM+ ADC [kB] device channels GPIO pins LPC1345FHN33 32 8 2 - 2 yes 2 1 8 26 LPC1345FBD48 32 8 2 - 2 yes 2 1 8 40 LPC1346FHN33 48 8 2 - 4 yes 2 1 8 26 LPC1346FBD48 48 8 2 - 4 yes 2 1 8 40 LPC1347FHN33 64 8 2 2 4 yes 2 1 8 26 LPC1347FBD48 64 8 2 2 4 yes 2 1 8 40 LPC1347FBD64 64 8 2 2 4 yes 2 1 8 51 LPC1315FHN33 32 8 - - 2 no 2 1 8 28 LPC1315FBD48 32 8 - - 2 no 2 1 8 40 LPC1316FHN33 48 8 - - 4 no 2 1 8 28 LPC1316FBD48 48 8 - - 4 no 2 1 8 40 LPC1317FHN33 64 8 - 2 4 no 2 1 8 28 LPC1317FBD48 64 8 - 2 4 no 2 1 8 40 LPC1317FBD64 64 8 - 2 4 no 2 1 8 51 LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 4 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 5. Block diagram SWD, JTAG XTALIN XTALOUT LPC1315/16/17 LPC1345/46/47 SYSTEM OSCILLATOR CLOCK GENERATION, POWER CONTROL, SYSTEM FUNCTIONS IRC, WDO TEST/DEBUG INTERFACE BOD PLL0 EEPROM 2/4 kB system bus SRAM 8/10/12 kB slave HIGH-SPEED GPIO CLKOUT POR ARM CORTEX-M3 GPIO ports 0/1 RESET ROM 16 kB slave USB PLL FLASH 32/48/64 kB master slave slave USB_DP USB_DM USB_VBUS USB_FTOGGLE, USB_CONNECT USB DEVICE slave CONTROLLER (LPC1345/46/47) AHB-LITE BUS slave RXD TXD DCD , DSR(1), RI(1) CTS, RTS, DTR SCLK CT16B0_MAT[2:0] CT16B0_CAP[1:0](2) CT16B1_MAT[1:0] CT16B1_CAP[1:0](2) CT32B0_MAT[3:0] CT32B0_CAP[1:0](2) CT32B1_MAT[3:0] CT32B1_CAP[1:0](2) AHB TO APB BRIDGE USART/ SMARTCARD INTERFACE AD[7:0] 12-bit ADC SCL, SDA I2C-BUS 16-bit COUNTER/TIMER 0 SSP0 SCK0, SSEL0, MISO0, MOSI0 SSP1 SCK1, SSEL1, MISO1, MOSI1 16-bit COUNTER/TIMER 1 32-bit COUNTER/TIMER 0 IOCON 32-bit COUNTER/TIMER 1 SYSTEM CONTROL WINDOWED WATCHDOG TIMER PMU RI TIMER GPIO pins GPIO PIN INTERRUPT GPIO pins GPIO GROUP0 INTERRUPT GPIO pins GPIO GROUP1 INTERRUPT 002aag241 (1) Available on LQFP48 and LQFP64 packages only. (2) CT16B0_CAP1, CT16B1_CAP1, CT32B1_CAP1 inputs available on LQFP64 packages only. CT32B0_CAP0 input available on LQFP48 and LQFP64 packages only. Fig 1. Block diagram LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 5 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 6. Pinning information PIO0_19/TXD/CT32B0_MAT1 PIO0_18/RXD/CT32B0_MAT0 PIO0_17/RTS/CT32B0_CAP0/SCLK VDD PIO1_15/DCD/CT16B0_MAT2/SCK1 PIO0_23/AD7 PIO0_16/AD5/CT32B1_MAT3/WAKEUP SWDIO/PIO0_15/AD4/CT32B1_MAT2 31 30 29 28 27 26 25 terminal 1 index area 32 6.1 Pinning PIO1_19/DTR/SSEL1 1 24 TRST/PIO0_14/AD3/CT32B1_MAT1 RESET/PIO0_0 2 23 TDO/PIO0_13/AD2/CT32B1_MAT0 PIO0_1/CLKOUT/CT32B0_MAT2 3 22 TMS/PIO0_12/AD1/CT32B1_CAP0 XTALIN 4 21 TDI/PIO0_11/AD0/CT32B0_MAT3 XTALOUT 5 20 PIO0_22/AD6/CT16B1_MAT1/MISO1 VDD 6 PIO0_20/CT16B1_CAP0 7 PIO0_2/SSEL0/CT16B0_CAP0 8 LPC1315FHN33 LPC1316FHN33 LPC1317FHN33 9 10 11 12 13 14 15 16 PIO0_3 PIO0_4/SCL PIO0_5/SDA PIO0_21/CT16B1_MAT0/MOSI1 PIO1_23/CT16B1_MAT1/SSEL1 PIO1_24/CT32B0_MAT0 PIO0_6/R/SCK0 PIO0_7/CTS 33 VSS 19 SWCLK/PIO0_10/SCK0/CT16B0_MAT2 18 PIO0_9/MOSI0/CT16B0_MAT1/SWO 17 PIO0_8/MISO0/CT16B0_MAT0 002aag870 Transparent top view Fig 2. Pin configuration HVQFN33 package (LPC1315/16/17 - no USB) LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 6 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors VDD PIO1_15/DCD/CT16B0_MAT2/SCK1 PIO0_23/AD7 PIO0_16/AD5/CT32B1_MAT3/WAKEUP SWDIO/PIO0_15/AD4/CT32B1_MAT2 27 26 25 PIO0_17/RTS/CT32B0_CAP0/SCLK 28 PIO0_18/RXD/CT32B0_MAT0 30 29 PIO0_19/TXD/CT32B0_MAT1 31 terminal 1 index area 32 32-bit ARM Cortex-M3 microcontroller PIO1_19/DTR/SSEL1 1 24 TRST/PIO0_14/AD3/CT32B1_MAT1 RESET/PIO0_0 2 23 TDO/PIO0_13/AD2/CT32B1_MAT0 PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE 3 22 TMS/PIO0_12/AD1/CT32B1_CAP0 XTALIN 4 21 TDI/PIO0_11/AD0/CT32B0_MAT3 XTALOUT 5 20 PIO0_22/AD6/CT16B1_MAT1/MISO1 VDD 6 PIO0_20/CT16B1_CAP0 7 PIO0_2/SSEL0/CT16B0_CAP0 8 LPC1345FHN33 LPC1346FHN33 LPC1347FHN33 9 10 11 12 13 14 15 16 PIO0_3/USB_VBUS PIO0_4/SCL PIO0_5/SDA PIO0_21/CT16B1_MAT0/MOSI1 USB_DM USB_DP PIO0_6/USB_CONNECT/SCK0 PIO0_7/CTS 33 VSS 19 SWCLK/PIO0_10/SCK0/CT16B0_MAT2 18 PIO0_9/MOSI0/CT16B0_MAT1/SWO 17 PIO0_8/MISO0/CT16B0_MAT0 002aag874 Transparent top view Fig 3. Pin configuration HVQFN33 package (LPC1345/46/47 - with USB) LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 7 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 25 PIO1_31 26 PIO1_21/DCD/MISO1 27 PIO0_8/MISO0/CT16B0_MAT0 28 PIO0_9/MOSI0/CT16B0_MAT1/SWO 29 SWCLK/PIO0_10/SCK0/CT16B0_MAT2 30 PIO0_22/AD6/CT16B1_MAT1/MISO1 31 PIO1_29/SCK0/CT32B0_CAP1 32 TDI/PIO0_11/AD0/CT32B0_MAT3 33 TMS/PIO0_12/AD1/CT32B1_CAP0 34 TDO/PIO0_13/AD2/CT32B1_MAT0 35 TRST/PIO0_14/AD3/CT32B1_MAT1 36 PIO1_13/DTR/CT16B0_MAT0/TXD 32-bit ARM Cortex-M3 microcontroller PIO1_14/DSR/CT16B0_MAT1/RXD 37 24 PIO1_28/CT32B0_CAP0/SCLK PIO1_22/RI/MOSI1 38 23 PIO0_7/CTS SWDIO/PIO0_15/AD4/CT32B1_MAT2 39 22 PIO0_6/R/SCK0 PIO0_16/AD5/CT32B1_MAT3/WAKEUP 40 21 PIO1_24/CT32B0_MAT0 VSS 41 LPC1315FBD48 LPC1316FBD48 LPC1317FBD48 PIO0_23/AD7 42 PIO1_15/DCD/CT16B0_MAT2/SCK1 43 n.c. 19 n.c. 18 PIO1_23/CT16B1_MAT1/SSEL1 VDD 44 17 PIO0_21/CT16B1_MAT0/MOSI1 PIO0_17/RTS/CT32B0_CAP0/SCLK 45 16 PIO0_5/SDA PIO0_18/RXD/CT32B0_MAT0 46 15 PIO0_4/SCL PIO0_19/TXD/CT32B0_MAT1 47 14 PIO0_3 PIO1_27/CT32B0_MAT3/TXD 12 PIO1_26/CT32B0_MAT2/RXD 11 PIO0_2/SSEL0/CT16B0_CAP0 10 9 PIO0_20/CT16B1_CAP0 8 VDD 7 XTALOUT 6 XTALIN 5 VSS 4 PIO0_1/CLKOUT/CT32B0_MAT2 3 RESET/PIO0_0 PIO1_19/DTR/SSEL1 PIO1_25/CT32B0_MAT1 2 13 PIO1_20/DSR/SCK1 1 PIO1_16/RI/CT16B0_CAP0 48 Fig 4. 20 002aag875 Pin configuration LQFP48 package (LPC1315/16/17 - no USB) LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 8 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 25 PIO1_31 26 PIO1_21/DCD/MISO1 27 PIO0_8/MISO0/CT16B0_MAT0 28 PIO0_9/MOSI0/CT16B0_MAT1/SWO 29 SWCLK/PIO0_10/SCK0/CT16B0_MAT2 30 PIO0_22/AD6/CT16B1_MAT1/MISO1 31 PIO1_29/SCK0/CT32B0_CAP1 32 TDI/PIO0_11/AD0/CT32B0_MAT3 33 TMS/PIO0_12/AD1/CT32B1_CAP0 34 TDO/PIO0_13/AD2/CT32B1_MAT0 35 TRST/PIO0_14/AD3/CT32B1_MAT1 36 PIO1_13/DTR/CT16B0_MAT0/TXD 32-bit ARM Cortex-M3 microcontroller PIO1_14/DSR/CT16B0_MAT1/RXD 37 24 PIO1_28/CT32B0_CAP0/SCLK PIO1_22/RI/MOSI1 38 23 PIO0_7/CTS SWDIO/PIO0_15/AD4/CT32B1_MAT2 39 22 PIO0_6/USB_CONNECT/SCK0 PIO0_16/AD5/CT32B1_MAT3/WAKEUP 40 21 PIO1_24/CT32B0_MAT0 VSS 41 20 USB_DP LPC1345FBD48 LPC1346FBD48 LPC1347FBD48 PIO0_23/AD7 42 PIO1_15/DCD/CT16B0_MAT2/SCK1 43 19 USB_DM 18 PIO1_23/CT16B1_MAT1/SSEL1 VDD 44 Fig 5. 17 PIO0_21/CT16B1_MAT0/MOSI1 6 7 8 9 XTALIN XTALOUT VDD PIO0_20/CT16B1_CAP0 PIO1_27/CT32B0_MAT3/TXD 12 5 VSS PIO1_26/CT32B0_MAT2/RXD 11 4 PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE PIO0_2/SSEL0/CT16B0_CAP0 10 3 RESET/PIO0_0 13 PIO1_20/DSR/SCK1 2 14 PIO0_3/USB_VBUS PIO1_16/RI/CT16B0_CAP0 48 1 15 PIO0_4/SCL PIO0_19/TXD/CT32B0_MAT1 47 PIO1_19/DTR/SSEL1 16 PIO0_5/SDA PIO0_18/RXD/CT32B0_MAT0 46 PIO1_25/CT32B0_MAT1 PIO0_17/RTS/CT32B0_CAP0/SCLK 45 002aag876 Pin configuration LQFP48 package (LPC1345/46/47 - with USB) LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 9 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 33 VDD 34 PIO1_2 35 PIO1_21 36 PIO0_8 37 PIO0_9 38 SWCLK/PIO0_10 39 PIO1_8 40 PIO0_22 41 PIO1_29 42 TDI/PIO0_11 43 PIO1_11 44 TMS/PIO0_12 45 TDO/PIO0_13 46 TRST/PIO0_14 47 PIO1_13 48 VREFN 32-bit ARM Cortex-M3 microcontroller PIO1_14 49 32 PIO1_5 PIO1_3 50 31 PIO1_28 PIO1_22 51 30 PIO0_7 SWDIO/PIO0_15 52 29 PIO0_6 PIO0_16 53 28 PIO1_18 VSS 54 27 PIO1_24 VSSA 55 26 n.c. PIO0_23 56 25 n.c. LPC1315/16/17 PIO1_15 57 24 PIO1_23 VDD 58 23 PIO1_17 VDDA 59 22 PIO0_21 PIO0_17 60 21 PIO0_5 PIO0_18 61 20 PIO0_4 PIO0_19 62 19 PIO0_3 PIO1_16 63 18 PIO1_20 8 9 XTALIN XTALOUT PIO1_4 16 7 VSS PIO1_27 15 6 PIO1_7 PIO1_26 14 5 PIO0_1 PIO0_2 13 4 RESET/PIO0_0 PIO1_10 12 3 PIO1_19 PIO0_20 11 2 VDD 10 1 PIO1_0 17 PIO1_1 PIO1_25 VREFP 64 002aag581 See Table 3 for the full pin name. Fig 6. Pin configuration LQFP64 package (LPC1315/16/17 - no USB) LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 10 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 33 VDD 34 PIO1_2 35 PIO1_21 36 PIO0_8 37 PIO0_9 38 SWCLK/PIO0_10 39 PIO1_8 40 PIO0_22 41 PIO1_29 42 TDI/PIO0_11 PIO1_14 49 32 PIO1_5 PIO1_3 50 31 PIO1_28 PIO1_22 51 30 PIO0_7 SWDIO/PIO0_15 52 29 PIO0_6 PIO0_16 53 28 PIO1_18 VSS 54 27 PIO1_24 VSSA 55 26 USB_DP PIO0_23 56 25 USB_DM 24 PIO1_23 VDD 58 23 PIO1_17 VDDA 59 22 PIO0_21 PIO0_17 60 21 PIO0_5 PIO0_18 61 20 PIO0_4 PIO0_19 62 19 PIO0_3 PIO1_16 63 18 PIO1_20 VREFP 64 17 PIO1_1 PIO1_4 16 PIO1_27 15 PIO1_26 14 PIO0_2 13 PIO1_10 12 PIO0_20 11 VDD 10 9 XTALOUT 8 XTALIN 7 VSS PIO1_7 5 PIO0_1 4 RESET/PIO0_0 3 PIO1_19 2 1 PIO1_0 PIO1_25 6 LPC1345/46/47 PIO1_15 57 Fig 7. 43 PIO1_11 44 TMS/PIO0_12 45 TDO/PIO0_13 46 TRST/PIO0_14 47 PIO1_13 48 VREFN 32-bit ARM Cortex-M3 microcontroller 002aag561 Pin configuration LQFP64 package (LPC1345/46/47 - with USB) LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 11 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 6.2 Pin description Pin description (LPC1315/16/17 - no USB) PIO0_2/SSEL0/ CT16B0_CAP0 PIO0_3 PIO0_4/SCL PIO0_5/SDA HVQFN33 4 3 2 5 13 19 20 21 PIO0_6/R/ SCK0 29 PIO0_7/CTS 30 PIO0_8/MISO0/ CT16B0_MAT0 PIO0_9/MOSI0/ CT16B0_MAT1/ SWO LPC1315_16_17_45_46_47 Product data sheet 36 37 4 10 14 15 16 22 23 27 28 [2] 3 [3] 8 [3] Description Type PIO0_1/CLKOUT/ CT32B0_MAT2 LQFP48 RESET/PIO0_0 LQFP64 Symbol Reset state[1] Table 3. I; PU I RESET — External reset input with 20 ns glitch filter. A LOW-going pulse as short as 50 ns on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. This pin also serves as the debug select input. LOW level selects the JTAG boundary scan. HIGH level selects the ARM SWD debug mode. - I/O PIO0_0 — General purpose digital input/output pin. I; PU I/O PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler. - O CLKOUT — Clockout pin. - O CT32B0_MAT2 — Match output 2 for 32-bit timer 0. I; PU I/O PIO0_2 — General purpose digital input/output pin. I/O SSEL0 — Slave select for SSP0. I CT16B0_CAP0 — Capture input 0 for 16-bit timer 0. 9 [3] I; PU I/O PIO0_3 — General purpose digital input/output pin. 10 [4] IA I/O PIO0_4 — General purpose digital input/output pin (open-drain). - I/O SCL — I2C-bus clock input/output (open-drain). High-current sink only if I2C Fast-mode Plus is selected in the I/O configuration register. IA I/O PIO0_5 — General purpose digital input/output pin (open-drain). - I/O SDA — I2C-bus data input/output (open-drain). High-current sink only if I2C Fast-mode Plus is selected in the I/O configuration register. I; PU I/O PIO0_6 — General purpose digital input/output pin. - - R — Reserved. - I/O SCK0 — Serial clock for SSP0. I; PU I/O PIO0_7 — General purpose digital input/output pin (high-current output driver). - I CTS — Clear To Send input for USART. I; PU I/O PIO0_8 — General purpose digital input/output pin. - I/O MISO0 — Master In Slave Out for SSP0. - O CT16B0_MAT0 — Match output 0 for 16-bit timer 0. I; PU I/O PIO0_9 — General purpose digital input/output pin. - I/O MOSI0 — Master Out Slave In for SSP0. - O CT16B0_MAT1 — Match output 1 for 16-bit timer 0. - O SWO — Serial wire trace output. 11 15 [4] [3] 16 [5] 17 [3] 18 [3] All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 12 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description (LPC1315/16/17 - no USB) TDI/PIO0_11/AD0/ CT32B0_MAT3 TMS/PIO0_12/AD1/ CT32B1_CAP0 TDO/PIO0_13/AD2/ CT32B1_MAT0 TRST/PIO0_14/AD3/ CT32B1_MAT1 SWDIO/PIO0_15/AD4/ CT32B1_MAT2 PIO0_16/AD5/ CT32B1_MAT3/WAKEUP PIO0_17/RTS/ CT32B0_CAP0/SCLK LPC1315_16_17_45_46_47 Product data sheet HVQFN33 38 29 19 42 44 45 46 52 53 60 32 33 34 35 39 40 45 21 22 23 24 25 26 30 [3] [6] [6] [6] [6] [6] [7] [3] Description Type LQFP48 SWCLK/PIO0_10/SCK0/ CT16B0_MAT2 LQFP64 Symbol Reset state[1] Table 3. I; PU I SWCLK — Serial wire clock and test clock TCK for JTAG interface. - I/O PIO0_10 — General purpose digital input/output pin. - O SCK0 — Serial clock for SSP0. - O CT16B0_MAT2 — Match output 2 for 16-bit timer 0. I; PU I TDI — Test Data In for JTAG interface. - I/O PIO0_11 — General purpose digital input/output pin. - I AD0 — A/D converter, input 0. - O CT32B0_MAT3 — Match output 3 for 32-bit timer 0. I; PU I TMS — Test Mode Select for JTAG interface. - I/O PIO_12 — General purpose digital input/output pin. - I AD1 — A/D converter, input 1. - I CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. I; PU O TDO — Test Data Out for JTAG interface. - I/O PIO0_13 — General purpose digital input/output pin. - I AD2 — A/D converter, input 2. - O CT32B1_MAT0 — Match output 0 for 32-bit timer 1. I; PU I TRST — Test Reset for JTAG interface. - I/O PIO0_14 — General purpose digital input/output pin. - I AD3 — A/D converter, input 3. - O CT32B1_MAT1 — Match output 1 for 32-bit timer 1. I; PU I/O SWDIO — Serial wire debug input/output. - I/O PIO0_15 — General purpose digital input/output pin. - I AD4 — A/D converter, input 4. - O CT32B1_MAT2 — Match output 2 for 32-bit timer 1. I; PU I/O PIO0_16 — General purpose digital input/output pin. - I AD5 — A/D converter, input 5. - O CT32B1_MAT3 — Match output 3 for 32-bit timer 1. - I WAKEUP — Deep power-down mode wake-up pin with 20 ns glitch filter. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. A LOW-going pulse as short as 50 ns wakes up the part. I; PU I/O PIO0_17 — General purpose digital input/output pin. - O RTS — Request To Send output for USART. - I CT32B0_CAP0 — Capture input 0 for 32-bit timer 0. - I/O SCLK — Serial clock input/output for USART in synchronous mode. All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 13 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description (LPC1315/16/17 - no USB) PIO0_20/CT16B1_CAP0 PIO0_21/CT16B1_MAT0/ MOSI1 PIO0_22/AD6/ CT16B1_MAT1/MISO1 HVQFN33 61 46 31 62 11 22 40 47 9 17 30 32 [3] [3] 7 [3] 12 [3] 20 [6] PIO0_23/AD7 56 42 27 [6] PIO1_0/CT32B1_MAT0 1 - - [3] PIO1_1/CT32B1_MAT1 17 - - [3] PIO1_2/CT32B1_MAT2 34 - - [3] PIO1_3/CT32B1_MAT3 50 - - [3] PIO1_4/CT32B1_CAP0 16 - - [3] Description Type PIO0_19/TXD/ CT32B0_MAT1 LQFP48 PIO0_18/RXD/ CT32B0_MAT0 LQFP64 Symbol Reset state[1] Table 3. I; PU I/O PIO0_18 — General purpose digital input/output pin. - I RXD — Receiver input for USART. Used in UART ISP mode. - O CT32B0_MAT0 — Match output 0 for 32-bit timer 0. I; PU I/O PIO0_19 — General purpose digital input/output pin. - O TXD — Transmitter output for USART. Used in UART ISP mode. - O CT32B0_MAT1 — Match output 1 for 32-bit timer 0. I; PU I/O PIO0_20 — General purpose digital input/output pin. - I CT16B1_CAP0 — Capture input 0 for 16-bit timer 1. I; PU I/O PIO0_21 — General purpose digital input/output pin. - O CT16B1_MAT0 — Match output 0 for 16-bit timer 1. - I/O MOSI1 — Master Out Slave In for SSP1. I; PU I/O PIO0_22 — General purpose digital input/output pin. - I AD6 — A/D converter, input 6. - O CT16B1_MAT1 — Match output 1 for 16-bit timer 1. - I/O MISO1 — Master In Slave Out for SSP1. I; PU I/O PIO0_23 — General purpose digital input/output pin. - I AD7 — A/D converter, input 7. I; PU I/O PIO1_0 — General purpose digital input/output pin. - O CT32B1_MAT0 — Match output 0 for 32-bit timer 1. I; PU I/O PIO1_1 — General purpose digital input/output pin. - O CT32B1_MAT1 — Match output 1 for 32-bit timer 1. I; PU I/O PIO1_2 — General purpose digital input/output pin. - O CT32B1_MAT2 — Match output 2 for 32-bit timer 1. I; PU I/O PIO1_3 — General purpose digital input/output pin. - O CT32B1_MAT3 — Match output 3 for 32-bit timer 1. I; PU I/O PIO1_4 — General purpose digital input/output pin. - I CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. I; PU I/O PIO1_5 — General purpose digital input/output pin. PIO1_5/CT32B1_CAP1 32 - - [3] - I CT32B1_CAP1 — Capture input 1 for 32-bit timer 1. PIO1_7 6 - - [3] I; PU I/O PIO1_7 — General purpose digital input/output pin. - [3] I; PU I/O PIO1_8 — General purpose digital input/output pin. - [3] I; PU I/O PIO1_10 — General purpose digital input/output pin. - [3] I; PU I/O PIO1_11 — General purpose digital input/output pin. PIO1_8 PIO1_10 PIO1_11 LPC1315_16_17_45_46_47 Product data sheet 39 12 43 - All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 14 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description (LPC1315/16/17 - no USB) PIO1_14/DSR/ CT16B0_MAT1/RXD PIO1_15/DCD/ CT16B0_MAT2/SCK1 HVQFN33 47 36 - 49 57 PIO1_16/RI/CT16B0_CAP0 63 PIO1_17/CT16B0_CAP1/ RXD PIO1_18/CT16B1_CAP1/ TXD PIO1_19/DTR/SSEL1 PIO1_20/DSR/SCK1 PIO1_21/DCD/MISO1 PIO1_22/RI/MOSI1 PIO1_23/CT16B1_MAT1/ SSEL1 PIO1_24/CT32B0_MAT0 LPC1315_16_17_45_46_47 Product data sheet 23 28 3 18 35 51 24 27 37 43 48 - - 2 13 26 38 18 21 [3] [3] - 28 [3] [3] - [3] - [3] - 1 [3] [3] - [3] - [3] - 13 14 [3] [3] Description Type LQFP48 PIO1_13/DTR/ CT16B0_MAT0/TXD LQFP64 Symbol Reset state[1] Table 3. I; PU I/O PIO1_13 — General purpose digital input/output pin. - O DTR — Data Terminal Ready output for USART. - O CT16B0_MAT0 — Match output 0 for 16-bit timer 0. - O TXD — Transmitter output for USART. I; PU I/O PIO1_14 — General purpose digital input/output pin. - I DSR — Data Set Ready input for USART. - O CT16B0_MAT1 — Match output 1 for 16-bit timer 0. - I RXD — Receiver input for USART. I; PU I/O PIO1_15 — General purpose digital input/output pin. - I DCD — Data Carrier Detect input for USART. - O CT16B0_MAT2 — Match output 2 for 16-bit timer 0. - I/O SCK1 — Serial clock for SSP1. I; PU I/O PIO1_16 — General purpose digital input/output pin. - I RI — Ring Indicator input for USART. - I CT16B0_CAP0 — Capture input 0 for 16-bit timer 0. I; PU I/O PIO1_17 — General purpose digital input/output pin. - I CT16B0_CAP1 — Capture input 1 for 16-bit timer 0. - I RXD — Receiver input for USART. I; PU I/O PIO1_18 — General purpose digital input/output pin. - I CT16B1_CAP1 — Capture input 1 for 16-bit timer 1. - O TXD — Transmitter output for USART. I; PU I/O PIO1_19 — General purpose digital input/output pin. - O DTR — Data Terminal Ready output for USART. - I/O SSEL1 — Slave select for SSP1. I; PU I/O PIO1_20 — General purpose digital input/output pin. - I DSR — Data Set Ready input for USART. - I/O SCK1 — Serial clock for SSP1. I; PU I/O PIO1_21 — General purpose digital input/output pin. - I DCD — Data Carrier Detect input for USART. - I/O MISO1 — Master In Slave Out for SSP1. I; PU I/O PIO1_22 — General purpose digital input/output pin. - I RI — Ring Indicator input for USART. - I/O MOSI1 — Master Out Slave In for SSP1. I; PU I/O PIO1_23 — General purpose digital input/output pin. - O CT16B1_MAT1 — Match output 1 for 16-bit timer 1. - I/O SSEL1 — Slave select for SSP1. I; PU I/O PIO1_24 — General purpose digital input/output pin. - O CT32B0_MAT0 — Match output 0 for 32-bit timer 0. All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 15 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description (LPC1315/16/17 - no USB) PIO1_26/CT32B0_MAT2/ RXD PIO1_27/CT32B0_MAT3/ TXD PIO1_28/CT32B0_CAP0/ SCLK HVQFN33 2 1 - 14 15 31 11 12 24 31 [3] - [3] [3] - [3] - PIO1_29/SCK0/ CT32B0_CAP1 41 PIO1_31 - 25 - n.c. 25 19 - n.c. 26 20 - [3] - [3] Description Type LQFP48 PIO1_25/CT32B0_MAT1 LQFP64 Symbol Reset state[1] Table 3. I; PU I/O PIO1_25 — General purpose digital input/output pin. - O CT32B0_MAT1 — Match output 1 for 32-bit timer 0. I; PU I/O PIO1_26 — General purpose digital input/output pin. - O CT32B0_MAT2 — Match output 2 for 32-bit timer 0. - I RXD — Receiver input for USART. I; PU I/O PIO1_27 — General purpose digital input/output pin. - O CT32B0_MAT3 — Match output 3 for 32-bit timer 0. - O TXD — Transmitter output for USART. I; PU I/O PIO1_28 — General purpose digital input/output pin. - I CT32B0_CAP0 — Capture input 0 for 32-bit timer 0. - I/O SCLK — Serial clock input/output for USART in synchronous mode. I; PU I/O PIO1_29 — General purpose digital input/output pin. - I/O SCK0 — Serial clock for SSP0. - I CT32B0_CAP1 — Capture input 1 for 32-bit timer 0. I; PU I/O PIO1_31 — General purpose digital input/output pin. - - Not connected. - - Not connected. - - Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V. - - Output from the oscillator amplifier. XTALIN 8 6 4 [8] XTALOUT 9 7 5 [8] VDDA 59 - - - - Analog 3.3 V pad supply voltage: This should be nominally the same voltage as VDD but should be isolated to minimize noise and error. This voltage is used to power the ADC. This pin should be tied to 3.3 V if the ADC is not used. VREFN 48 - - - - ADC negative reference voltage: This should be nominally the same voltage as VSS but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 16 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 3. Pin description (LPC1315/16/17 - no USB) LQFP48 HVQFN33 Reset state[1] Type Description LQFP64 Symbol VREFP 64 - - - - ADC positive reference voltage: This should be nominally the same voltage as VDDA but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC. This pin should be tied to 3.3 V if the ADC is not used. VSSA 55 - - - - Analog ground: 0 V reference. This should nominally be the same voltage as VSSProduct data sheet but should be isolated to minimize noise and error. VDD 10; 33; 58 8; 44 6; 29 - - Supply voltage to the internal regulator and the external rail. On LQFP48 and HVQFN33 packages, this pin is also connected to the 3.3 V ADC supply and reference voltage. VSS 7; 54 5; 41 33 - - Ground. [1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled; F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption. [2] See Figure 33 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. [3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 32). [4] I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode Plus. [5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 32); includes high-current output driver. [6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 32); includes programmable digital input glitch filter. [7] WAKEUP pin. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 32); includes digital input glitch filter. [8] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 17 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description (LPC1345/46/47 - with USB) HVQFN33 4 3 2 5 PIO0_2/SSEL0/ CT16B0_CAP0 13 PIO0_3/USB_VBUS 19 PIO0_4/SCL PIO0_5/SDA 20 21 PIO0_6/USB_CONNECT/ SCK0 29 PIO0_7/CTS 30 PIO0_8/MISO0/ CT16B0_MAT0 LPC1315_16_17_45_46_47 Product data sheet 36 4 10 14 15 16 22 23 27 [2] 3 [3] 8 [3] 9 [3] 10 [4] 11 15 [4] [3] 16 [5] 17 [3] Description Type PIO0_1/CLKOUT/ CT32B0_MAT2/ USB_FTOGGLE LQFP48 RESET/PIO0_0 LQFP64 Symbol Reset state[1] Table 4. I; PU I RESET — External reset input with 20 ns glitch filter. A LOW-going pulse as short as 50 ns on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. This pin also serves as the debug select input. LOW level selects the JTAG boundary scan. HIGH level selects the ARM SWD debug mode. - I/O PIO0_0 — General purpose digital input/output pin. I; PU I/O PIO0_1 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler or the USB device enumeration. - O CLKOUT — Clockout pin. - O CT32B0_MAT2 — Match output 2 for 32-bit timer 0. - O USB_FTOGGLE — USB 1 ms Start-of-Frame signal. I; PU I/O PIO0_2 — General purpose digital input/output pin. I/O SSEL0 — Slave select for SSP0. I CT16B0_CAP0 — Capture input 0 for 16-bit timer 0. I; PU I/O PIO0_3 — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler. A HIGH level during reset starts the USB device enumeration. - I USB_VBUS — Monitors the presence of USB bus power. IA I/O PIO0_4 — General purpose digital input/output pin (open-drain). - I/O SCL — I2C-bus clock input/output (open-drain). High-current sink only if I2C Fast-mode Plus is selected in the I/O configuration register. IA I/O PIO0_5 — General purpose digital input/output pin (open-drain). - I/O SDA — I2C-bus data input/output (open-drain). High-current sink only if I2C Fast-mode Plus is selected in the I/O configuration register. I; PU I/O PIO0_6 — General purpose digital input/output pin. - O USB_CONNECT — Signal used to switch an external 1.5 k resistor under software control. Used with the SoftConnect USB feature. - I/O SCK0 — Serial clock for SSP0. I; PU I/O PIO0_7 — General purpose digital input/output pin (high-current output driver). - I CTS — Clear To Send input for USART. I; PU I/O PIO0_8 — General purpose digital input/output pin. - I/O MISO0 — Master In Slave Out for SSP0. - O CT16B0_MAT0 — Match output 0 for 16-bit timer 0. All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 18 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description (LPC1345/46/47 - with USB) SWCLK/PIO0_10/SCK0/ CT16B0_MAT2 TDI/PIO0_11/AD0/ CT32B0_MAT3 TMS/PIO0_12/AD1/ CT32B1_CAP0 TDO/PIO0_13/AD2/ CT32B1_MAT0 TRST/PIO0_14/AD3/ CT32B1_MAT1 SWDIO/PIO0_15/AD4/ CT32B1_MAT2 PIO0_16/AD5/ CT32B1_MAT3/WAKEUP LPC1315_16_17_45_46_47 Product data sheet HVQFN33 37 28 18 38 42 44 45 46 52 53 29 32 33 34 35 39 40 19 21 22 23 24 25 26 [3] [3] [6] [6] [6] [6] [6] [7] Description Type LQFP48 PIO0_9/MOSI0/ CT16B0_MAT1/ SWO LQFP64 Symbol Reset state[1] Table 4. I; PU I/O PIO0_9 — General purpose digital input/output pin. - I/O MOSI0 — Master Out Slave In for SSP0. - O CT16B0_MAT1 — Match output 1 for 16-bit timer 0. - O SWO — Serial wire trace output. I; PU I SWCLK — Serial wire clock and test clock TCK for JTAG interface. - I/O PIO0_10 — General purpose digital input/output pin. - O SCK0 — Serial clock for SSP0. - O CT16B0_MAT2 — Match output 2 for 16-bit timer 0. I; PU I TDI — Test Data In for JTAG interface. - I/O PIO0_11 — General purpose digital input/output pin. - I AD0 — A/D converter, input 0. - O CT32B0_MAT3 — Match output 3 for 32-bit timer 0. I; PU I TMS — Test Mode Select for JTAG interface. - I/O PIO_12 — General purpose digital input/output pin. - I AD1 — A/D converter, input 1. - I CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. I; PU O TDO — Test Data Out for JTAG interface. - I/O PIO0_13 — General purpose digital input/output pin. - I AD2 — A/D converter, input 2. - O CT32B1_MAT0 — Match output 0 for 32-bit timer 1. I; PU I TRST — Test Reset for JTAG interface. - I/O PIO0_14 — General purpose digital input/output pin. - I AD3 — A/D converter, input 3. - O CT32B1_MAT1 — Match output 1 for 32-bit timer 1. I; PU I/O SWDIO — Serial wire debug input/output. - I/O PIO0_15 — General purpose digital input/output pin. - I AD4 — A/D converter, input 4. - O CT32B1_MAT2 — Match output 2 for 32-bit timer 1. I; PU I/O PIO0_16 — General purpose digital input/output pin. - I AD5 — A/D converter, input 5. - O CT32B1_MAT3 — Match output 3 for 32-bit timer 1. - I WAKEUP — Deep power-down mode wake-up pin with 20 ns glitch filter. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. A LOW-going pulse as short as 50 ns wakes up the part. All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 19 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description (LPC1345/46/47 - with USB) PIO0_19/TXD/ CT32B0_MAT1 HVQFN33 60 45 30 61 62 46 47 31 32 [3] [3] [3] PIO0_20/CT16B1_CAP0 11 9 7 [3] PIO0_21/CT16B1_MAT0/ MOSI1 22 17 12 [3] PIO0_22/AD6/ CT16B1_MAT1/MISO1 PIO0_23/AD7 PIO1_0/CT32B1_MAT0 PIO1_1/CT32B1_MAT1 PIO1_2/CT32B1_MAT2 PIO1_3/CT32B1_MAT3 PIO1_4/CT32B1_CAP0 PIO1_5/CT32B1_CAP1 PIO1_7 PIO1_8 LPC1315_16_17_45_46_47 Product data sheet 40 56 1 17 34 50 16 32 6 39 30 42 - 20 [6] [6] Description Type PIO0_18/RXD/ CT32B0_MAT0 LQFP48 PIO0_17/RTS/ CT32B0_CAP0/SCLK LQFP64 Symbol Reset state[1] Table 4. I; PU I/O PIO0_17 — General purpose digital input/output pin. - O RTS — Request To Send output for USART. - I CT32B0_CAP0 — Capture input 0 for 32-bit timer 0. - I/O SCLK — Serial clock input/output for USART in synchronous mode. I; PU I/O PIO0_18 — General purpose digital input/output pin. - I RXD — Receiver input for USART. Used in UART ISP mode. - O CT32B0_MAT0 — Match output 0 for 32-bit timer 0. I; PU I/O PIO0_19 — General purpose digital input/output pin. - O TXD — Transmitter output for USART. Used in UART ISP mode. - O CT32B0_MAT1 — Match output 1 for 32-bit timer 0. I; PU I/O PIO0_20 — General purpose digital input/output pin. - I CT16B1_CAP0 — Capture input 0 for 16-bit timer 1. I; PU I/O PIO0_21 — General purpose digital input/output pin. - O CT16B1_MAT0 — Match output 0 for 16-bit timer 1. - I/O MOSI1 — Master Out Slave In for SSP1. I; PU I/O PIO0_22 — General purpose digital input/output pin. - I AD6 — A/D converter, input 6. - O CT16B1_MAT1 — Match output 1 for 16-bit timer 1. - I/O MISO1 — Master In Slave Out for SSP1. I; PU I/O PIO0_23 — General purpose digital input/output pin. - I AD7 — A/D converter, input 7. I; PU I/O PIO1_0 — General purpose digital input/output pin. - O CT32B1_MAT0 — Match output 0 for 32-bit timer 1. I; PU I/O PIO1_1 — General purpose digital input/output pin. - O CT32B1_MAT1 — Match output 1 for 32-bit timer 1. I; PU I/O PIO1_2 — General purpose digital input/output pin. - O CT32B1_MAT2 — Match output 2 for 32-bit timer 1. I; PU I/O PIO1_3 — General purpose digital input/output pin. - O CT32B1_MAT3 — Match output 3 for 32-bit timer 1. I; PU I/O PIO1_4 — General purpose digital input/output pin. - I CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. I; PU I/O PIO1_5 — General purpose digital input/output pin. - I CT32B1_CAP1 — Capture input 1 for 32-bit timer 1. - [3] I; PU I/O PIO1_7 — General purpose digital input/output pin. - [3] I; PU I/O PIO1_8 — General purpose digital input/output pin. 27 - [3] - [3] - [3] - [3] - [3] - [3] All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 20 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 4. Pin description (LPC1345/46/47 - with USB) PIO1_13/DTR/ CT16B0_MAT0/TXD PIO1_14/DSR/ CT16B0_MAT1/RXD PIO1_15/DCD/ CT16B0_MAT2/SCK1 LPC1315_16_17_45_46_47 Product data sheet I; PU I/O PIO1_11 — General purpose digital input/output pin. - [3] HVQFN33 47 49 57 23 3 PIO1_23/CT16B1_MAT1/ SSEL1 - LQFP48 43 PIO1_19/DTR/SSEL1 PIO1_22/RI/MOSI1 PIO1_10 — General purpose digital input/output pin. - 28 PIO1_21/DCD/MISO1 I/O - PIO1_18/CT16B1_CAP1/ TXD PIO1_20/DSR/SCK1 I; PU [3] 12 PIO1_16/RI/CT16B0_CAP0 63 PIO1_17/CT16B0_CAP1/ RXD Type PIO1_11 [3] LQFP64 PIO1_10 18 35 51 24 36 37 43 48 - - 2 13 26 38 18 Description Reset state[1] Symbol [3] - 28 [3] - [3] - [3] - 1 - - - - [3] [3] [3] [3] [3] [3] I; PU I/O PIO1_13 — General purpose digital input/output pin. - O DTR — Data Terminal Ready output for USART. - O CT16B0_MAT0 — Match output 0 for 16-bit timer 0. - O TXD — Transmitter output for USART. I; PU I/O PIO1_14 — General purpose digital input/output pin. - I DSR — Data Set Ready input for USART. - O CT16B0_MAT1 — Match output 1 for 16-bit timer 0. - I RXD — Receiver input for USART. I; PU I/O PIO1_15 — General purpose digital input/output pin. - I DCD — Data Carrier Detect input for USART. - O CT16B0_MAT2 — Match output 2 for 16-bit timer 0. - I/O SCK1 — Serial clock for SSP1. I; PU I/O PIO1_16 — General purpose digital input/output pin. - I RI — Ring Indicator input for USART. - I CT16B0_CAP0 — Capture input 0 for 16-bit timer 0. I; PU I/O PIO1_17 — General purpose digital input/output pin. - I CT16B0_CAP1 — Capture input 1 for 16-bit timer 0. - I RXD — Receiver input for USART. I; PU I/O PIO1_18 — General purpose digital input/output pin. - I CT16B1_CAP1 — Capture input 1 for 16-bit timer 1. - O TXD — Transmitter output for USART. I; PU I/O PIO1_19 — General purpose digital input/output pin. - O DTR — Data Terminal Ready output for USART. - I/O SSEL1 — Slave select for SSP1. I; PU I/O PIO1_20 — General purpose digital input/output pin. - I DSR — Data Set Ready input for USART. - I/O SCK1 — Serial clock for SSP1. I; PU I/O PIO1_21 — General purpose digital input/output pin. - I DCD — Data Carrier Detect input for USART. - I/O MISO1 — Master In Slave Out for SSP1. I; PU I/O PIO1_22 — General purpose digital input/output pin. - I RI — Ring Indicator input for USART. - I/O MOSI1 — Master Out Slave In for SSP1. I; PU I/O PIO1_23 — General purpose digital input/output pin. - O CT16B1_MAT1 — Match output 1 for 16-bit timer 1. - I/O SSEL1 — Slave select for SSP1. All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 21 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Pin description (LPC1345/46/47 - with USB) PIO1_25/CT32B0_MAT1 HVQFN33 27 21 - 2 PIO1_26/CT32B0_MAT2/ RXD 14 PIO1_27/CT32B0_MAT3/ TXD 15 PIO1_28/CT32B0_CAP0/ SCLK PIO1_29/SCK0/ CT32B0_CAP1 PIO1_31 31 41 - 1 11 12 24 31 25 [3] - [3] [3] - [3] - [3] - [3] - Description Type LQFP48 PIO1_24/CT32B0_MAT0 LQFP64 Symbol Reset state[1] Table 4. I; PU I/O PIO1_24 — General purpose digital input/output pin. - O CT32B0_MAT0 — Match output 0 for 32-bit timer 0. I; PU I/O PIO1_25 — General purpose digital input/output pin. - O CT32B0_MAT1 — Match output 1 for 32-bit timer 0. I; PU I/O PIO1_26 — General purpose digital input/output pin. - O CT32B0_MAT2 — Match output 2 for 32-bit timer 0. - I RXD — Receiver input for USART. I; PU I/O PIO1_27 — General purpose digital input/output pin. - O CT32B0_MAT3 — Match output 3 for 32-bit timer 0. - O TXD — Transmitter output for USART. I; PU I/O PIO1_28 — General purpose digital input/output pin. - I CT32B0_CAP0 — Capture input 0 for 32-bit timer 0. - I/O SCLK — Serial clock input/output for USART in synchronous mode. I; PU I/O PIO1_29 — General purpose digital input/output pin. - I/O SCK0 — Serial clock for SSP0. - I CT32B0_CAP1 — Capture input 1 for 32-bit timer 0. - [3] I; PU I/O PIO1_31 — General purpose digital input/output pin. F - USB_DM — USB bidirectional D line. (LPC1345/46/46 only.) USB_DM 25 19 13 [8] USB_DP 26 20 14 [8] F - USB_DP — USB bidirectional D+ line. (LPC1345/46/46 only.) XTALIN 8 6 4 [9] - - Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V. XTALOUT 9 7 5 [9] - - Output from the oscillator amplifier. VDDA 59 - - - - Analog 3.3 V pad supply voltage: This should be nominally the same voltage as VDD but should be isolated to minimize noise and error. This voltage is used to power the ADC. This pin should be tied to 3.3 V if the ADC are not used. VREFN 48 - - - - ADC negative reference voltage: This should be nominally the same voltage as VSS but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 22 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 4. Pin description (LPC1345/46/47 - with USB) LQFP48 HVQFN33 Reset state[1] Type Description LQFP64 Symbol VREFP 64 - - - - ADC positive reference voltage: This should be nominally the same voltage as VDDA but should be isolated to minimize noise and error. Level on this pin is used as a reference for ADC. This pin should be tied to 3.3 V if the ADC is not used. VSSA 55 - - - - analog ground: 0 V reference. This should nominally be the same voltage as VSS, but should be isolated to minimize noise and error. VDD 10; 33; 58 8; 44 6; 29 - - Supply voltage to the internal regulator and the external rail. On LQFP48 and HVQFN33 packages, this pin is also connected to the 3.3 V ADC supply and reference voltage. VSS 7; 54 5; 41 33 - - Ground. [1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled; F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption. [2] See Figure 33 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. [3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 32). [4] I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode Plus. [5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 32); includes high-current output driver. [6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 32); includes programmable digital input glitch filter. [7] WAKEUP pin. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 32); includes digital input glitch filter. [8] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode only). This pad is not 5 V tolerant. [9] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.15 LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 23 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7. Functional description 7.1 On-chip flash programming memory The LPC1315/16/17/45/46/47 contain up to 64 kB on-chip flash program memory. The flash can be programmed using In-System Programming (ISP) or In-Application Programming (IAP) via the on-chip boot loader software. Flash updates via USB are supported as well. The flash memory is divided into 4 kB sectors with each sector consisting of 16 pages. Individual pages of 256 byte each can be erased using the IAP erase page command. 7.2 EEPROM The LPC1315/16/17/45/46/47 contain 2 kB or 4 kB of on-chip byte-erasable and byte-programmable EEPROM data memory. The EEPROM can be programmed using In-Application Programming (IAP) via the on-chip boot loader software. 7.3 SRAM The LPC1315/16/17/45/46/47 contain a total of 8 kB, 10 kB, or 12 kB on-chip static RAM memory. 7.4 On-chip ROM The on-chip ROM contains the boot loader and the following Application Programming Interfaces (APIs): • In-System Programming (ISP) and In-Application Programming (IAP) support for flash including IAP erase page command. • • • • IAP support for EEPROM USB API (HID, CDC, and MSC drivers) (LPC1345/46/47 only) Power profiles for configuring power consumption and PLL settings Flash updates via USB supported (LPC1345/46/47 only) 7.5 Memory map The LPC1315/16/17/45/46/47 incorporates several distinct memory regions, shown in the following figures. Figure 8 shows the overall map of the entire address space from the user program viewpoint following reset. The interrupt vector area supports address remapping. The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals. Each peripheral of either type is allocated 16 kB of space. This allows simplifying the address decoding for each peripheral. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 24 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller LPC1315/16/17/45/46/47 4 GB 0xFFFF FFFF reserved 0xE010 0000 private peripheral bus 0xE000 0000 reserved APB peripherals 26 - 31 reserved 0x5000 4000 GPIO 0x5000 0000 reserved 0x4008 4000 USB reserved 2 kB USB SRAM (LPC134x) 24 GPIO GROUP1 interrupt 23 GPIO GROUP0 interrupt 22 SSP1 20 - 21 reserved 0x4000 0000 19 GPIO pin interrupt 0x2000 4800 18 system control 0x2000 4000 17 IOCON 0x2000 0800 16 15 SSP0 flash/EEPROM controller 14 PMU reserved 2 kB SRAM1 (LPC1317/47) 0.5 GB RI Timer 0x4008 0000 APB peripherals 1 GB 25 0x2000 0000 reserved 0x4008 0000 0x4006 8000 0x4006 4000 0x4006 0000 0x4005 C000 0x4005 8000 0x4004 C000 0x4004 C000 0x4004 8000 0x4004 4000 0x4004 0000 0x4003 C000 0x4003 8000 10 - 13 reserved 0x1FFF 4000 16 kB boot ROM 0x4002 8000 0x1FFF 0000 9 reserved 8 reserved 0x4002 0000 7 ADC 0x4001 C000 6 32-bit counter/timer 1 0x4001 8000 0x1000 2000 5 32-bit counter/timer 0 0x4001 4000 0x1000 0000 4 16-bit counter/timer 1 0x4001 0000 3 16-bit counter/timer 0 0x4000 C000 2 USART/SMART CARD 0x4000 8000 1 0 WWDT 0x4000 4000 I2C-bus 0x4000 0000 reserved 8 kB SRAM0 reserved 0x0001 0000 64 kB on-chip flash (LPC1317/47) 0x0000 C000 48 kB on-chip flash (LPC1316/46) 0x0000 8000 32 kB on-chip flash (LPC1315/45) 0x4002 4000 0x0000 00C0 active interrupt vectors 0x0000 0000 0x0000 0000 0 GB 002aag562 Fig 8. LPC1315/16/17/45/46/47 memory map 7.6 Nested Vectored Interrupt Controller (NVIC) The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts. 7.6.1 Features • Controls system exceptions and peripheral interrupts. • In the LPC1315/16/17/45/46/47, the NVIC supports up to 32 vectored interrupts. • Eight programmable interrupt priority levels with hardware priority level masking. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 25 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller • Software interrupt generation. 7.6.2 Interrupt sources Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags. Individual interrupt flags may also represent more than one interrupt source. 7.7 IOCON block The IOCON block allows selected pins of the microcontroller to have more than one function. Configuration registers control the multiplexers to allow connection between the pin and the on-chip peripherals. Peripherals should be connected to the appropriate pins prior to being activated and prior to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is not mapped to a related pin should be considered undefined. 7.7.1 Features • Programmable pull-up, pull-down, or repeater mode. • All GPIO pins (except PIO0_4 and PIO0_5) are pulled up to 3.3 V (VDD = 3.3 V) if their pull-up resistor is enabled. • Programmable pseudo open-drain mode. • Programmable 10-ns glitch filter on pins PIO0_22, PIO0_23, and PIO0_11 to PIO0_16. The glitch filter is turned off by default. • Programmable hysteresis. • Programmable input inverter. 7.8 General Purpose Input/Output GPIO Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs can be set or cleared in one write operation. LPC1315/16/17/45/46/47 use accelerated GPIO functions: • GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing can be achieved. • Entire port value can be written in one instruction. Any GPIO pin providing a digital function can be programmed to generate an interrupt on a level, a rising or falling edge, or both. The GPIO block consists of three parts: 1. The GPIO ports. 2. The GPIO pin interrupt block to control eight GPIO pins selected as pin interrupts. 3. Two GPIO group interrupt blocks to control two combined interrupts from all GPIO pins. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 26 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.8.1 Features • • • • GPIO pins can be configured as input or output by software. All GPIO pins default to inputs with interrupt disabled at reset. Pin registers allow pins to be sensed and set individually. Up to eight GPIO pins can be selected from all GPIO pins to create an edge- or level-sensitive GPIO interrupt request. • Port interrupts can be triggered by any pin or pins in each port. 7.9 USB interface Remark: The USB interface is available on parts LPC1345/46/47 only. The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a host and one or more (up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot-plugging and dynamic configuration of the devices. All transactions are initiated by the host controller. The LPC1345/46/47 USB interface consists of a full-speed device controller with on-chip PHY (PHYsical layer) for device functions. Remark: Configure the LPC1345/46/47 in default power mode with the power profiles before using the USB (see Section 7.18.5.1). Do not use the USB with the part in performance, efficiency, or low-power mode. 7.9.1 Full-speed USB device controller The device controller enables 12 Mbit/s data exchange with a USB Host controller. It consists of a register interface, serial interface engine, and endpoint buffer memory. The serial interface engine decodes the USB data stream and writes data to the appropriate endpoint buffer. The status of a completed USB transfer or error condition is indicated via status registers. An interrupt is also generated if enabled. 7.9.1.1 Features • • • • • • Dedicated USB PLL available. Fully compliant with USB 2.0 specification (full speed). Supports 10 physical (5 logical) endpoints including one control endpoint. Single and double buffering supported. Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types. Supports wake-up from Deep-sleep mode and Power-down mode on USB activity and remote wake-up. • Supports SoftConnect. • Supports Link Power Management (LPM). 7.10 USART The LPC1315/16/17/45/46/47 contains one USART. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 27 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller The USART includes full modem control, support for synchronous mode, and a smart card interface. The RS-485/9-bit mode allows both software address detection and automatic address detection using 9-bit mode. The USART uses a fractional baud rate generator. Standard baud rates such as 115200 Bd can be achieved with any crystal frequency above 2 MHz. 7.10.1 Features • • • • • Maximum USART data bit rate of 3.125 Mbit/s. 16-byte receive and transmit FIFOs. Register locations conform to 16C550 industry standard. Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B. Built-in fractional baud rate generator covering wide range of baud rates without a need for external crystals of particular values. • Fractional divider for baud rate control, auto baud capabilities and FIFO control mechanism that enables software flow control implementation. • • • • Support for RS-485/9-bit mode. Support for modem control. Support for synchronous mode. Includes smart card interface (ISO 7816-3). 7.11 SSP serial I/O controller The SSP controllers are capable of operation on a SSP, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. The SSP supports full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice, often only one of these data flows carries meaningful data. 7.11.1 Features • Maximum SSP speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode) • Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National Semiconductor Microwire buses • • • • Synchronous serial communication Master or slave operation 8-frame FIFOs for both transmit and receive 4-bit to 16-bit frame 7.12 I2C-bus serial I/O controller The LPC1315/16/17/45/46/47 contain one I2C-bus controller. The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line (SCL) and a Serial Data line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 28 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be controlled by more than one bus master connected to it. 7.12.1 Features • The I2C-interface is an I2C-bus compliant interface with open-drain pins. The I2C-bus interface supports Fast-mode Plus with bit rates up to 1 Mbit/s. • • • • • Easy to configure as master, slave, or master/slave. Programmable clocks allow versatile rate control. Bidirectional data transfer between masters and slaves. Multi-master bus (no central master). Arbitration between simultaneously transmitting masters without corruption of serial data on the bus. • Serial clock synchronization allows devices with different bit rates to communicate via one serial bus. • Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer. • The I2C-bus can be used for test and diagnostic purposes. • The I2C-bus controller supports multiple address recognition and a bus monitor mode. 7.13 12-bit ADC The LPC1315/16/17/45/46/47 contains one ADC. It is a single 12-bit successive approximation ADC with eight channels. 7.13.1 Features • • • • • 12-bit successive approximation ADC. • • • • 12-bit conversion rate of up to 500 kHz. Input multiplexing among 8 pins and three internal sources. Low-power mode. 10-bit double-conversion rate mode (conversion rate of up to 1 Msample/s). Measurement range VREFN to VREFP (typically 3 V; not to exceed VDDA voltage level). Burst conversion mode for single or multiple inputs. Optional conversion on transition of input pin or timer match signal. On the LQFP64 package, power and reference pins (VDDA, VSSA, VREFP, VREFN) are brought out on separate pins for superior noise immunity. 7.14 General purpose external event counter/timers The LPC1315/16/17/45/46/47 includes two 32-bit counter/timers and two 16-bit counter/timers. The counter/timer is designed to count cycles of the system derived clock. It can optionally generate interrupts or perform other actions at specified timer values, based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 29 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.14.1 Features • A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler. • Counter or timer operation. • One capture channel per timer, that can take a snapshot of the timer value when an input signal transitions. A capture event may also generate an interrupt. • Four match registers per timer that allow: – Continuous operation with optional interrupt generation on match. – Stop timer on match with optional interrupt generation. – Reset timer on match with optional interrupt generation. • Up to four external outputs corresponding to match registers, with the following capabilities: – Set LOW on match. – Set HIGH on match. – Toggle on match. – Do nothing on match. • The timer and prescaler may be configured to be cleared on a designated capture event. This feature permits easy pulse-width measurement by clearing the timer on the leading edge of an input pulse and capturing the timer value on the trailing edge. 7.15 Repetitive Interrupt (RI) timer The repetitive interrupt timer provides a free-running 48-bit counter which is compared to a selectable value, generating an interrupt when a match occurs. Any bits of the timer/compare can be masked such that they do not contribute to the match detection. The repetitive interrupt timer can be used to create an interrupt that repeats at predetermined intervals. 7.15.1 Features • 48-bit counter running from the main clock. Counter can be free-running or can be reset when an RIT interrupt is generated. • 48-bit compare value. • 48-bit compare mask. An interrupt is generated when the counter value equals the compare value, after masking. This allows for combinations not possible with a simple compare. • Support for ETM timestamp generator. 7.16 System tick timer The ARM Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate a dedicated SYSTICK exception at a fixed time interval (typically 10 ms). 7.17 Windowed WatchDog Timer (WWDT) The purpose of the watchdog is to reset the controller if software fails to periodically service it within a programmable time window. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 30 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.17.1 Features • Internally resets chip if not periodically reloaded during the programmable time-out period. • Optional windowed operation requires reload to occur between a minimum and maximum time period, both programmable. • Optional warning interrupt can be generated at a programmable time prior to watchdog time-out. • Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled. • • • • Incorrect feed sequence causes reset or interrupt if enabled. Flag to indicate watchdog reset. Programmable 24-bit timer with internal prescaler. Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in multiples of Tcy(WDCLK) 4. • The Watchdog Clock (WDCLK) source can be selected from the IRC or the watchdog oscillator (WDO). This gives a wide range of potential timing choices of watchdog operation under different power conditions. 7.18 Clocking and power control 7.18.1 Integrated oscillators The LPC1315/16/17/45/46/47 include three independent oscillators. These are the system oscillator, the Internal RC oscillator (IRC), and the watchdog oscillator. Each oscillator can be used for more than one purpose as required in a particular application. Following reset, the LPC1315/16/17/45/46/47 will operate from the internal RC oscillator until switched by software. This allows systems to operate without any external crystal and the bootloader code to operate at a known frequency. See Figure 9 for an overview of the LPC1315/16/17/45/46/47 clock generation. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 31 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller SYSTEM CLOCK DIVIDER CPU, system control, PMU system clock n memories, peripheral clocks SYSAHBCLKCTRLn (AHB clock enable) IRC oscillator main clock SSP0 PERIPHERAL CLOCK DIVIDER SSP0 USART PERIPHERAL CLOCK DIVIDER UART SSP1 PERIPHERAL CLOCK DIVIDER SSP1 USB 48 MHz CLOCK DIVIDER USB CLKOUT PIN CLOCK DIVIDER CLKOUT pin watchdog oscillator MAINCLKSEL (main clock select) IRC oscillator SYSTEM PLL system oscillator SYSPLLCLKSEL (system PLL clock select) USB PLL system oscillator USBPLLCLKSEL (USB clock select) USBCLKSEL (USB clock select) IRC oscillator system oscillator watchdog oscillator CLKOUTSEL (CLKOUT clock select) IRC oscillator WDT watchdog oscillator WDCLKSEL (WDT clock select) 002aag563 The USB clock divider is available on parts LPC1345/46/47 only. Fig 9. LPC1315/16/17/45/46/47 clocking generation block diagram 7.18.1.1 Internal RC oscillator The IRC may be used as the clock source for the WDT, and/or as the clock that drives the system PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is trimmed to 1 % accuracy over the entire voltage and temperature range. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 32 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Upon power-up, any chip reset, or wake-up from Deep power-down mode, the LPC1315/16/17/45/46/47 use the IRC as the clock source. Software may later switch to one of the other available clock sources. 7.18.1.2 System oscillator The system oscillator can be used as the clock source for the CPU, with or without using the PLL. On the LPC1315/16/17/45/46/47, the system oscillator must be used to provide the clock source to USB. The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be boosted to a higher frequency, up to the maximum CPU operating frequency, by the system PLL. 7.18.1.3 Watchdog oscillator The watchdog oscillator can be used as a clock source that directly drives the CPU, the watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is programmable between 9.4 kHz and 2.3 MHz. The frequency spread over processing and temperature is 40 % (see also Table 13). 7.18.2 System PLL and USB PLL The LPC1315/16/17/45/46/47 contain a system PLL and a dedicated PLL for generating the 48 MHz USB clock. The system and USB PLLs are identical. The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. The PLL output frequency must be lower than 100 MHz. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip reset and may be enabled by software. The program must configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source. The PLL settling time is 100 s. 7.18.3 Clock output The LPC1315/16/17/45/46/47 features a clock output function that routes the IRC oscillator, the system oscillator, the watchdog oscillator, or the main clock to an output pin. 7.18.4 Wake-up process The LPC1315/16/17/45/46/47 begin operation at power-up and when awakened from Deep power-down mode by using the 12 MHz IRC oscillator as the clock source. This allows chip operation to resume quickly. If the main oscillator or the PLL is needed by the application, software will need to enable these features and wait for them to stabilize before they are used as a clock source. 7.18.5 Power control The LPC1315/16/17/45/46/47 support a variety of power control features. There are four special modes of processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and Deep power-down mode. The CPU clock rate may also be LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 33 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a trade-off of power versus processing speed based on application requirements. In addition, a register is provided for shutting down the clocks to individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any peripherals that are not required for the application. Selected peripherals have their own clock divider which provides even better power control. 7.18.5.1 Power profiles The power consumption in Active and Sleep modes can be optimized for the application through simple calls to the power profile. The power configuration routine configures the LPC1315/16/17/45/46/47 for one of the following power modes: • Default mode corresponding to power configuration after reset. • CPU performance mode corresponding to optimized processing capability. • Efficiency mode corresponding to optimized balance of current consumption and CPU performance. • Low-current mode corresponding to lowest power consumption. In addition, the power profile includes routines to select the optimal PLL settings for a given system clock and PLL input clock. Remark: When using the USB, configure the LPC1345/46/47 in Default mode. 7.18.5.2 Sleep mode When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep mode does not need any special sequence but re-enabling the clock to the ARM core. In Sleep mode, execution of instructions is suspended until either a reset or interrupt occurs. Peripheral functions continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses. 7.18.5.3 Deep-sleep mode In Deep-sleep mode, the LPC1315/16/17/45/46/47 is in Sleep-mode and all peripheral clocks and all clock sources are off with the exception of the IRC. The IRC output is disabled unless the IRC is selected as input to the watchdog timer. In addition all analog blocks are shut down and the flash is in stand-by mode. In Deep-sleep mode, the user has the option to keep the watchdog oscillator and the BOD circuit running for self-timed wake-up and BOD protection. The LPC1315/16/17/45/46/47 can wake up from Deep-sleep mode via reset, selected GPIO pins, a watchdog timer interrupt, or an interrupt generating USB port activity. Deep-sleep mode saves power and allows for short wake-up times. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 34 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.18.5.4 Power-down mode In Power-down mode, the LPC1315/16/17/45/46/47 is in Sleep-mode and all peripheral clocks and all clock sources are off with the exception of watchdog oscillator if selected. In addition all analog blocks and the flash are shut down. In Power-down mode, the user has the option to keep the BOD circuit running for BOD protection. The LPC1315/16/17/45/46/47 can wake up from Power-down mode via reset, selected GPIO pins, a watchdog timer interrupt, or an interrupt generating USB port activity. Power-down mode reduces power consumption compared to Deep-sleep mode at the expense of longer wake-up times. 7.18.5.5 Deep power-down mode In Deep power-down mode, power is shut off to the entire chip with the exception of the WAKEUP pin. The LPC1315/16/17/45/46/47 can wake up from Deep power-down mode via the WAKEUP pin. The LPC1315/16/17/45/46/47 can be prevented from entering Deep power-down mode by setting a lock bit in the PMU block. Locking out Deep power-down mode enables the user to always keep the watchdog timer or the BOD running. When entering Deep power-down mode, an external pull-up resistor is required on the WAKEUP pin to hold it HIGH. The RESET pin must also be held HIGH to prevent it from floating while in Deep power-down mode. 7.18.6 System control 7.18.6.1 Reset Reset has four sources on the LPC1315/16/17/45/46/47: the RESET pin, the Watchdog reset, power-on reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt trigger input pin. Assertion of chip reset by any source, once the operating voltage attains a usable level, starts the IRC and initializes the flash controller. A LOW-going pulse as short as 50 ns resets the part. When the internal Reset is removed, the processor begins executing at address 0, which is initially the Reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values. An external pull-up resistor is required on the RESET pin if Deep power-down mode is used. 7.18.6.2 Brownout detection The LPC1315/16/17/45/46/47 includes up to four levels for monitoring the voltage on the VDD pin. If this voltage falls below one of selected levels, the BOD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register. Four threshold levels can be selected to cause a forced reset of the chip. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 35 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 7.18.6.3 Code security (Code Read Protection - CRP) This feature of the LPC1315/16/17/45/46/47 allows user to enable different levels of security in the system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be restricted. When needed, CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by the CRP. In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For details see the LPC1315/16/17/45/46/47 user manual. There are three levels of Code Read Protection: 1. CRP1 disables access to the chip via the SWD and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased. 2. CRP2 disables access to the chip via the SWD and only allows full flash erase and update using a reduced set of the ISP commands. 3. Running an application with level CRP3 selected fully disables any access to the chip via the SWD pins and the ISP. This mode effectively disables ISP override using PIO0_1 pin, too. It is up to the user’s application to provide (if needed) flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via the USART. CAUTION If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device. In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be disabled. For details see the LPC1315/16/17/45/46/47 user manual. 7.18.6.4 APB interface The APB peripherals are located on one APB bus. 7.18.6.5 AHBLite The AHBLite connects the CPU bus of the ARM Cortex-M3 to the flash memory, the main static RAM, and the ROM. 7.18.6.6 External interrupt inputs All GPIO pins can be level or edge sensitive interrupt inputs. 7.19 Emulation and debugging Debug functions are integrated into the ARM Cortex-M3. Serial wire debug functions are supported in addition to a standard JTAG boundary scan. The ARM Cortex-M0 is configured to support up to four breakpoints and two watch points. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 36 of 77 NXP Semiconductors LPC1315/16/17/45/46/47 32-bit ARM Cortex-M3 microcontroller The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the LPC1315/16/17/45/46/47 is in reset. Remark: Boundary scan operations should not be started until 250 s after POR, and the test TAP should be reset after the boundary scan. Boundary scan is not affected by Code Read Protection. Remark: The JTAG interface cannot be used for debug purposes. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 37 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 8. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).[1] Symbol Parameter VDD supply voltage (core and external rail) VI input voltage Conditions 5 V tolerant I/O pins; only valid when the VDD supply voltage is present [2] Min Max Unit 2.0 3.6 V 0.5 +5.5 V IDD supply current per supply pin - 100 mA ISS ground current per ground pin - 100 mA Ilatch I/O latch-up current (0.5VDD) < VI < (1.5VDD); - 100 mA Tstg storage temperature non-operating 65 +150 C Tj(max) maximum junction temperature - 150 C Ptot(pack) total power dissipation (per package) based on package heat transfer, not device power consumption - 1.5 W VESD electrostatic discharge voltage human body model; all pins 5000 +5000 V Tj < 125 C [1] [3] [4] The following applies to the limiting values: a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum. b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted. [2] Including voltage on outputs in 3-state mode. [3] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details. [4] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 38 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 9. Static characteristics Table 6. Static characteristics Tamb = 40 C to +85 C, unless otherwise specified. Symbol Parameter VDD supply voltage (core and external rail) IDD supply current Conditions [2] Min Typ[1] Max Unit 2.0 3.3 3.6 V - 0.5 - mA - 2 - mA - 14 - mA - 1 - mA Active mode; VDD = 3.3 V; Tamb = 25 C; code while(1){} executed from flash; [3][5][6] system clock = 1 MHz [7][8][9] [4][5][6] system clock = 12 MHz [7][8][9] [5][6][7] system clock = 72 MHz [8][9][10] Sleep mode; VDD = 3.3 V; Tamb = 25 C; [4][5][6] [7][8][9] system clock = 12 MHz Deep-sleep mode; VDD = 3.3 V; Tamb = 25 C [5][8] - 280 - A Power-down mode; VDD = 3.3 V; Tamb = 25 C [5][8] - 2.1 - A [11] - 220 - nA Deep power-down mode; VDD = 3.3 V; Tamb = 25 C Standard port pins, RESET IIL LOW-level input current VI = 0 V; on-chip pull-up resistor disabled - 0.5 10 nA IIH HIGH-level input current VI = VDD; on-chip pull-down resistor disabled - 0.5 10 nA IOZ OFF-state output current VO = 0 V; VO = VDD; on-chip pull-up/down resistors disabled - 0.5 10 nA VI input voltage pin configured to provide a digital function 0 - 5.0 V 0 - VDD V [12][13] [14] VO output voltage VIH HIGH-level input voltage 0.7VDD - - V VIL LOW-level input voltage - - 0.3VDD V Vhys hysteresis voltage - 0.4 - V VOH HIGH-level output voltage 2.5 V VDD 3.6 V; IOH = 4 mA VDD 0.4 - - V 2.0 V VDD 2.5 V; IOH = 3 mA VDD 0.4 - - V LOW-level output voltage 2.5 V VDD 3.6 V; IOL = 4 mA - - 0.4 V 2.0 V VDD 2.5 V; IOL = 3 mA - - 0.4 V VOL LPC1315_16_17_45_46_47 Product data sheet output active All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 39 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 6. Static characteristics …continued Tamb = 40 C to +85 C, unless otherwise specified. Symbol Parameter Conditions Min Typ[1] Max Unit IOH 2.5 V VDD 3.6 V; VOH = VDD 0.4 V 4 - - mA 2.0 V VDD 2.5 V; VOH = VDD 0.4 V 3 - - mA 2.5 V VDD 3.6 V; VOL = 0.4 V 4 - - mA IOL HIGH-level output current LOW-level output current 2.0 V VDD 2.5 V; VOL = 0.4 V 3 - - mA - - 45 mA - - 50 mA IOHS HIGH-level short-circuit VOH = 0 V output current [15] IOLS LOW-level short-circuit output current [15] Ipd pull-down current VI = 5 V 10 50 150 A Ipu pull-up current VI = 0 V; 15 50 85 A VOL = VDD 2.0 V VDD 3.6 V VDD = 2.0 V VDD < VI < 5 V 10 50 85 A 0 0 0 A High-drive output pin (PIO0_7) IIL LOW-level input current VI = 0 V; on-chip pull-up resistor disabled - 0.5 10 nA IIH HIGH-level input current VI = VDD; on-chip pull-down resistor disabled - 0.5 10 nA IOZ OFF-state output current VO = 0 V; VO = VDD; on-chip pull-up/down resistors disabled - 0.5 10 nA VI input voltage pin configured to provide a digital function 0 - 5.0 V 0 - VDD V [12][13] [14] VO output voltage VIH HIGH-level input voltage 0.7VDD - - V VIL LOW-level input voltage - - 0.3VDD V Vhys hysteresis voltage 0.4 - - V VOH HIGH-level output voltage 2.5 V VDD 3.6 V; IOH = 20 mA VDD 0.4 - - V 2.0 V VDD < 2.5 V; IOH = 12 mA VDD 0.4 - - V LOW-level output voltage 2.5 V VDD 3.6 V; IOL = 4 mA - - 0.4 V 2.0 V VDD < 2.5 V; IOL = 3 mA - - 0.4 V HIGH-level output current 2.5 V VDD 3.6 V; VOH = VDD 0.4 V 20 - - mA 2.0 V VDD 2.5 V; VOH = VDD 0.4 V; 12 - - mA VOL IOH output active LOW-level output current 2.5 V VDD 3.6 V; VOL = 0.4 V 4 - - mA 2.0 V VDD < 2.5 V; VOL = 0.4 V 3 - - mA IOLS LOW-level short-circuit output current VOL = VDD - - 50 mA Ipd pull-down current VI = 5 V 10 50 150 A IOL LPC1315_16_17_45_46_47 Product data sheet [15] All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 40 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 6. Static characteristics …continued Tamb = 40 C to +85 C, unless otherwise specified. Symbol Parameter Conditions Min Typ[1] Max Unit Ipu VI = 0 V 15 50 85 A 10 50 85 A 0 0 0 A pull-up current 2.0 V < VDD 3.6 V VDD = 2.0 V VDD < VI < 5 V I2C-bus pins (PIO0_4 and PIO0_5) VIH HIGH-level input voltage 0.7VDD - - V VIL LOW-level input voltage - - 0.3VDD V Vhys hysteresis voltage - 0.05VDD - V 3.5 - - mA LOW-level output current IOL I2C-bus VOL = 0.4 V; pins configured as standard mode pins 2.5 V VDD 3.6 V 2.0 V VDD < 2.5 V LOW-level output current IOL VOL = 0.4 V; I2C-bus pins configured as Fast-mode Plus pins 3.0 - - mA 20 - - mA 16 - - - 2 4 A - 10 22 A 2.5 V VDD 3.6 V 2.0 V VDD < 2.5 V input leakage current ILI [16] VI = VDD VI = 5 V Oscillator pins Vi(xtal) crystal input voltage 0.5 1.8 1.95 V Vo(xtal) crystal output voltage 0.5 1.8 1.95 V [2] - - 10 A [2] - - 5.25 V 0.2 - - V USB pins IOZ OFF-state output current VBUS bus supply voltage 0 V < VI < 3.3 V VDI differential input sensitivity voltage (D+) (D) [2] VCM differential common mode voltage range includes VDI range [2] 0.8 - 2.5 V Vth(rs)se single-ended receiver switching threshold voltage [2] 0.8 - 2.0 V VOL LOW-level output voltage for low-/full-speed; RL of 1.5 k to 3.6 V [2] - - 0.18 V VOH HIGH-level output voltage driven; for low-/full-speed; RL of 15 k to GND [2] 2.8 - 3.5 V Ctrans transceiver capacitance pin to GND [2] - - 20 pF ZDRV driver output with 33 series resistor; steady state impedance for driver drive which is not high-speed capable 36 - 44.1 [17][2] [1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages. [2] For USB operation 3.0 V VDD 3.6 V. Guaranteed by design. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 41 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller [3] System oscillator enabled; PLL and IRC disabled. [4] IRC enabled; system oscillator disabled; system PLL disabled. [5] IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled. [6] BOD disabled. [7] All peripherals disabled in the AHBCLKCTRL register. Peripheral clocks to USART, SSP0/1 disabled in the syscon block. [8] USB_DP and USB_DM pulled LOW externally. [9] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles. [10] IRC disabled; system oscillator enabled; system PLL enabled. [11] WAKEUP pin pulled HIGH externally. An external pull-up resistor is required on the RESET pin for the Deep power-down mode. [12] Including voltage on outputs in 3-state mode. [13] VDD supply voltage must be present. [14] 3-state outputs go into 3-state mode in Deep power-down mode. [15] Allowed as long as the current limit does not exceed the maximum current allowed by the device. [16] To VSS. [17] Includes external resistors of 33 1 % on USB_DP and USB_DM. 9.1 BOD static characteristics Table 7. BOD static characteristics[1] Tamb = 25 C. Symbol Parameter Conditions Min Typ Max Unit Vth threshold voltage interrupt level 1 assertion - 2.22 - V de-assertion - 2.35 - V assertion - 2.52 - V de-assertion - 2.66 - V assertion - 2.80 - V de-assertion - 2.90 - V interrupt level 2 interrupt level 3 reset level 0 assertion - 1.46 - V de-assertion - 1.63 - V assertion - 2.06 - V de-assertion - 2.15 - V assertion - 2.35 - V de-assertion - 2.43 - V assertion - 2.63 - V de-assertion - 2.71 - V reset level 1 reset level 2 reset level 3 [1] LPC1315_16_17_45_46_47 Product data sheet Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC1315/16/17/45/46/47 user manual. All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 42 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 9.2 Power consumption Power measurements in Active, Sleep, and Deep-sleep modes were performed under the following conditions (see LPC1315/16/17/45/46/47 user manual): • Configure all pins as GPIO with pull-up resistor disabled in the IOCON block. • Configure GPIO pins as outputs using the GPIOnDIR registers. • Write 0 to all GPIOnDATA registers to drive the outputs LOW. 002aag900 18 72 MHz 60 MHz 48 MHz 36 MHz 24 MHz 12 MHz 6 MHz 3 MHz 1 MHz IDD (mA) 12 6 0 2 2.2 2.4 2.6 2.8 3 3.2 3.4 VDD (V) 3.6 Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; internal pull-up resistors disabled; BOD disabled; all peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; USB_DP and USB_DM pulled LOW externally. 1 MHz - 6 MHz: system oscillator enabled; PLL, IRC disabled. 12 MHz: IRC enabled; system oscillator, PLL disabled. 24 MHz - 72 MHz: IRC disabled; system oscillator, PLL enabled. Fig 10. Typical supply current versus regulator supply voltage VDD in active mode LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 43 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 002aag901 18 72 MHz 60 MHz 48 MHz 36 MHz 24 MHz 12 MHz 6 MHz 3 MHz 1 MHz IDD (mA) 14.4 10.8 7.2 3.6 0 -40 -15 10 35 60 temperature (°C) 85 Conditions: VDD = 3.3 V; Active mode entered executing code while(1){} from flash; internal pull-up resistors disabled; BOD disabled; all peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; USB_DP and USB_DM pulled LOW externally. 1 MHz - 6 MHz: system oscillator enabled; PLL, IRC disabled. 12 MHz: IRC enabled; system oscillator, PLL disabled. 24 MHz - 72 MHz: IRC disabled; system oscillator, PLL enabled. Fig 11. Typical supply current versus temperature in Active mode 002aag902 6 72 MHz 60 MHz 48 MHz 36 MHz 24 MHz 12 MHz 6 MHz 3 MHz 1 MHz IDD (mA) 4 2 0 -40 -15 10 35 60 temperature (°C) 85 Conditions: VDD = 3.3 V; Sleep mode entered from flash; internal pull-up resistors disabled; BOD disabled; all peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; USB_DP and USB_DM pulled LOW externally. 1 MHz - 6 MHz: system oscillator enabled; PLL, IRC disabled. 12 MHz: IRC enabled; system oscillator, PLL disabled. 24 MHz - 72 MHz: IRC disabled; system oscillator, PLL enabled. Fig 12. Typical supply current versus temperature in Sleep mode LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 44 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 002aag891 300 IDD (μA) 290 3.6 V 3.3 V 2.0 V 280 270 260 250 -40 -15 10 35 60 temperature (°C) 85 Conditions: BOD disabled; all oscillators and analog blocks turned off in the PDSLEEPCFG register; USB_DP and USB_DM pulled LOW externally. Fig 13. Typical supply current versus temperature in Deep-sleep mode 002aag892 18 IDD (μA) 12 3.6 V 3.3 V 2.0 V 6 0 -40 -15 10 35 60 temperature (°C) 85 Conditions: BOD disabled; all oscillators and analog blocks turned off in the PDSLEEPCFG register; USB_DP and USB_DM pulled LOW externally. Fig 14. Typical supply current versus temperature in Power-down mode LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 45 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 002aag893 0.8 IDD (μA) 0.6 3.6 V 3.3 V 2.0 V 0.4 0.2 0 -40 -15 10 35 60 temperature (°C) 85 Fig 15. Typical supply current versus temperature in Deep power-down mode Table 8. Power consumption for individual analog and digital blocks The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCTRL or PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless noted otherwise, the system oscillator and PLL are running in both measurements. Typical supply current per peripheral in mA for different system clock frequencies Notes n/a 12 MHz 48 MHz 72 MHz IRC 0.23 - - - System oscillator running; PLL off; independent of main clock frequency. System oscillator at 12 MHz 0.23 - - - IRC running; PLL off; independent of main clock frequency. Watchdog oscillator at 500 kHz/2 0.002 - - - System oscillator running; PLL off; independent of main clock frequency. BOD 0.045 - - - Independent of main clock frequency. Main PLL or USB PLL - 0.26 0.34 0.48 ADC - 0.07 0.25 0.37 CLKOUT - 0.14 0.56 0.82 CT16B0 - 0.01 0.05 0.08 CT16B1 - 0.01 0.04 0.06 CT32B0 - 0.01 0.05 0.07 CT32B1 - 0.01 0.04 0.06 GPIO - 0.21 0.80 1.17 IOCON - 0.00 0.02 0.02 I2C - 0.03 0.12 0.17 LPC1315_16_17_45_46_47 Product data sheet Main clock divided by 4 in the CLKOUTDIV register. GPIO pins configured as outputs and set to LOW. Direction and pin state are maintained if the GPIO is disabled in the SYSAHBCLKCFG register. All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 46 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 8. Power consumption for individual analog and digital blocks The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCTRL or PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless noted otherwise, the system oscillator and PLL are running in both measurements. Typical supply current per peripheral in mA for different system clock frequencies n/a 12 MHz 48 MHz 72 MHz ROM - 0.04 0.15 0.22 SSP0 - 0.11 0.41 0.60 SSP1 - 0.11 0.41 0.60 USART - 0.20 0.76 1.11 WDT - 0.01 0.05 0.08 USB - - 1.2 - Notes Main clock selected as clock source for the WDT. 9.3 Electrical pin characteristics 002aae990 3.6 VOH (V) T = 85 °C 25 °C −40 °C 3.2 2.8 2.4 2 0 10 20 30 40 50 60 IOH (mA) Conditions: VDD = 3.3 V; on pin PIO0_7. Fig 16. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level output current IOH. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 47 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 002aaf019 60 T = 85 °C 25 °C −40 °C IOL (mA) 40 20 0 0 0.2 0.4 0.6 VOL (V) Conditions: VDD = 3.3 V; on pins PIO0_4 and PIO0_5. Fig 17. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus LOW-level output voltage VOL 002aae991 15 IOL (mA) T = 85 °C 25 °C −40 °C 10 5 0 0 0.2 0.4 0.6 VOL (V) Conditions: VDD = 3.3 V; standard port pins and PIO0_7. Fig 18. Typical LOW-level output current IOL versus LOW-level output voltage VOL LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 48 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 002aae992 3.6 VOH (V) T = 85 °C 25 °C −40 °C 3.2 2.8 2.4 2 0 8 16 24 IOH (mA) Conditions: VDD = 3.3 V; standard port pins. Fig 19. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH 002aae988 10 Ipu (μA) −10 −30 T = 85 °C 25 °C −40 °C −50 −70 0 1 2 3 4 5 VI (V) Conditions: VDD = 3.3 V; standard port pins. Fig 20. Typical pull-up current Ipu versus input voltage VI LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 49 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 002aae989 80 T = 85 °C 25 °C −40 °C Ipd (μA) 60 40 20 0 0 1 2 3 4 5 VI (V) Conditions: VDD = 3.3 V; standard port pins. Fig 21. Typical pull-down current Ipd versus input voltage VI LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 50 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 10. Dynamic characteristics 10.1 Flash/EEPROM memory Table 9. Flash characteristics Tamb = 40 C to +85 C, unless otherwise specified. Symbol Parameter Conditions Min [1] Nendu endurance tret retention time ter erase time tprog programming time Typ Max Unit 10000 100000 - cycles powered 10 - - years unpowered 20 - - years sector or multiple consecutive sectors 95 100 105 ms 0.95 1 1.05 ms [2] [1] Number of program/erase cycles. [2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash in blocks of 256 bytes. Table 10. EEPROM characteristics Tamb = 40 C to +85 C; VDD = 2.7 V to 3.6 V. Symbol Parameter Min Typ Max Unit fclk clock frequency Conditions 200 375 400 kHz Nendu endurance 100000 1000000 - cycles tret retention time powered 100 200 - years unpowered 150 300 - years ter erase time 64 bytes - 1.8 - ms tprog programming time 64 bytes - 1.1 - ms 10.2 External clock Table 11. Dynamic characteristic: external clock Tamb = 40 C to +85 C; VDD over specified ranges.[1] LPC1315_16_17_45_46_47 Product data sheet Min Typ[2] Max Unit oscillator frequency 1 - 25 MHz Symbol Parameter fosc Conditions Tcy(clk) clock cycle time 40 - 1000 ns tCHCX clock HIGH time Tcy(clk) 0.4 - - ns tCLCX clock LOW time Tcy(clk) 0.4 - - ns tCLCH clock rise time - - 5 ns tCHCL clock fall time - - 5 ns [1] Parameters are valid over operating temperature range unless otherwise specified. [2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages. All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 51 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller tCHCL tCHCX tCLCH tCLCX Tcy(clk) 002aaa907 Fig 22. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV) LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 52 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 10.3 Internal oscillators Table 12. Dynamic characteristics: IRC Tamb = 40 C to +85 C; 2.7 V VDD 3.6 V[1]. Symbol Parameter Conditions Min Typ[2] Max Unit fosc(RC) internal RC oscillator frequency - 11.88 12 12.12 MHz [1] Parameters are valid over operating temperature range unless otherwise specified. [2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages. 002aaf403 12.15 f (MHz) 12.05 VDD = 3.6 V 3.3 V 3.0 V 2.7 V 2.4 V 2.0 V 11.95 11.85 −40 −15 10 35 60 85 temperature (°C) Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for 2.7 V VDD 3.6 V and Tamb = 40 C to +85 C. Variations between parts may cause the IRC to fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V. Fig 23. Internal RC oscillator frequency versus temperature LPC1315_16_17_45_46_47 Product data sheet Table 13. Dynamic characteristics: Watchdog oscillator Symbol Parameter Conditions fosc(int) internal oscillator frequency DIVSEL = 0x1F, FREQSEL = 0x1 in the WDTOSCCTRL register; DIVSEL = 0x00, FREQSEL = 0xF in the WDTOSCCTRL register Min Typ[1] Max Unit [2][3] - 9.4 - kHz [2][3] - 2300 - kHz [1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages. [2] The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %. [3] See the LPC1315/16/17/45/46/47 user manual. All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 53 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 10.4 I/O pins Table 14. Dynamic characteristics: I/O pins[1] Tamb = 40 C to +85 C; 3.0 V VDD 3.6 V. Symbol Parameter Conditions Min Typ Max Unit tr rise time pin configured as output 3.0 - 5.0 ns tf fall time pin configured as output 2.5 - 5.0 ns [1] Applies to standard port pins and RESET pin. 10.5 I2C-bus Table 15. Dynamic characteristic: I2C-bus pins[1] Tamb = 40 C to +85 C.[2] Symbol Parameter Conditions Min Max Unit fSCL SCL clock frequency Standard-mode 0 100 kHz Fast-mode 0 400 kHz Fast-mode Plus 0 1 MHz of both SDA and SCL signals - 300 ns Fast-mode 20 + 0.1 Cb 300 ns Fast-mode Plus fall time tf [4][5][6][7] Standard-mode tLOW tHIGH tHD;DAT tSU;DAT LOW period of the SCL clock HIGH period of the SCL clock data hold time data set-up time [3][4][8] [9][10] - 120 ns Standard-mode 4.7 - s Fast-mode 1.3 - s Fast-mode Plus 0.5 - s Standard-mode 4.0 - s Fast-mode 0.6 - s Fast-mode Plus 0.26 - s Standard-mode 0 - s Fast-mode 0 - s Fast-mode Plus 0 - s Standard-mode 250 - ns Fast-mode 100 - ns Fast-mode Plus 50 - ns [1] See the I2C-bus specification UM10204 for details. [2] Parameters are valid over operating temperature range unless otherwise specified. [3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge. [4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL. [5] Cb = total capacitance of one bus line in pF. [6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf. [7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 54 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller [8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock. [9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge. [10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time. tf SDA tSU;DAT 70 % 30 % 70 % 30 % tHD;DAT tf 70 % 30 % SCL tVD;DAT tHIGH 70 % 30 % 70 % 30 % 70 % 30 % tLOW S 1 / fSCL 002aaf425 Fig 24. I2C-bus pins clock timing LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 55 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 10.6 SSP interface Table 16. Dynamic characteristics: SSP pins in SPI mode Symbol Parameter Conditions Min Max Unit clock cycle time full-duplex mode [1] 40 - ns when only transmitting [1] 27.8 - ns in SPI mode; [2] 15 - ns [2] SSP master Tcy(clk) data set-up time tDS 2.4 V VDD 3.6 V 2.0 V VDD < 2.4 V 20 - ns tDH data hold time in SPI mode [2] 0 - ns tv(Q) data output valid time in SPI mode [2] - 10 ns in SPI mode [2] 0 - ns 13.9 - ns in SPI mode [3][4] 0 - ns in SPI mode [3][4] 3 Tcy(PCLK) + 4 - ns - 3 Tcy(PCLK) + 11 ns - 2 Tcy(PCLK) + 5 ns th(Q) data output hold time SSP slave Tcy(PCLK) PCLK cycle time data set-up time tDS data hold time tDH tv(Q) data output valid time in SPI mode [3][4] th(Q) data output hold time in SPI mode [3][4] [1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the main clock frequency fmain, the SSP peripheral clock divider (SSPCLKDIV), the SSP SCR parameter (specified in the SSP0CR0 register), and the SSP CPSDVSR parameter (specified in the SSP clock prescale register). [2] Tamb = 40 C to 85 C. [3] Tcy(clk) = 12 Tcy(PCLK). [4] Tamb = 25 C; VDD = 3.3 V. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 56 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Tcy(clk) tclk(H) tclk(L) SCK (CPOL = 0) SCK (CPOL = 1) tv(Q) th(Q) DATA VALID MOSI DATA VALID tDS DATA VALID MISO tDH DATA VALID tv(Q) MOSI th(Q) DATA VALID DATA VALID tDH tDS MISO CPHA = 1 DATA VALID CPHA = 0 DATA VALID 002aae829 Fig 25. SSP master timing in SPI mode LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 57 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Tcy(clk) tclk(H) tclk(L) tDS tDH SCK (CPOL = 0) SCK (CPOL = 1) MOSI DATA VALID DATA VALID tv(Q) MISO th(Q) DATA VALID DATA VALID tDS MOSI DATA VALID tDH DATA VALID tv(Q) MISO DATA VALID CPHA = 1 th(Q) CPHA = 0 DATA VALID 002aae830 Fig 26. SSP slave timing in SPI mode LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 58 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 11. ADC electrical characteristics Table 17. ADC characteristics VDDA = 2.7 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified; 12-bit resolution. Symbol Parameter Conditions Min Typ Max Unit VIA analog input voltage 0 - VDDA V Cia analog input capacitance IDDA(ADC) ADC analog supply current on pin VDDA (LQFP64 package only) - 5 - pF - 5 - A - 350 - A [2][3] - - 1 LSB [4] - - 5 LSB [5][6] - - 2.5 LSB gain error [7] - - 0.3 % absolute error [8] - - 7 LSB Rvsi voltage source interface resistance [9] - 1 - k fclk(ADC) ADC clock frequency - - 15.5 MHz - - 500 kHz [1] low-power mode during ADC conversions differential linearity error ED EL(adj) integral non-linearity EO offset error EG ET fc(ADC) [10] ADC conversion frequency [1] Select the ADC low-power mode by setting the LPWRMODE bit in the ADC CR register. See the LPC1315/16/17/45/46/47 user manual. [2] The ADC is monotonic, there are no missing codes. [3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 27. [4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 27. [5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 27. [6] ADCOFFS value (bits 7:4) = 2 in the ADC TRM register. See the LPC1315/16/17/45/46/47 user manual. [7] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 27. [8] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See Figure 27. [9] See Figure 27. [10] The conversion frequency corresponds to the number of samples per second. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 59 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller offset error EO gain error EG 4095 4094 4093 4092 4091 4090 (2) 7 code out (1) 6 5 (5) 4 (4) 3 (3) 2 1 LSB (ideal) 1 0 1 2 3 4 5 6 7 4090 4091 4092 4093 4094 4095 4096 VIA (LSBideal) offset error EO 1 LSB = VREFP − VREFN 4096 002aad948 (1) Example of an actual transfer curve. (2) The ideal transfer curve. (3) Differential linearity error (ED). (4) Integral non-linearity (EL(adj)). (5) Center of a step of the actual transfer curve. Fig 27. 12-bit ADC characteristics LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 60 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 12. Application information 12.1 Suggested USB interface solutions VDD USB_CONNECT LPC1345/46/47 soft-connect switch R1 1.5 kΩ USB_VBUS USB_DP RS = 33 Ω USB_DM USB-B connector RS = 33 Ω VSS 002aag564 Fig 28. USB interface on a self-powered device VDD LPC1345/46/47 R1 1.5 kΩ USB_VBUS USB-B connector USB_DP RS = 33 Ω USB_DM RS = 33 Ω VSS 002aag565 Fig 29. USB interface on a bus-powered device 12.2 XTAL input The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with Ci = 100 pF. To limit the input voltage to the specified range, choose an additional capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave mode, a minimum of 200 mV(RMS) is needed. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 61 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller LPC1xxx XTALIN Ci 100 pF Cg 002aae788 Fig 30. Slave mode operation of the on-chip oscillator In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF (Figure 30), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V. The XTALOUT pin in this configuration can be left unconnected. External components and models used in oscillation mode are shown in Figure 31 and in Table 18 and Table 19. Since the feedback resistance is integrated on chip, only a crystal and the capacitances CX1 and CX2 need to be connected externally in case of fundamental mode oscillation (the fundamental frequency is represented by L, CL and RS). Capacitance CP in Figure 31 represents the parallel package capacitance and should not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal manufacturer. LPC1xxx L XTALIN XTALOUT = CL CP XTAL RS CX2 CX1 002aaf424 Fig 31. Oscillator modes and models: oscillation mode of operation and external crystal model used for CX1/CX2 evaluation Table 18. LPC1315_16_17_45_46_47 Product data sheet Recommended values for CX1/CX2 in oscillation mode (crystal and external components parameters) low frequency mode Fundamental oscillation frequency FOSC Crystal load capacitance CL Maximum crystal series resistance RS External load capacitors CX1, CX2 1 MHz - 5 MHz 10 pF < 300 18 pF, 18 pF 20 pF < 300 39 pF, 39 pF 30 pF < 300 57 pF, 57 pF All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 62 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Table 18. Recommended values for CX1/CX2 in oscillation mode (crystal and external components parameters) low frequency mode Fundamental oscillation frequency FOSC Crystal load capacitance CL Maximum crystal series resistance RS External load capacitors CX1, CX2 5 MHz - 10 MHz 10 pF < 300 18 pF, 18 pF 20 pF < 200 39 pF, 39 pF 30 pF < 100 57 pF, 57 pF 10 pF < 160 18 pF, 18 pF 20 pF < 60 39 pF, 39 pF 10 pF < 80 18 pF, 18 pF 10 MHz - 15 MHz 15 MHz - 20 MHz Table 19. Recommended values for CX1/CX2 in oscillation mode (crystal and external components parameters) high frequency mode Fundamental oscillation frequency FOSC Crystal load capacitance CL Maximum crystal series resistance RS External load capacitors CX1, CX2 15 MHz - 20 MHz 10 pF < 180 18 pF, 18 pF 20 pF < 100 39 pF, 39 pF 20 MHz - 25 MHz 10 pF < 160 18 pF, 18 pF 20 pF < 80 39 pF, 39 pF 12.3 XTAL Printed-Circuit Board (PCB) layout guidelines The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in order to keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller accordingly to the increase in parasitics of the PCB layout. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 63 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 12.4 Standard I/O pad configuration Figure 32 shows the possible pin modes for standard I/O pins with analog input function: • • • • • Digital output driver Digital input: Pull-up enabled/disabled Digital input: Pull-down enabled/disabled Digital input: Repeater mode enabled/disabled Analog input VDD VDD open-drain enable pin configured as digital output driver strong pull-up output enable ESD data output PIN strong pull-down ESD VSS VDD weak pull-up pull-up enable weak pull-down repeater mode enable pin configured as digital input pull-down enable data input 10 ns RC GLITCH FILTER select data inverter select glitch filter select analog input pin configured as analog input analog input 002aaf695 Fig 32. Standard I/O pad configuration LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 64 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 12.5 Reset pad configuration VDD VDD VDD Rpu ESD 20 ns RC GLITCH FILTER reset PIN ESD VSS 002aaf274 Fig 33. Reset pad configuration 12.6 ADC usage notes The following guidelines show how to increase the performance of the ADC in a noisy environment beyond the ADC specifications listed in Table 17: • The ADC input trace must be short and as close as possible to the LPC1315/16/17/45/46/47 chip. • The ADC input traces must be shielded from fast switching digital signals and noisy power supply lines. • Because the ADC and the digital core share the same power supply, the power supply line must be adequately filtered. • To improve the ADC performance in a very noisy environment, put the device in Sleep mode during the ADC conversion. Remark: On the LQFP64 package, the analog power supply and the reference voltage can be connected on separate pins for better noise immunity. LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 65 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 13. Package outline HVQFN33: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm A B D terminal 1 index area E A A1 c detail X e1 e 9 16 C C A B C v w b y y1 C L 8 17 e e2 Eh 33 1 terminal 1 index area 24 32 X 25 Dh 0 2.5 scale Dimensions Unit mm 5 mm A(1) A1 b max 1.00 0.05 0.35 nom 0.85 0.02 0.28 min 0.80 0.00 0.23 c D(1) Dh E(1) 0.2 7.1 7.0 6.9 4.85 4.70 4.55 7.1 7.0 6.9 Eh e e1 e2 L 0.75 4.85 4.70 0.65 4.55 4.55 0.60 0.45 4.55 v 0.1 w y 0.05 0.08 y1 0.1 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. Outline version References IEC JEDEC JEITA --- hvqfn33_po European projection Issue date 09-03-17 09-03-23 Fig 34. Package outline HVQFN33 LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 66 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm SOT313-2 c y X 36 25 A 37 24 ZE e E HE A A2 (A 3) A1 w M θ bp pin 1 index Lp L 13 48 detail X 12 1 ZD e v M A w M bp D B HD v M B 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HD HE L Lp v w y mm 1.6 0.20 0.05 1.45 1.35 0.25 0.27 0.17 0.18 0.12 7.1 6.9 7.1 6.9 0.5 9.15 8.85 9.15 8.85 1 0.75 0.45 0.2 0.12 0.1 Z D (1) Z E (1) θ 0.95 0.55 7o o 0 0.95 0.55 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT313-2 136E05 MS-026 JEITA EUROPEAN PROJECTION ISSUE DATE 00-01-19 03-02-25 Fig 35. Package outline LQFP48 (SOT313-2) LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 67 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm SOT314-2 c y X A 48 33 49 32 ZE e E HE A A2 (A 3) A1 wM θ bp pin 1 index 64 Lp L 17 detail X 16 1 ZD e v M A wM bp D B HD v M B 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e mm 1.6 0.20 0.05 1.45 1.35 0.25 0.27 0.17 0.18 0.12 10.1 9.9 10.1 9.9 0.5 HD HE 12.15 12.15 11.85 11.85 L Lp v w y 1 0.75 0.45 0.2 0.12 0.1 Z D (1) Z E (1) 1.45 1.05 1.45 1.05 θ 7o o 0 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT314-2 136E10 MS-026 JEITA EUROPEAN PROJECTION ISSUE DATE 00-01-19 03-02-25 Fig 36. Package outline LQFP64 (SOT314-2) LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 68 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 14. Soldering Footprint information for reflow soldering of HVQFN33 package OID = 8.20 OA PID = 7.25 PA+OA OwDtot = 5.10 OA evia = 4.25 0.20 SR chamfer (4×) W = 0.30 CU SPD = 1.00 SP LaE = 7.95 CU PIE = 7.25 PA+OA LbE = 5.80 CU evia = 4.25 evia = 1.05 0.45 DM SPE = 1.00 SP GapE = 0.70 SP 4.55 SR SEhtot = 2.70 SP EHS = 4.85 CU OwEtot = 5.10 OA OIE = 8.20 OA e = 0.65 0.45 DM GapD = 0.70 SP evia = 2.40 B-side SDhtot = 2.70 SP 4.55 SR DHS = 4.85 CU Solder resist covered via 0.30 PH LbD = 5.80 CU 0.60 SR cover LaD = 7.95 CU 0.60 CU (A-side fully covered) number of vias: 20 solder land solder land plus solder paste solder paste deposit solder resist occupied area Dimensions in mm Remark: Stencil thickness: 0.125 mm 001aao134 Fig 37. Reflow soldering of the HVQFN33 package LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 69 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Footprint information for reflow soldering of LQFP48 package SOT313-2 Hx Gx P2 Hy (0.125) P1 Gy By Ay C D2 (8×) D1 Bx Ax Generic footprint pattern Refer to the package outline drawing for actual layout solder land occupied area DIMENSIONS in mm P1 P2 0.500 0.560 Ax Ay 10.350 10.350 Bx By C D1 D2 Gx 7.350 7.350 1.500 0.280 0.500 7.500 Gy Hx Hy 7.500 10.650 10.650 sot313-2_fr Fig 38. Reflow soldering of the LQFP48 package LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 70 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Footprint information for reflow soldering of LQFP64 package SOT314-2 Hx Gx P2 Hy (0.125) P1 Gy By Ay C D2 (8×) D1 Bx Ax Generic footprint pattern Refer to the package outline drawing for actual layout solder land occupied area DIMENSIONS in mm P1 0.500 P2 Ax Ay Bx By 0.560 13.300 13.300 10.300 10.300 C D1 D2 1.500 0.280 0.400 Gx Gy Hx Hy 10.500 10.500 13.550 13.550 sot314-2_fr Fig 39. Reflow soldering of the LQFP64 package LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 71 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 15. Abbreviations Table 20. LPC1315_16_17_45_46_47 Product data sheet Abbreviations Acronym Description A/D Analog-to-Digital ADC Analog-to-Digital Converter AHB Advanced High-performance Bus APB Advanced Peripheral Bus BOD BrownOut Detection CDC Communication Device Class ETM Embedded Trace Macrocell GPIO General Purpose Input/Output HID Human Interface Device JTAG Joint Test Action Group MSC Mass Storage Class PLL Phase-Locked Loop RC Resistor-Capacitor SPI Serial Peripheral Interface SSI Serial Synchronous Interface SSP Synchronous Serial Port TAP Test Access Port USART Universal Synchronous Asynchronous Receiver/Transmitter All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 72 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 16. Revision history Table 21. Revision history Document ID Release date Data sheet status Change notice Supersedes LPC1315_16_17_45_46_47 v.3 20120920 Product data sheet - LPC1315_16_17_45_46_47 v.2 • • • LPC1315_16_17_45_46_47 v.2 Modifications: LPC1315_16_17_45_46_47 v.1 LPC1315_16_17_45_46_47 Product data sheet Reflow soldering drawing corrected for the HVQFN33 package. See Figure 37. BOD interrupt trigger level 0 removed. See Table 7. Pin configuration diagrams updated: Orientation of index sector relative to part marking corrected in Figure 4 to Figure 7. 20120718 • • Product data sheet - LPC1315_16_17_45_46_47 v.1 Data sheet status changed to Product data sheet. Parameters VOL, VOH, IOL, IOH updated for voltage range 2.0 V VDD < 2.5 V in Table 6. • Condition “The peak current is limited to 25 times the corresponding maximum current.” removed from parameters IDD and ISS in Table 5. • Typical operating frequencies of the watchdog oscillator corrected in Table 13 and Section 7.18.1.3. 20120229 Preliminary data sheet - All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 - © NXP B.V. 2012. All rights reserved. 73 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 17. Legal information 17.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 17.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 17.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. LPC1315_16_17_45_46_47 Product data sheet Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 74 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. 17.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I2C-bus — logo is a trademark of NXP B.V. 18. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 75 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 19. Contents 1 2 3 4 4.1 5 6 6.1 6.2 7 7.1 7.2 7.3 7.4 7.5 7.6 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ordering information . . . . . . . . . . . . . . . . . . . . . 3 Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pinning information . . . . . . . . . . . . . . . . . . . . . . 6 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 12 Functional description . . . . . . . . . . . . . . . . . . 24 On-chip flash programming memory . . . . . . . 24 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 24 Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 24 Nested Vectored Interrupt Controller (NVIC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.6.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.6.2 Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 26 7.7 IOCON block . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.7.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.8 General Purpose Input/Output GPIO . . . . . . . 26 7.8.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.9 USB interface . . . . . . . . . . . . . . . . . . . . . . . . 27 7.9.1 Full-speed USB device controller . . . . . . . . . . 27 7.9.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.10 USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.10.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.11 SSP serial I/O controller . . . . . . . . . . . . . . . . . 28 7.11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.12 I2C-bus serial I/O controller . . . . . . . . . . . . . . 28 7.12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.13 12-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.13.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.14 General purpose external event counter/timers . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.14.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.15 Repetitive Interrupt (RI) timer . . . . . . . . . . . . . 30 7.15.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.16 System tick timer . . . . . . . . . . . . . . . . . . . . . . 30 7.17 Windowed WatchDog Timer (WWDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.17.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.18 Clocking and power control . . . . . . . . . . . . . . 31 7.18.1 Integrated oscillators . . . . . . . . . . . . . . . . . . . 31 7.18.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 32 7.18.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 33 7.18.1.3 7.18.2 7.18.3 7.18.4 7.18.5 7.18.5.1 7.18.5.2 7.18.5.3 7.18.5.4 7.18.5.5 7.18.6 7.18.6.1 7.18.6.2 7.18.6.3 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . System PLL and USB PLL. . . . . . . . . . . . . . . Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . Wake-up process . . . . . . . . . . . . . . . . . . . . . . Power control . . . . . . . . . . . . . . . . . . . . . . . . . Power profiles . . . . . . . . . . . . . . . . . . . . . . . . Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . Power-down mode . . . . . . . . . . . . . . . . . . . . . Deep power-down mode . . . . . . . . . . . . . . . . System control . . . . . . . . . . . . . . . . . . . . . . . . Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brownout detection . . . . . . . . . . . . . . . . . . . . Code security (Code Read Protection - CRP) . . . . . . . . . . . 7.18.6.4 APB interface . . . . . . . . . . . . . . . . . . . . . . . . . 7.18.6.5 AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.18.6.6 External interrupt inputs . . . . . . . . . . . . . . . . . 7.19 Emulation and debugging . . . . . . . . . . . . . . . 8 Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 9 Static characteristics . . . . . . . . . . . . . . . . . . . 9.1 BOD static characteristics . . . . . . . . . . . . . . . 9.2 Power consumption . . . . . . . . . . . . . . . . . . . 9.3 Electrical pin characteristics. . . . . . . . . . . . . . 10 Dynamic characteristics. . . . . . . . . . . . . . . . . 10.1 Flash/EEPROM memory . . . . . . . . . . . . . . . . 10.2 External clock. . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Internal oscillators . . . . . . . . . . . . . . . . . . . . . 10.4 I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6 SSP interface . . . . . . . . . . . . . . . . . . . . . . . . . 11 ADC electrical characteristics . . . . . . . . . . . . 12 Application information . . . . . . . . . . . . . . . . . 12.1 Suggested USB interface solutions . . . . . . . . 12.2 XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 XTAL Printed-Circuit Board (PCB) layout guidelines . . . . . . . . . . . . . . . . . 12.4 Standard I/O pad configuration . . . . . . . . . . . 12.5 Reset pad configuration . . . . . . . . . . . . . . . . . 12.6 ADC usage notes. . . . . . . . . . . . . . . . . . . . . . 13 Package outline. . . . . . . . . . . . . . . . . . . . . . . . 14 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 16 Revision history . . . . . . . . . . . . . . . . . . . . . . . 17 Legal information . . . . . . . . . . . . . . . . . . . . . . 17.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 33 33 33 33 33 34 34 34 35 35 35 35 35 36 36 36 36 36 38 39 42 43 47 51 51 51 53 54 54 56 59 61 61 61 63 64 65 65 66 69 72 73 74 74 continued >> LPC1315_16_17_45_46_47 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 3 — 20 September 2012 © NXP B.V. 2012. All rights reserved. 76 of 77 LPC1315/16/17/45/46/47 NXP Semiconductors 32-bit ARM Cortex-M3 microcontroller 17.2 17.3 17.4 18 19 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . Contact information. . . . . . . . . . . . . . . . . . . . . Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 74 75 75 76 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2012. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 20 September 2012 Document identifier: LPC1315_16_17_45_46_47