NXP LQFP48 32-bit arm cortex-m3 microcontroller; up to 64 kb flash; up to 12 kb sram; usb device; usart; eeprom Datasheet

LPC1315/16/17/45/46/47
32-bit ARM Cortex-M3 microcontroller; up to 64 kB flash;
up to 12 kB SRAM; USB device; USART; EEPROM
Rev. 3 — 20 September 2012
Product data sheet
1. General description
The LPC1315/16/17/45/46/47 are ARM Cortex-M3 based microcontrollers for embedded
applications featuring a high level of integration and low power consumption. The ARM
Cortex-M3 is a next generation core that offers system enhancements such as enhanced
debug features and a higher level of support block integration.
The LPC1315/16/17/45/46/47 operate at CPU frequencies of up to 72 MHz. The ARM
Cortex-M3 CPU incorporates a 3-stage pipeline and uses a Harvard architecture with
separate local instruction and data buses as well as a third bus for peripherals. The ARM
Cortex-M3 CPU also includes an internal prefetch unit that supports speculative
branching.
Equipped with a highly flexible and configurable Full-Speed USB 2.0 device controller
available on the LPC1345/46/47, this series brings unparalleled design flexibility and
seamless integration to today’s demanding connectivity solutions.
The peripheral complement of the LPC1315/16/17/45/46/47 includes up to 64 kB of flash
memory, 8 kB or 10 kB of SRAM data memory, one Fast-mode Plus I2C-bus interface, one
RS-485/EIA-485 USART with support for synchronous mode and smart card interface,
two SSP interfaces, four general purpose counter/timers, an 8-channel, 12-bit ADC, and
up to 51 general purpose I/O pins.
2. Features and benefits
 System:
 ARM Cortex-M3 r2p1 processor, running at frequencies of up to 72 MHz.
 ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).
 Non Maskable Interrupt (NMI) input selectable from several input sources.
 System tick timer.
 Memory:
 Up to 64 kB on-chip flash program memory with a 256 byte page erase function.
 In-System Programming (ISP) and In-Application Programming (IAP) via on-chip
bootloader software. Flash updates via USB supported.
 Up to 4 kB on-chip EEPROM data memory with on-chip API support.
 Up to 12 kB SRAM data memory.
 16 kB boot ROM with API support for USB API, power control, EEPROM, and flash
IAP/ISP.
NXP Semiconductors
LPC1315/16/17/45/46/47
32-bit ARM Cortex-M3 microcontroller
 Debug options:
 Standard JTAG test interface for BSDL.
 Serial Wire Debug.
 Support for ETM ARM Cortex-M3 debug time stamping.
 Digital peripherals:
 Up to 51 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down
resistors, repeater mode, input inverter, and pseudo open-drain mode. Eight pins
support programmable glitch filter.
 Up to 8 GPIO pins can be selected as edge and level sensitive interrupt sources.
 Two GPIO grouped interrupt modules enable an interrupt based on a
programmable pattern of input states of a group of GPIO pins.
 High-current source output driver (20 mA) on one pin (P0_7).
 High-current sink driver (20 mA) on true open-drain pins (P0_4 and P0_5).
 Four general purpose counter/timers with a total of up to 8 capture inputs and 13
match outputs.
 Programmable Windowed WatchDog Timer (WWDT) with a internal low-power
WatchDog Oscillator (WDO).
 Repetitive Interrupt Timer (RI Timer).
 Analog peripherals:
 12-bit ADC with eight input channels and sampling rates of up to 500 kSamples/s.
 Serial interfaces:
 USB 2.0 full-speed device controller (LPC1345/46/47) with on-chip ROM-based
USB driver library.
 USART with fractional baud rate generation, internal FIFO, a full modem control
handshake interface, and support for RS-485/9-bit mode and synchronous mode.
USART supports an asynchronous smart card interface (ISO 7816-3).
 Two SSP controllers with FIFO and multi-protocol capabilities.
 I2C-bus interface supporting the full I2C-bus specification and Fast-mode Plus with
a data rate of up to 1 Mbit/s with multiple address recognition and monitor mode.
 Clock generation:
 Crystal Oscillator with an operating range of 1 MHz to 25 MHz (system oscillator)
with failure detector.
 12 MHz high-frequency Internal RC oscillator (IRC) trimmed to 1 % accuracy over
the entire voltage and temperature range. The IRC can optionally be used as a
system clock.
 Internal low-power, low-frequency WatchDog Oscillator (WDO) with programmable
frequency output.
 PLL allows CPU operation up to the maximum CPU rate with the system oscillator
or the IRC as clock sources.
 A second, dedicated PLL is provided for USB (LPC1345/46/47).
 Clock output function with divider that can reflect the crystal oscillator, the main
clock, the IRC, or the watchdog oscillator.
 Power control:
 Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep
power-down.
 Power profiles residing in boot ROM allow optimized performance and minimized
power consumption for any given application through one simple function call.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
2 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller




 Processor wake-up from Deep-sleep and Power-down modes via reset, selectable
GPIO pins, watchdog interrupt, or USB port activity.
 Processor wake-up from Deep power-down mode using one special function pin.
 Integrated PMU (Power Management Unit) to minimize power consumption during
Sleep, Deep-sleep, Power-down, and Deep power-down modes.
 Power-On Reset (POR).
 Brownout detect with up to four separate thresholds for interrupt and forced reset.
Unique device serial number for identification.
Single 3.3 V power supply (2.0 V to 3.6 V).
Temperature range 40 C to +85 C.
Available as LQFP64, LQFP48, and HVQFN33 package.
3. Applications
 Consumer peripherals
 Medical
 Industrial control
 Handheld scanners
 USB audio devices
4. Ordering information
Table 1.
Ordering information
Type number
Package
Name
Description
LPC1345FHN33
HVQFN33
plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a
body 7  7  0.85 mm
LPC1345FBD48
LQFP48
plastic low profile quad flat package; 48 leads; body 7  7  1.4 mm
LPC1346FHN33
HVQFN33
plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a
body 7  7  0.85 mm
LPC1346FBD48
LQFP48
plastic low profile quad flat package; 48 leads; body 7  7  1.4 mm
LPC1347FHN33
HVQFN33
plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a
body 7  7  0.85 mm
LPC1347FBD48
LQFP48
plastic low profile quad flat package; 48 leads; body 7  7  1.4 mm
SOT313-2
LPC1347FBD64
LQFP64
LQFP64: plastic low profile quad flat package; 64 leads; body 10  10 
1.4 mm
SOT314-2
LPC1315FHN33
HVQFN33
plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a
body 7  7  0.85 mm
LPC1315FBD48
LQFP48
plastic low profile quad flat package; 48 leads; body 7  7  1.4 mm
LPC1316FHN33
HVQFN33
plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a
body 7  7  0.85 mm
LPC1316FBD48
LQFP48
plastic low profile quad flat package; 48 leads; body 7  7  1.4 mm
LPC1317FHN33
HVQFN33
plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; n/a
body 7  7  0.85 mm
LPC1317FBD48
LQFP48
plastic low profile quad flat package; 48 leads; body 7  7  1.4 mm
SOT313-2
LPC1317FBD64
LQFP64
LQFP64: plastic low profile quad flat package; 64 leads; body 10  10 
1.4 mm
SOT314-2
LPC1315_16_17_45_46_47
Product data sheet
Version
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
SOT313-2
SOT313-2
SOT313-2
SOT313-2
© NXP B.V. 2012. All rights reserved.
3 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
4.1 Ordering options
Table 2.
Ordering options
Type number
Flash
[kB]
SRAM [kB]
SRAM0 USB
SRAM
SRAM1
EEPROM USB
SSP I2C/ FM+ ADC
[kB]
device
channels
GPIO
pins
LPC1345FHN33
32
8
2
-
2
yes
2
1
8
26
LPC1345FBD48
32
8
2
-
2
yes
2
1
8
40
LPC1346FHN33
48
8
2
-
4
yes
2
1
8
26
LPC1346FBD48
48
8
2
-
4
yes
2
1
8
40
LPC1347FHN33
64
8
2
2
4
yes
2
1
8
26
LPC1347FBD48
64
8
2
2
4
yes
2
1
8
40
LPC1347FBD64
64
8
2
2
4
yes
2
1
8
51
LPC1315FHN33
32
8
-
-
2
no
2
1
8
28
LPC1315FBD48
32
8
-
-
2
no
2
1
8
40
LPC1316FHN33
48
8
-
-
4
no
2
1
8
28
LPC1316FBD48
48
8
-
-
4
no
2
1
8
40
LPC1317FHN33
64
8
-
2
4
no
2
1
8
28
LPC1317FBD48
64
8
-
2
4
no
2
1
8
40
LPC1317FBD64
64
8
-
2
4
no
2
1
8
51
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
4 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
5. Block diagram
SWD, JTAG
XTALIN XTALOUT
LPC1315/16/17
LPC1345/46/47
SYSTEM OSCILLATOR
CLOCK
GENERATION,
POWER CONTROL,
SYSTEM
FUNCTIONS
IRC, WDO
TEST/DEBUG
INTERFACE
BOD
PLL0
EEPROM
2/4 kB
system bus
SRAM
8/10/12 kB
slave
HIGH-SPEED
GPIO
CLKOUT
POR
ARM
CORTEX-M3
GPIO ports 0/1
RESET
ROM
16 kB
slave
USB PLL
FLASH
32/48/64 kB
master
slave
slave
USB_DP
USB_DM
USB_VBUS
USB_FTOGGLE,
USB_CONNECT
USB DEVICE
slave CONTROLLER
(LPC1345/46/47)
AHB-LITE BUS
slave
RXD
TXD
DCD , DSR(1), RI(1)
CTS, RTS, DTR
SCLK
CT16B0_MAT[2:0]
CT16B0_CAP[1:0](2)
CT16B1_MAT[1:0]
CT16B1_CAP[1:0](2)
CT32B0_MAT[3:0]
CT32B0_CAP[1:0](2)
CT32B1_MAT[3:0]
CT32B1_CAP[1:0](2)
AHB TO APB
BRIDGE
USART/
SMARTCARD INTERFACE
AD[7:0]
12-bit ADC
SCL, SDA
I2C-BUS
16-bit COUNTER/TIMER 0
SSP0
SCK0, SSEL0,
MISO0, MOSI0
SSP1
SCK1, SSEL1,
MISO1, MOSI1
16-bit COUNTER/TIMER 1
32-bit COUNTER/TIMER 0
IOCON
32-bit COUNTER/TIMER 1
SYSTEM CONTROL
WINDOWED WATCHDOG
TIMER
PMU
RI TIMER
GPIO pins
GPIO PIN INTERRUPT
GPIO pins
GPIO GROUP0 INTERRUPT
GPIO pins
GPIO GROUP1 INTERRUPT
002aag241
(1) Available on LQFP48 and LQFP64 packages only.
(2) CT16B0_CAP1, CT16B1_CAP1, CT32B1_CAP1 inputs available on LQFP64 packages only. CT32B0_CAP0 input available on
LQFP48 and LQFP64 packages only.
Fig 1.
Block diagram
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
5 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
6. Pinning information
PIO0_19/TXD/CT32B0_MAT1
PIO0_18/RXD/CT32B0_MAT0
PIO0_17/RTS/CT32B0_CAP0/SCLK
VDD
PIO1_15/DCD/CT16B0_MAT2/SCK1
PIO0_23/AD7
PIO0_16/AD5/CT32B1_MAT3/WAKEUP
SWDIO/PIO0_15/AD4/CT32B1_MAT2
31
30
29
28
27
26
25
terminal 1
index area
32
6.1 Pinning
PIO1_19/DTR/SSEL1
1
24
TRST/PIO0_14/AD3/CT32B1_MAT1
RESET/PIO0_0
2
23
TDO/PIO0_13/AD2/CT32B1_MAT0
PIO0_1/CLKOUT/CT32B0_MAT2
3
22
TMS/PIO0_12/AD1/CT32B1_CAP0
XTALIN
4
21
TDI/PIO0_11/AD0/CT32B0_MAT3
XTALOUT
5
20
PIO0_22/AD6/CT16B1_MAT1/MISO1
VDD
6
PIO0_20/CT16B1_CAP0
7
PIO0_2/SSEL0/CT16B0_CAP0
8
LPC1315FHN33
LPC1316FHN33
LPC1317FHN33
9
10
11
12
13
14
15
16
PIO0_3
PIO0_4/SCL
PIO0_5/SDA
PIO0_21/CT16B1_MAT0/MOSI1
PIO1_23/CT16B1_MAT1/SSEL1
PIO1_24/CT32B0_MAT0
PIO0_6/R/SCK0
PIO0_7/CTS
33 VSS
19
SWCLK/PIO0_10/SCK0/CT16B0_MAT2
18
PIO0_9/MOSI0/CT16B0_MAT1/SWO
17
PIO0_8/MISO0/CT16B0_MAT0
002aag870
Transparent top view
Fig 2.
Pin configuration HVQFN33 package (LPC1315/16/17 - no USB)
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
6 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
VDD
PIO1_15/DCD/CT16B0_MAT2/SCK1
PIO0_23/AD7
PIO0_16/AD5/CT32B1_MAT3/WAKEUP
SWDIO/PIO0_15/AD4/CT32B1_MAT2
27
26
25
PIO0_17/RTS/CT32B0_CAP0/SCLK
28
PIO0_18/RXD/CT32B0_MAT0
30
29
PIO0_19/TXD/CT32B0_MAT1
31
terminal 1
index area
32
32-bit ARM Cortex-M3 microcontroller
PIO1_19/DTR/SSEL1
1
24
TRST/PIO0_14/AD3/CT32B1_MAT1
RESET/PIO0_0
2
23
TDO/PIO0_13/AD2/CT32B1_MAT0
PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE
3
22
TMS/PIO0_12/AD1/CT32B1_CAP0
XTALIN
4
21
TDI/PIO0_11/AD0/CT32B0_MAT3
XTALOUT
5
20
PIO0_22/AD6/CT16B1_MAT1/MISO1
VDD
6
PIO0_20/CT16B1_CAP0
7
PIO0_2/SSEL0/CT16B0_CAP0
8
LPC1345FHN33
LPC1346FHN33
LPC1347FHN33
9
10
11
12
13
14
15
16
PIO0_3/USB_VBUS
PIO0_4/SCL
PIO0_5/SDA
PIO0_21/CT16B1_MAT0/MOSI1
USB_DM
USB_DP
PIO0_6/USB_CONNECT/SCK0
PIO0_7/CTS
33 VSS
19
SWCLK/PIO0_10/SCK0/CT16B0_MAT2
18
PIO0_9/MOSI0/CT16B0_MAT1/SWO
17
PIO0_8/MISO0/CT16B0_MAT0
002aag874
Transparent top view
Fig 3.
Pin configuration HVQFN33 package (LPC1345/46/47 - with USB)
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
7 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
25 PIO1_31
26 PIO1_21/DCD/MISO1
27 PIO0_8/MISO0/CT16B0_MAT0
28 PIO0_9/MOSI0/CT16B0_MAT1/SWO
29 SWCLK/PIO0_10/SCK0/CT16B0_MAT2
30 PIO0_22/AD6/CT16B1_MAT1/MISO1
31 PIO1_29/SCK0/CT32B0_CAP1
32 TDI/PIO0_11/AD0/CT32B0_MAT3
33 TMS/PIO0_12/AD1/CT32B1_CAP0
34 TDO/PIO0_13/AD2/CT32B1_MAT0
35 TRST/PIO0_14/AD3/CT32B1_MAT1
36 PIO1_13/DTR/CT16B0_MAT0/TXD
32-bit ARM Cortex-M3 microcontroller
PIO1_14/DSR/CT16B0_MAT1/RXD 37
24 PIO1_28/CT32B0_CAP0/SCLK
PIO1_22/RI/MOSI1 38
23 PIO0_7/CTS
SWDIO/PIO0_15/AD4/CT32B1_MAT2 39
22 PIO0_6/R/SCK0
PIO0_16/AD5/CT32B1_MAT3/WAKEUP 40
21 PIO1_24/CT32B0_MAT0
VSS 41
LPC1315FBD48
LPC1316FBD48
LPC1317FBD48
PIO0_23/AD7 42
PIO1_15/DCD/CT16B0_MAT2/SCK1 43
n.c.
19
n.c.
18 PIO1_23/CT16B1_MAT1/SSEL1
VDD 44
17 PIO0_21/CT16B1_MAT0/MOSI1
PIO0_17/RTS/CT32B0_CAP0/SCLK 45
16 PIO0_5/SDA
PIO0_18/RXD/CT32B0_MAT0 46
15 PIO0_4/SCL
PIO0_19/TXD/CT32B0_MAT1 47
14 PIO0_3
PIO1_27/CT32B0_MAT3/TXD 12
PIO1_26/CT32B0_MAT2/RXD 11
PIO0_2/SSEL0/CT16B0_CAP0 10
9
PIO0_20/CT16B1_CAP0
8
VDD
7
XTALOUT
6
XTALIN
5
VSS
4
PIO0_1/CLKOUT/CT32B0_MAT2
3
RESET/PIO0_0
PIO1_19/DTR/SSEL1
PIO1_25/CT32B0_MAT1
2
13 PIO1_20/DSR/SCK1
1
PIO1_16/RI/CT16B0_CAP0 48
Fig 4.
20
002aag875
Pin configuration LQFP48 package (LPC1315/16/17 - no USB)
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
8 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
25 PIO1_31
26 PIO1_21/DCD/MISO1
27 PIO0_8/MISO0/CT16B0_MAT0
28 PIO0_9/MOSI0/CT16B0_MAT1/SWO
29 SWCLK/PIO0_10/SCK0/CT16B0_MAT2
30 PIO0_22/AD6/CT16B1_MAT1/MISO1
31 PIO1_29/SCK0/CT32B0_CAP1
32 TDI/PIO0_11/AD0/CT32B0_MAT3
33 TMS/PIO0_12/AD1/CT32B1_CAP0
34 TDO/PIO0_13/AD2/CT32B1_MAT0
35 TRST/PIO0_14/AD3/CT32B1_MAT1
36 PIO1_13/DTR/CT16B0_MAT0/TXD
32-bit ARM Cortex-M3 microcontroller
PIO1_14/DSR/CT16B0_MAT1/RXD 37
24 PIO1_28/CT32B0_CAP0/SCLK
PIO1_22/RI/MOSI1 38
23 PIO0_7/CTS
SWDIO/PIO0_15/AD4/CT32B1_MAT2 39
22 PIO0_6/USB_CONNECT/SCK0
PIO0_16/AD5/CT32B1_MAT3/WAKEUP 40
21 PIO1_24/CT32B0_MAT0
VSS 41
20 USB_DP
LPC1345FBD48
LPC1346FBD48
LPC1347FBD48
PIO0_23/AD7 42
PIO1_15/DCD/CT16B0_MAT2/SCK1 43
19 USB_DM
18 PIO1_23/CT16B1_MAT1/SSEL1
VDD 44
Fig 5.
17 PIO0_21/CT16B1_MAT0/MOSI1
6
7
8
9
XTALIN
XTALOUT
VDD
PIO0_20/CT16B1_CAP0
PIO1_27/CT32B0_MAT3/TXD 12
5
VSS
PIO1_26/CT32B0_MAT2/RXD 11
4
PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE
PIO0_2/SSEL0/CT16B0_CAP0 10
3
RESET/PIO0_0
13 PIO1_20/DSR/SCK1
2
14 PIO0_3/USB_VBUS
PIO1_16/RI/CT16B0_CAP0 48
1
15 PIO0_4/SCL
PIO0_19/TXD/CT32B0_MAT1 47
PIO1_19/DTR/SSEL1
16 PIO0_5/SDA
PIO0_18/RXD/CT32B0_MAT0 46
PIO1_25/CT32B0_MAT1
PIO0_17/RTS/CT32B0_CAP0/SCLK 45
002aag876
Pin configuration LQFP48 package (LPC1345/46/47 - with USB)
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
9 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
33 VDD
34 PIO1_2
35 PIO1_21
36 PIO0_8
37 PIO0_9
38 SWCLK/PIO0_10
39 PIO1_8
40 PIO0_22
41 PIO1_29
42 TDI/PIO0_11
43 PIO1_11
44 TMS/PIO0_12
45 TDO/PIO0_13
46 TRST/PIO0_14
47 PIO1_13
48 VREFN
32-bit ARM Cortex-M3 microcontroller
PIO1_14 49
32 PIO1_5
PIO1_3 50
31 PIO1_28
PIO1_22 51
30 PIO0_7
SWDIO/PIO0_15 52
29 PIO0_6
PIO0_16 53
28 PIO1_18
VSS 54
27 PIO1_24
VSSA 55
26 n.c.
PIO0_23 56
25 n.c.
LPC1315/16/17
PIO1_15 57
24 PIO1_23
VDD 58
23 PIO1_17
VDDA 59
22 PIO0_21
PIO0_17 60
21 PIO0_5
PIO0_18 61
20 PIO0_4
PIO0_19 62
19 PIO0_3
PIO1_16 63
18 PIO1_20
8
9
XTALIN
XTALOUT
PIO1_4 16
7
VSS
PIO1_27 15
6
PIO1_7
PIO1_26 14
5
PIO0_1
PIO0_2 13
4
RESET/PIO0_0
PIO1_10 12
3
PIO1_19
PIO0_20 11
2
VDD 10
1
PIO1_0
17 PIO1_1
PIO1_25
VREFP 64
002aag581
See Table 3 for the full pin name.
Fig 6.
Pin configuration LQFP64 package (LPC1315/16/17 - no USB)
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
10 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
33 VDD
34 PIO1_2
35 PIO1_21
36 PIO0_8
37 PIO0_9
38 SWCLK/PIO0_10
39 PIO1_8
40 PIO0_22
41 PIO1_29
42 TDI/PIO0_11
PIO1_14 49
32
PIO1_5
PIO1_3 50
31
PIO1_28
PIO1_22 51
30
PIO0_7
SWDIO/PIO0_15 52
29
PIO0_6
PIO0_16 53
28
PIO1_18
VSS 54
27
PIO1_24
VSSA 55
26
USB_DP
PIO0_23 56
25
USB_DM
24
PIO1_23
VDD 58
23
PIO1_17
VDDA 59
22
PIO0_21
PIO0_17 60
21
PIO0_5
PIO0_18 61
20
PIO0_4
PIO0_19 62
19
PIO0_3
PIO1_16 63
18
PIO1_20
VREFP 64
17
PIO1_1
PIO1_4 16
PIO1_27 15
PIO1_26 14
PIO0_2 13
PIO1_10 12
PIO0_20 11
VDD 10
9
XTALOUT
8
XTALIN
7
VSS
PIO1_7
5
PIO0_1
4
RESET/PIO0_0
3
PIO1_19
2
1
PIO1_0
PIO1_25
6
LPC1345/46/47
PIO1_15 57
Fig 7.
43 PIO1_11
44 TMS/PIO0_12
45 TDO/PIO0_13
46 TRST/PIO0_14
47 PIO1_13
48 VREFN
32-bit ARM Cortex-M3 microcontroller
002aag561
Pin configuration LQFP64 package (LPC1345/46/47 - with USB)
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
11 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
6.2 Pin description
Pin description (LPC1315/16/17 - no USB)
PIO0_2/SSEL0/
CT16B0_CAP0
PIO0_3
PIO0_4/SCL
PIO0_5/SDA
HVQFN33
4
3
2
5
13
19
20
21
PIO0_6/R/
SCK0
29
PIO0_7/CTS
30
PIO0_8/MISO0/
CT16B0_MAT0
PIO0_9/MOSI0/
CT16B0_MAT1/
SWO
LPC1315_16_17_45_46_47
Product data sheet
36
37
4
10
14
15
16
22
23
27
28
[2]
3
[3]
8
[3]
Description
Type
PIO0_1/CLKOUT/
CT32B0_MAT2
LQFP48
RESET/PIO0_0
LQFP64
Symbol
Reset state[1]
Table 3.
I; PU
I
RESET — External reset input with 20 ns glitch filter. A
LOW-going pulse as short as 50 ns on this pin resets the
device, causing I/O ports and peripherals to take on their
default states, and processor execution to begin at
address 0. This pin also serves as the debug select input.
LOW level selects the JTAG boundary scan. HIGH level
selects the ARM SWD debug mode.
-
I/O
PIO0_0 — General purpose digital input/output pin.
I; PU
I/O
PIO0_1 — General purpose digital input/output pin. A
LOW level on this pin during reset starts the ISP
command handler.
-
O
CLKOUT — Clockout pin.
-
O
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
I; PU
I/O
PIO0_2 — General purpose digital input/output pin.
I/O
SSEL0 — Slave select for SSP0.
I
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
9
[3]
I; PU
I/O
PIO0_3 — General purpose digital input/output pin.
10
[4]
IA
I/O
PIO0_4 — General purpose digital input/output pin
(open-drain).
-
I/O
SCL — I2C-bus clock input/output (open-drain).
High-current sink only if I2C Fast-mode Plus is selected in
the I/O configuration register.
IA
I/O
PIO0_5 — General purpose digital input/output pin
(open-drain).
-
I/O
SDA — I2C-bus data input/output (open-drain).
High-current sink only if I2C Fast-mode Plus is selected in
the I/O configuration register.
I; PU
I/O
PIO0_6 — General purpose digital input/output pin.
-
-
R — Reserved.
-
I/O
SCK0 — Serial clock for SSP0.
I; PU
I/O
PIO0_7 — General purpose digital input/output pin
(high-current output driver).
-
I
CTS — Clear To Send input for USART.
I; PU
I/O
PIO0_8 — General purpose digital input/output pin.
-
I/O
MISO0 — Master In Slave Out for SSP0.
-
O
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
I; PU
I/O
PIO0_9 — General purpose digital input/output pin.
-
I/O
MOSI0 — Master Out Slave In for SSP0.
-
O
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
-
O
SWO — Serial wire trace output.
11
15
[4]
[3]
16
[5]
17
[3]
18
[3]
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
12 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Pin description (LPC1315/16/17 - no USB)
TDI/PIO0_11/AD0/
CT32B0_MAT3
TMS/PIO0_12/AD1/
CT32B1_CAP0
TDO/PIO0_13/AD2/
CT32B1_MAT0
TRST/PIO0_14/AD3/
CT32B1_MAT1
SWDIO/PIO0_15/AD4/
CT32B1_MAT2
PIO0_16/AD5/
CT32B1_MAT3/WAKEUP
PIO0_17/RTS/
CT32B0_CAP0/SCLK
LPC1315_16_17_45_46_47
Product data sheet
HVQFN33
38
29
19
42
44
45
46
52
53
60
32
33
34
35
39
40
45
21
22
23
24
25
26
30
[3]
[6]
[6]
[6]
[6]
[6]
[7]
[3]
Description
Type
LQFP48
SWCLK/PIO0_10/SCK0/
CT16B0_MAT2
LQFP64
Symbol
Reset state[1]
Table 3.
I; PU
I
SWCLK — Serial wire clock and test clock TCK for JTAG
interface.
-
I/O
PIO0_10 — General purpose digital input/output pin.
-
O
SCK0 — Serial clock for SSP0.
-
O
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
I; PU
I
TDI — Test Data In for JTAG interface.
-
I/O
PIO0_11 — General purpose digital input/output pin.
-
I
AD0 — A/D converter, input 0.
-
O
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
I; PU
I
TMS — Test Mode Select for JTAG interface.
-
I/O
PIO_12 — General purpose digital input/output pin.
-
I
AD1 — A/D converter, input 1.
-
I
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
I; PU
O
TDO — Test Data Out for JTAG interface.
-
I/O
PIO0_13 — General purpose digital input/output pin.
-
I
AD2 — A/D converter, input 2.
-
O
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
I; PU
I
TRST — Test Reset for JTAG interface.
-
I/O
PIO0_14 — General purpose digital input/output pin.
-
I
AD3 — A/D converter, input 3.
-
O
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
I; PU
I/O
SWDIO — Serial wire debug input/output.
-
I/O
PIO0_15 — General purpose digital input/output pin.
-
I
AD4 — A/D converter, input 4.
-
O
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
I; PU
I/O
PIO0_16 — General purpose digital input/output pin.
-
I
AD5 — A/D converter, input 5.
-
O
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
-
I
WAKEUP — Deep power-down mode wake-up pin with
20 ns glitch filter. This pin must be pulled HIGH externally
to enter Deep power-down mode and pulled LOW to exit
Deep power-down mode. A LOW-going pulse as short as
50 ns wakes up the part.
I; PU
I/O
PIO0_17 — General purpose digital input/output pin.
-
O
RTS — Request To Send output for USART.
-
I
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
-
I/O
SCLK — Serial clock input/output for USART in
synchronous mode.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
13 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Pin description (LPC1315/16/17 - no USB)
PIO0_20/CT16B1_CAP0
PIO0_21/CT16B1_MAT0/
MOSI1
PIO0_22/AD6/
CT16B1_MAT1/MISO1
HVQFN33
61
46
31
62
11
22
40
47
9
17
30
32
[3]
[3]
7
[3]
12
[3]
20
[6]
PIO0_23/AD7
56
42
27
[6]
PIO1_0/CT32B1_MAT0
1
-
-
[3]
PIO1_1/CT32B1_MAT1
17
-
-
[3]
PIO1_2/CT32B1_MAT2
34
-
-
[3]
PIO1_3/CT32B1_MAT3
50
-
-
[3]
PIO1_4/CT32B1_CAP0
16
-
-
[3]
Description
Type
PIO0_19/TXD/
CT32B0_MAT1
LQFP48
PIO0_18/RXD/
CT32B0_MAT0
LQFP64
Symbol
Reset state[1]
Table 3.
I; PU
I/O
PIO0_18 — General purpose digital input/output pin.
-
I
RXD — Receiver input for USART. Used in UART ISP
mode.
-
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
I; PU
I/O
PIO0_19 — General purpose digital input/output pin.
-
O
TXD — Transmitter output for USART. Used in UART ISP
mode.
-
O
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
I; PU
I/O
PIO0_20 — General purpose digital input/output pin.
-
I
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
I; PU
I/O
PIO0_21 — General purpose digital input/output pin.
-
O
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.
-
I/O
MOSI1 — Master Out Slave In for SSP1.
I; PU
I/O
PIO0_22 — General purpose digital input/output pin.
-
I
AD6 — A/D converter, input 6.
-
O
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
-
I/O
MISO1 — Master In Slave Out for SSP1.
I; PU
I/O
PIO0_23 — General purpose digital input/output pin.
-
I
AD7 — A/D converter, input 7.
I; PU
I/O
PIO1_0 — General purpose digital input/output pin.
-
O
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
I; PU
I/O
PIO1_1 — General purpose digital input/output pin.
-
O
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
I; PU
I/O
PIO1_2 — General purpose digital input/output pin.
-
O
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
I; PU
I/O
PIO1_3 — General purpose digital input/output pin.
-
O
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
I; PU
I/O
PIO1_4 — General purpose digital input/output pin.
-
I
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
I; PU
I/O
PIO1_5 — General purpose digital input/output pin.
PIO1_5/CT32B1_CAP1
32
-
-
[3]
-
I
CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.
PIO1_7
6
-
-
[3]
I; PU
I/O
PIO1_7 — General purpose digital input/output pin.
-
[3]
I; PU
I/O
PIO1_8 — General purpose digital input/output pin.
-
[3]
I; PU
I/O
PIO1_10 — General purpose digital input/output pin.
-
[3]
I; PU
I/O
PIO1_11 — General purpose digital input/output pin.
PIO1_8
PIO1_10
PIO1_11
LPC1315_16_17_45_46_47
Product data sheet
39
12
43
-
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
14 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Pin description (LPC1315/16/17 - no USB)
PIO1_14/DSR/
CT16B0_MAT1/RXD
PIO1_15/DCD/
CT16B0_MAT2/SCK1
HVQFN33
47
36
-
49
57
PIO1_16/RI/CT16B0_CAP0 63
PIO1_17/CT16B0_CAP1/
RXD
PIO1_18/CT16B1_CAP1/
TXD
PIO1_19/DTR/SSEL1
PIO1_20/DSR/SCK1
PIO1_21/DCD/MISO1
PIO1_22/RI/MOSI1
PIO1_23/CT16B1_MAT1/
SSEL1
PIO1_24/CT32B0_MAT0
LPC1315_16_17_45_46_47
Product data sheet
23
28
3
18
35
51
24
27
37
43
48
-
-
2
13
26
38
18
21
[3]
[3]
-
28
[3]
[3]
-
[3]
-
[3]
-
1
[3]
[3]
-
[3]
-
[3]
-
13
14
[3]
[3]
Description
Type
LQFP48
PIO1_13/DTR/
CT16B0_MAT0/TXD
LQFP64
Symbol
Reset state[1]
Table 3.
I; PU
I/O
PIO1_13 — General purpose digital input/output pin.
-
O
DTR — Data Terminal Ready output for USART.
-
O
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
-
O
TXD — Transmitter output for USART.
I; PU
I/O
PIO1_14 — General purpose digital input/output pin.
-
I
DSR — Data Set Ready input for USART.
-
O
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
-
I
RXD — Receiver input for USART.
I; PU
I/O
PIO1_15 — General purpose digital input/output pin.
-
I
DCD — Data Carrier Detect input for USART.
-
O
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
-
I/O
SCK1 — Serial clock for SSP1.
I; PU
I/O
PIO1_16 — General purpose digital input/output pin.
-
I
RI — Ring Indicator input for USART.
-
I
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
I; PU
I/O
PIO1_17 — General purpose digital input/output pin.
-
I
CT16B0_CAP1 — Capture input 1 for 16-bit timer 0.
-
I
RXD — Receiver input for USART.
I; PU
I/O
PIO1_18 — General purpose digital input/output pin.
-
I
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.
-
O
TXD — Transmitter output for USART.
I; PU
I/O
PIO1_19 — General purpose digital input/output pin.
-
O
DTR — Data Terminal Ready output for USART.
-
I/O
SSEL1 — Slave select for SSP1.
I; PU
I/O
PIO1_20 — General purpose digital input/output pin.
-
I
DSR — Data Set Ready input for USART.
-
I/O
SCK1 — Serial clock for SSP1.
I; PU
I/O
PIO1_21 — General purpose digital input/output pin.
-
I
DCD — Data Carrier Detect input for USART.
-
I/O
MISO1 — Master In Slave Out for SSP1.
I; PU
I/O
PIO1_22 — General purpose digital input/output pin.
-
I
RI — Ring Indicator input for USART.
-
I/O
MOSI1 — Master Out Slave In for SSP1.
I; PU
I/O
PIO1_23 — General purpose digital input/output pin.
-
O
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
-
I/O
SSEL1 — Slave select for SSP1.
I; PU
I/O
PIO1_24 — General purpose digital input/output pin.
-
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
15 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Pin description (LPC1315/16/17 - no USB)
PIO1_26/CT32B0_MAT2/
RXD
PIO1_27/CT32B0_MAT3/
TXD
PIO1_28/CT32B0_CAP0/
SCLK
HVQFN33
2
1
-
14
15
31
11
12
24
31
[3]
-
[3]
[3]
-
[3]
-
PIO1_29/SCK0/
CT32B0_CAP1
41
PIO1_31
-
25
-
n.c.
25
19
-
n.c.
26
20
-
[3]
-
[3]
Description
Type
LQFP48
PIO1_25/CT32B0_MAT1
LQFP64
Symbol
Reset state[1]
Table 3.
I; PU
I/O
PIO1_25 — General purpose digital input/output pin.
-
O
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
I; PU
I/O
PIO1_26 — General purpose digital input/output pin.
-
O
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
-
I
RXD — Receiver input for USART.
I; PU
I/O
PIO1_27 — General purpose digital input/output pin.
-
O
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
-
O
TXD — Transmitter output for USART.
I; PU
I/O
PIO1_28 — General purpose digital input/output pin.
-
I
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
-
I/O
SCLK — Serial clock input/output for USART in
synchronous mode.
I; PU
I/O
PIO1_29 — General purpose digital input/output pin.
-
I/O
SCK0 — Serial clock for SSP0.
-
I
CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.
I; PU
I/O
PIO1_31 — General purpose digital input/output pin.
-
-
Not connected.
-
-
Not connected.
-
-
Input to the oscillator circuit and internal clock generator
circuits. Input voltage must not exceed 1.8 V.
-
-
Output from the oscillator amplifier.
XTALIN
8
6
4
[8]
XTALOUT
9
7
5
[8]
VDDA
59
-
-
-
-
Analog 3.3 V pad supply voltage: This should be
nominally the same voltage as VDD but should be isolated
to minimize noise and error. This voltage is used to power
the ADC. This pin should be tied to 3.3 V if the ADC is not
used.
VREFN
48
-
-
-
-
ADC negative reference voltage: This should be
nominally the same voltage as VSS but should be isolated
to minimize noise and error. Level on this pin is used as a
reference for ADC.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
16 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Table 3.
Pin description (LPC1315/16/17 - no USB)
LQFP48
HVQFN33
Reset state[1]
Type
Description
LQFP64
Symbol
VREFP
64
-
-
-
-
ADC positive reference voltage: This should be nominally
the same voltage as VDDA but should be isolated to
minimize noise and error. Level on this pin is used as a
reference for ADC. This pin should be tied to 3.3 V if the
ADC is not used.
VSSA
55
-
-
-
-
Analog ground: 0 V reference. This should nominally be
the same voltage as VSSProduct data sheet but should be
isolated to minimize noise and error.
VDD
10;
33;
58
8;
44
6;
29
-
-
Supply voltage to the internal regulator and the external
rail. On LQFP48 and HVQFN33 packages, this pin is also
connected to the 3.3 V ADC supply and reference
voltage.
VSS
7;
54
5;
41
33
-
-
Ground.
[1]
Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled;
F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption.
[2]
See Figure 33 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to
reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down
mode.
[3]
5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 32).
[4]
I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode Plus.
[5]
5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 32);
includes high-current output driver.
[6]
5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.
When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 32); includes
programmable digital input glitch filter.
[7]
WAKEUP pin. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and
analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 32);
includes digital input glitch filter.
[8]
When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
17 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Pin description (LPC1345/46/47 - with USB)
HVQFN33
4
3
2
5
PIO0_2/SSEL0/
CT16B0_CAP0
13
PIO0_3/USB_VBUS
19
PIO0_4/SCL
PIO0_5/SDA
20
21
PIO0_6/USB_CONNECT/
SCK0
29
PIO0_7/CTS
30
PIO0_8/MISO0/
CT16B0_MAT0
LPC1315_16_17_45_46_47
Product data sheet
36
4
10
14
15
16
22
23
27
[2]
3
[3]
8
[3]
9
[3]
10
[4]
11
15
[4]
[3]
16
[5]
17
[3]
Description
Type
PIO0_1/CLKOUT/
CT32B0_MAT2/
USB_FTOGGLE
LQFP48
RESET/PIO0_0
LQFP64
Symbol
Reset state[1]
Table 4.
I; PU
I
RESET — External reset input with 20 ns glitch filter. A
LOW-going pulse as short as 50 ns on this pin resets the
device, causing I/O ports and peripherals to take on their
default states, and processor execution to begin at
address 0. This pin also serves as the debug select input.
LOW level selects the JTAG boundary scan. HIGH level
selects the ARM SWD debug mode.
-
I/O
PIO0_0 — General purpose digital input/output pin.
I; PU
I/O
PIO0_1 — General purpose digital input/output pin. A
LOW level on this pin during reset starts the ISP
command handler or the USB device enumeration.
-
O
CLKOUT — Clockout pin.
-
O
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
-
O
USB_FTOGGLE — USB 1 ms Start-of-Frame signal.
I; PU
I/O
PIO0_2 — General purpose digital input/output pin.
I/O
SSEL0 — Slave select for SSP0.
I
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
I; PU
I/O
PIO0_3 — General purpose digital input/output pin. A
LOW level on this pin during reset starts the ISP
command handler. A HIGH level during reset starts the
USB device enumeration.
-
I
USB_VBUS — Monitors the presence of USB bus power.
IA
I/O
PIO0_4 — General purpose digital input/output pin
(open-drain).
-
I/O
SCL — I2C-bus clock input/output (open-drain).
High-current sink only if I2C Fast-mode Plus is selected in
the I/O configuration register.
IA
I/O
PIO0_5 — General purpose digital input/output pin
(open-drain).
-
I/O
SDA — I2C-bus data input/output (open-drain).
High-current sink only if I2C Fast-mode Plus is selected in
the I/O configuration register.
I; PU
I/O
PIO0_6 — General purpose digital input/output pin.
-
O
USB_CONNECT — Signal used to switch an external
1.5 k resistor under software control. Used with the
SoftConnect USB feature.
-
I/O
SCK0 — Serial clock for SSP0.
I; PU
I/O
PIO0_7 — General purpose digital input/output pin
(high-current output driver).
-
I
CTS — Clear To Send input for USART.
I; PU
I/O
PIO0_8 — General purpose digital input/output pin.
-
I/O
MISO0 — Master In Slave Out for SSP0.
-
O
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
18 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Pin description (LPC1345/46/47 - with USB)
SWCLK/PIO0_10/SCK0/
CT16B0_MAT2
TDI/PIO0_11/AD0/
CT32B0_MAT3
TMS/PIO0_12/AD1/
CT32B1_CAP0
TDO/PIO0_13/AD2/
CT32B1_MAT0
TRST/PIO0_14/AD3/
CT32B1_MAT1
SWDIO/PIO0_15/AD4/
CT32B1_MAT2
PIO0_16/AD5/
CT32B1_MAT3/WAKEUP
LPC1315_16_17_45_46_47
Product data sheet
HVQFN33
37
28
18
38
42
44
45
46
52
53
29
32
33
34
35
39
40
19
21
22
23
24
25
26
[3]
[3]
[6]
[6]
[6]
[6]
[6]
[7]
Description
Type
LQFP48
PIO0_9/MOSI0/
CT16B0_MAT1/
SWO
LQFP64
Symbol
Reset state[1]
Table 4.
I; PU
I/O
PIO0_9 — General purpose digital input/output pin.
-
I/O
MOSI0 — Master Out Slave In for SSP0.
-
O
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
-
O
SWO — Serial wire trace output.
I; PU
I
SWCLK — Serial wire clock and test clock TCK for JTAG
interface.
-
I/O
PIO0_10 — General purpose digital input/output pin.
-
O
SCK0 — Serial clock for SSP0.
-
O
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
I; PU
I
TDI — Test Data In for JTAG interface.
-
I/O
PIO0_11 — General purpose digital input/output pin.
-
I
AD0 — A/D converter, input 0.
-
O
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
I; PU
I
TMS — Test Mode Select for JTAG interface.
-
I/O
PIO_12 — General purpose digital input/output pin.
-
I
AD1 — A/D converter, input 1.
-
I
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
I; PU
O
TDO — Test Data Out for JTAG interface.
-
I/O
PIO0_13 — General purpose digital input/output pin.
-
I
AD2 — A/D converter, input 2.
-
O
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
I; PU
I
TRST — Test Reset for JTAG interface.
-
I/O
PIO0_14 — General purpose digital input/output pin.
-
I
AD3 — A/D converter, input 3.
-
O
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
I; PU
I/O
SWDIO — Serial wire debug input/output.
-
I/O
PIO0_15 — General purpose digital input/output pin.
-
I
AD4 — A/D converter, input 4.
-
O
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
I; PU
I/O
PIO0_16 — General purpose digital input/output pin.
-
I
AD5 — A/D converter, input 5.
-
O
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
-
I
WAKEUP — Deep power-down mode wake-up pin with
20 ns glitch filter. This pin must be pulled HIGH externally
to enter Deep power-down mode and pulled LOW to exit
Deep power-down mode. A LOW-going pulse as short as
50 ns wakes up the part.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
19 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Pin description (LPC1345/46/47 - with USB)
PIO0_19/TXD/
CT32B0_MAT1
HVQFN33
60
45
30
61
62
46
47
31
32
[3]
[3]
[3]
PIO0_20/CT16B1_CAP0
11
9
7
[3]
PIO0_21/CT16B1_MAT0/
MOSI1
22
17
12
[3]
PIO0_22/AD6/
CT16B1_MAT1/MISO1
PIO0_23/AD7
PIO1_0/CT32B1_MAT0
PIO1_1/CT32B1_MAT1
PIO1_2/CT32B1_MAT2
PIO1_3/CT32B1_MAT3
PIO1_4/CT32B1_CAP0
PIO1_5/CT32B1_CAP1
PIO1_7
PIO1_8
LPC1315_16_17_45_46_47
Product data sheet
40
56
1
17
34
50
16
32
6
39
30
42
-
20
[6]
[6]
Description
Type
PIO0_18/RXD/
CT32B0_MAT0
LQFP48
PIO0_17/RTS/
CT32B0_CAP0/SCLK
LQFP64
Symbol
Reset state[1]
Table 4.
I; PU
I/O
PIO0_17 — General purpose digital input/output pin.
-
O
RTS — Request To Send output for USART.
-
I
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
-
I/O
SCLK — Serial clock input/output for USART in
synchronous mode.
I; PU
I/O
PIO0_18 — General purpose digital input/output pin.
-
I
RXD — Receiver input for USART. Used in UART ISP
mode.
-
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
I; PU
I/O
PIO0_19 — General purpose digital input/output pin.
-
O
TXD — Transmitter output for USART. Used in UART ISP
mode.
-
O
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
I; PU
I/O
PIO0_20 — General purpose digital input/output pin.
-
I
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
I; PU
I/O
PIO0_21 — General purpose digital input/output pin.
-
O
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.
-
I/O
MOSI1 — Master Out Slave In for SSP1.
I; PU
I/O
PIO0_22 — General purpose digital input/output pin.
-
I
AD6 — A/D converter, input 6.
-
O
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
-
I/O
MISO1 — Master In Slave Out for SSP1.
I; PU
I/O
PIO0_23 — General purpose digital input/output pin.
-
I
AD7 — A/D converter, input 7.
I; PU
I/O
PIO1_0 — General purpose digital input/output pin.
-
O
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
I; PU
I/O
PIO1_1 — General purpose digital input/output pin.
-
O
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
I; PU
I/O
PIO1_2 — General purpose digital input/output pin.
-
O
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
I; PU
I/O
PIO1_3 — General purpose digital input/output pin.
-
O
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
I; PU
I/O
PIO1_4 — General purpose digital input/output pin.
-
I
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
I; PU
I/O
PIO1_5 — General purpose digital input/output pin.
-
I
CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.
-
[3]
I; PU
I/O
PIO1_7 — General purpose digital input/output pin.
-
[3]
I; PU
I/O
PIO1_8 — General purpose digital input/output pin.
27
-
[3]
-
[3]
-
[3]
-
[3]
-
[3]
-
[3]
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
20 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Table 4.
Pin description (LPC1345/46/47 - with USB)
PIO1_13/DTR/
CT16B0_MAT0/TXD
PIO1_14/DSR/
CT16B0_MAT1/RXD
PIO1_15/DCD/
CT16B0_MAT2/SCK1
LPC1315_16_17_45_46_47
Product data sheet
I; PU
I/O
PIO1_11 — General purpose digital input/output pin.
-
[3]
HVQFN33
47
49
57
23
3
PIO1_23/CT16B1_MAT1/
SSEL1
-
LQFP48
43
PIO1_19/DTR/SSEL1
PIO1_22/RI/MOSI1
PIO1_10 — General purpose digital input/output pin.
-
28
PIO1_21/DCD/MISO1
I/O
-
PIO1_18/CT16B1_CAP1/
TXD
PIO1_20/DSR/SCK1
I; PU
[3]
12
PIO1_16/RI/CT16B0_CAP0 63
PIO1_17/CT16B0_CAP1/
RXD
Type
PIO1_11
[3]
LQFP64
PIO1_10
18
35
51
24
36
37
43
48
-
-
2
13
26
38
18
Description
Reset state[1]
Symbol
[3]
-
28
[3]
-
[3]
-
[3]
-
1
-
-
-
-
[3]
[3]
[3]
[3]
[3]
[3]
I; PU
I/O
PIO1_13 — General purpose digital input/output pin.
-
O
DTR — Data Terminal Ready output for USART.
-
O
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
-
O
TXD — Transmitter output for USART.
I; PU
I/O
PIO1_14 — General purpose digital input/output pin.
-
I
DSR — Data Set Ready input for USART.
-
O
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
-
I
RXD — Receiver input for USART.
I; PU
I/O
PIO1_15 — General purpose digital input/output pin.
-
I
DCD — Data Carrier Detect input for USART.
-
O
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.
-
I/O
SCK1 — Serial clock for SSP1.
I; PU
I/O
PIO1_16 — General purpose digital input/output pin.
-
I
RI — Ring Indicator input for USART.
-
I
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.
I; PU
I/O
PIO1_17 — General purpose digital input/output pin.
-
I
CT16B0_CAP1 — Capture input 1 for 16-bit timer 0.
-
I
RXD — Receiver input for USART.
I; PU
I/O
PIO1_18 — General purpose digital input/output pin.
-
I
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.
-
O
TXD — Transmitter output for USART.
I; PU
I/O
PIO1_19 — General purpose digital input/output pin.
-
O
DTR — Data Terminal Ready output for USART.
-
I/O
SSEL1 — Slave select for SSP1.
I; PU
I/O
PIO1_20 — General purpose digital input/output pin.
-
I
DSR — Data Set Ready input for USART.
-
I/O
SCK1 — Serial clock for SSP1.
I; PU
I/O
PIO1_21 — General purpose digital input/output pin.
-
I
DCD — Data Carrier Detect input for USART.
-
I/O
MISO1 — Master In Slave Out for SSP1.
I; PU
I/O
PIO1_22 — General purpose digital input/output pin.
-
I
RI — Ring Indicator input for USART.
-
I/O
MOSI1 — Master Out Slave In for SSP1.
I; PU
I/O
PIO1_23 — General purpose digital input/output pin.
-
O
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.
-
I/O
SSEL1 — Slave select for SSP1.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
21 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Pin description (LPC1345/46/47 - with USB)
PIO1_25/CT32B0_MAT1
HVQFN33
27
21
-
2
PIO1_26/CT32B0_MAT2/
RXD
14
PIO1_27/CT32B0_MAT3/
TXD
15
PIO1_28/CT32B0_CAP0/
SCLK
PIO1_29/SCK0/
CT32B0_CAP1
PIO1_31
31
41
-
1
11
12
24
31
25
[3]
-
[3]
[3]
-
[3]
-
[3]
-
[3]
-
Description
Type
LQFP48
PIO1_24/CT32B0_MAT0
LQFP64
Symbol
Reset state[1]
Table 4.
I; PU
I/O
PIO1_24 — General purpose digital input/output pin.
-
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.
I; PU
I/O
PIO1_25 — General purpose digital input/output pin.
-
O
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.
I; PU
I/O
PIO1_26 — General purpose digital input/output pin.
-
O
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.
-
I
RXD — Receiver input for USART.
I; PU
I/O
PIO1_27 — General purpose digital input/output pin.
-
O
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
-
O
TXD — Transmitter output for USART.
I; PU
I/O
PIO1_28 — General purpose digital input/output pin.
-
I
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.
-
I/O
SCLK — Serial clock input/output for USART in
synchronous mode.
I; PU
I/O
PIO1_29 — General purpose digital input/output pin.
-
I/O
SCK0 — Serial clock for SSP0.
-
I
CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.
-
[3]
I; PU
I/O
PIO1_31 — General purpose digital input/output pin.
F
-
USB_DM — USB bidirectional D line. (LPC1345/46/46
only.)
USB_DM
25
19
13
[8]
USB_DP
26
20
14
[8]
F
-
USB_DP — USB bidirectional D+ line. (LPC1345/46/46
only.)
XTALIN
8
6
4
[9]
-
-
Input to the oscillator circuit and internal clock generator
circuits. Input voltage must not exceed 1.8 V.
XTALOUT
9
7
5
[9]
-
-
Output from the oscillator amplifier.
VDDA
59
-
-
-
-
Analog 3.3 V pad supply voltage: This should be
nominally the same voltage as VDD but should be isolated
to minimize noise and error. This voltage is used to power
the ADC. This pin should be tied to 3.3 V if the ADC are
not used.
VREFN
48
-
-
-
-
ADC negative reference voltage: This should be
nominally the same voltage as VSS but should be isolated
to minimize noise and error. Level on this pin is used as a
reference for ADC.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
22 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Table 4.
Pin description (LPC1345/46/47 - with USB)
LQFP48
HVQFN33
Reset state[1]
Type
Description
LQFP64
Symbol
VREFP
64
-
-
-
-
ADC positive reference voltage: This should be nominally
the same voltage as VDDA but should be isolated to
minimize noise and error. Level on this pin is used as a
reference for ADC. This pin should be tied to 3.3 V if the
ADC is not used.
VSSA
55
-
-
-
-
analog ground: 0 V reference. This should nominally be
the same voltage as VSS, but should be isolated to
minimize noise and error.
VDD
10;
33;
58
8;
44
6;
29
-
-
Supply voltage to the internal regulator and the external
rail. On LQFP48 and HVQFN33 packages, this pin is also
connected to the 3.3 V ADC supply and reference
voltage.
VSS
7;
54
5;
41
33
-
-
Ground.
[1]
Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled;
F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption.
[2]
See Figure 33 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to
reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down
mode.
[3]
5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 32).
[4]
I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode Plus.
[5]
5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 32);
includes high-current output driver.
[6]
5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.
When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 32); includes
programmable digital input glitch filter.
[7]
WAKEUP pin. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and
analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 32);
includes digital input glitch filter.
[8]
Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode
only). This pad is not 5 V tolerant.
[9]
When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.15
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
23 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
7. Functional description
7.1 On-chip flash programming memory
The LPC1315/16/17/45/46/47 contain up to 64 kB on-chip flash program memory. The
flash can be programmed using In-System Programming (ISP) or In-Application
Programming (IAP) via the on-chip boot loader software. Flash updates via USB are
supported as well.
The flash memory is divided into 4 kB sectors with each sector consisting of 16 pages.
Individual pages of 256 byte each can be erased using the IAP erase page command.
7.2 EEPROM
The LPC1315/16/17/45/46/47 contain 2 kB or 4 kB of on-chip byte-erasable and
byte-programmable EEPROM data memory. The EEPROM can be programmed using
In-Application Programming (IAP) via the on-chip boot loader software.
7.3 SRAM
The LPC1315/16/17/45/46/47 contain a total of 8 kB, 10 kB, or 12 kB on-chip static RAM
memory.
7.4 On-chip ROM
The on-chip ROM contains the boot loader and the following Application Programming
Interfaces (APIs):
• In-System Programming (ISP) and In-Application Programming (IAP) support for flash
including IAP erase page command.
•
•
•
•
IAP support for EEPROM
USB API (HID, CDC, and MSC drivers) (LPC1345/46/47 only)
Power profiles for configuring power consumption and PLL settings
Flash updates via USB supported (LPC1345/46/47 only)
7.5 Memory map
The LPC1315/16/17/45/46/47 incorporates several distinct memory regions, shown in the
following figures. Figure 8 shows the overall map of the entire address space from the
user program viewpoint following reset. The interrupt vector area supports address
remapping.
The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals.
The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals.
Each peripheral of either type is allocated 16 kB of space. This allows simplifying the
address decoding for each peripheral.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
24 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
LPC1315/16/17/45/46/47
4 GB
0xFFFF FFFF
reserved
0xE010 0000
private peripheral bus
0xE000 0000
reserved
APB peripherals
26 - 31 reserved
0x5000 4000
GPIO
0x5000 0000
reserved
0x4008 4000
USB
reserved
2 kB USB SRAM (LPC134x)
24
GPIO GROUP1 interrupt
23
GPIO GROUP0 interrupt
22
SSP1
20 - 21 reserved
0x4000 0000
19
GPIO pin interrupt
0x2000 4800
18
system control
0x2000 4000
17
IOCON
0x2000 0800
16
15
SSP0
flash/EEPROM controller
14
PMU
reserved
2 kB SRAM1 (LPC1317/47)
0.5 GB
RI Timer
0x4008 0000
APB peripherals
1 GB
25
0x2000 0000
reserved
0x4008 0000
0x4006 8000
0x4006 4000
0x4006 0000
0x4005 C000
0x4005 8000
0x4004 C000
0x4004 C000
0x4004 8000
0x4004 4000
0x4004 0000
0x4003 C000
0x4003 8000
10 - 13 reserved
0x1FFF 4000
16 kB boot ROM
0x4002 8000
0x1FFF 0000
9
reserved
8
reserved
0x4002 0000
7
ADC
0x4001 C000
6
32-bit counter/timer 1
0x4001 8000
0x1000 2000
5
32-bit counter/timer 0
0x4001 4000
0x1000 0000
4
16-bit counter/timer 1
0x4001 0000
3
16-bit counter/timer 0
0x4000 C000
2
USART/SMART CARD
0x4000 8000
1
0
WWDT
0x4000 4000
I2C-bus
0x4000 0000
reserved
8 kB SRAM0
reserved
0x0001 0000
64 kB on-chip flash (LPC1317/47)
0x0000 C000
48 kB on-chip flash (LPC1316/46)
0x0000 8000
32 kB on-chip flash (LPC1315/45)
0x4002 4000
0x0000 00C0
active interrupt vectors
0x0000 0000
0x0000 0000
0 GB
002aag562
Fig 8.
LPC1315/16/17/45/46/47 memory map
7.6 Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M3. The
tight coupling to the CPU allows for low interrupt latency and efficient processing of late
arriving interrupts.
7.6.1 Features
• Controls system exceptions and peripheral interrupts.
• In the LPC1315/16/17/45/46/47, the NVIC supports up to 32 vectored interrupts.
• Eight programmable interrupt priority levels with hardware priority level masking.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
25 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
• Software interrupt generation.
7.6.2 Interrupt sources
Each peripheral device has one interrupt line connected to the NVIC but may have several
interrupt flags. Individual interrupt flags may also represent more than one interrupt
source.
7.7 IOCON block
The IOCON block allows selected pins of the microcontroller to have more than one
function. Configuration registers control the multiplexers to allow connection between the
pin and the on-chip peripherals.
Peripherals should be connected to the appropriate pins prior to being activated and prior
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is
not mapped to a related pin should be considered undefined.
7.7.1 Features
• Programmable pull-up, pull-down, or repeater mode.
• All GPIO pins (except PIO0_4 and PIO0_5) are pulled up to 3.3 V (VDD = 3.3 V) if their
pull-up resistor is enabled.
• Programmable pseudo open-drain mode.
• Programmable 10-ns glitch filter on pins PIO0_22, PIO0_23, and PIO0_11 to
PIO0_16. The glitch filter is turned off by default.
• Programmable hysteresis.
• Programmable input inverter.
7.8 General Purpose Input/Output GPIO
Device pins that are not connected to a specific peripheral function are controlled by the
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs
can be set or cleared in one write operation.
LPC1315/16/17/45/46/47 use accelerated GPIO functions:
• GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing
can be achieved.
• Entire port value can be written in one instruction.
Any GPIO pin providing a digital function can be programmed to generate an interrupt on
a level, a rising or falling edge, or both.
The GPIO block consists of three parts:
1. The GPIO ports.
2. The GPIO pin interrupt block to control eight GPIO pins selected as pin interrupts.
3. Two GPIO group interrupt blocks to control two combined interrupts from all GPIO
pins.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
26 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
7.8.1 Features
•
•
•
•
GPIO pins can be configured as input or output by software.
All GPIO pins default to inputs with interrupt disabled at reset.
Pin registers allow pins to be sensed and set individually.
Up to eight GPIO pins can be selected from all GPIO pins to create an edge- or
level-sensitive GPIO interrupt request.
• Port interrupts can be triggered by any pin or pins in each port.
7.9 USB interface
Remark: The USB interface is available on parts LPC1345/46/47 only.
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a
host and one or more (up to 127) peripherals. The host controller allocates the USB
bandwidth to attached devices through a token-based protocol. The bus supports
hot-plugging and dynamic configuration of the devices. All transactions are initiated by the
host controller.
The LPC1345/46/47 USB interface consists of a full-speed device controller with on-chip
PHY (PHYsical layer) for device functions.
Remark: Configure the LPC1345/46/47 in default power mode with the power profiles
before using the USB (see Section 7.18.5.1). Do not use the USB with the part in
performance, efficiency, or low-power mode.
7.9.1 Full-speed USB device controller
The device controller enables 12 Mbit/s data exchange with a USB Host controller. It
consists of a register interface, serial interface engine, and endpoint buffer memory. The
serial interface engine decodes the USB data stream and writes data to the appropriate
endpoint buffer. The status of a completed USB transfer or error condition is indicated via
status registers. An interrupt is also generated if enabled.
7.9.1.1
Features
•
•
•
•
•
•
Dedicated USB PLL available.
Fully compliant with USB 2.0 specification (full speed).
Supports 10 physical (5 logical) endpoints including one control endpoint.
Single and double buffering supported.
Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.
Supports wake-up from Deep-sleep mode and Power-down mode on USB activity
and remote wake-up.
• Supports SoftConnect.
• Supports Link Power Management (LPM).
7.10 USART
The LPC1315/16/17/45/46/47 contains one USART.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
27 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
The USART includes full modem control, support for synchronous mode, and a smart
card interface. The RS-485/9-bit mode allows both software address detection and
automatic address detection using 9-bit mode.
The USART uses a fractional baud rate generator. Standard baud rates such as
115200 Bd can be achieved with any crystal frequency above 2 MHz.
7.10.1 Features
•
•
•
•
•
Maximum USART data bit rate of 3.125 Mbit/s.
16-byte receive and transmit FIFOs.
Register locations conform to 16C550 industry standard.
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
Built-in fractional baud rate generator covering wide range of baud rates without a
need for external crystals of particular values.
• Fractional divider for baud rate control, auto baud capabilities and FIFO control
mechanism that enables software flow control implementation.
•
•
•
•
Support for RS-485/9-bit mode.
Support for modem control.
Support for synchronous mode.
Includes smart card interface (ISO 7816-3).
7.11 SSP serial I/O controller
The SSP controllers are capable of operation on a SSP, 4-wire SSI, or Microwire bus. It
can interact with multiple masters and slaves on the bus. Only a single master and a
single slave can communicate on the bus during a given data transfer. The SSP supports
full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the
slave and from the slave to the master. In practice, often only one of these data flows
carries meaningful data.
7.11.1 Features
• Maximum SSP speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode)
• Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National
Semiconductor Microwire buses
•
•
•
•
Synchronous serial communication
Master or slave operation
8-frame FIFOs for both transmit and receive
4-bit to 16-bit frame
7.12 I2C-bus serial I/O controller
The LPC1315/16/17/45/46/47 contain one I2C-bus controller.
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line
(SCL) and a Serial Data line (SDA). Each device is recognized by a unique address and
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the
capability to both receive and send information (such as memory). Transmitters and/or
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
28 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
receivers can operate in either master or slave mode, depending on whether the chip has
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be
controlled by more than one bus master connected to it.
7.12.1 Features
• The I2C-interface is an I2C-bus compliant interface with open-drain pins. The I2C-bus
interface supports Fast-mode Plus with bit rates up to 1 Mbit/s.
•
•
•
•
•
Easy to configure as master, slave, or master/slave.
Programmable clocks allow versatile rate control.
Bidirectional data transfer between masters and slaves.
Multi-master bus (no central master).
Arbitration between simultaneously transmitting masters without corruption of serial
data on the bus.
• Serial clock synchronization allows devices with different bit rates to communicate via
one serial bus.
• Serial clock synchronization can be used as a handshake mechanism to suspend and
resume serial transfer.
• The I2C-bus can be used for test and diagnostic purposes.
• The I2C-bus controller supports multiple address recognition and a bus monitor mode.
7.13 12-bit ADC
The LPC1315/16/17/45/46/47 contains one ADC. It is a single 12-bit successive
approximation ADC with eight channels.
7.13.1 Features
•
•
•
•
•
12-bit successive approximation ADC.
•
•
•
•
12-bit conversion rate of up to 500 kHz.
Input multiplexing among 8 pins and three internal sources.
Low-power mode.
10-bit double-conversion rate mode (conversion rate of up to 1 Msample/s).
Measurement range VREFN to VREFP (typically 3 V; not to exceed VDDA voltage
level).
Burst conversion mode for single or multiple inputs.
Optional conversion on transition of input pin or timer match signal.
On the LQFP64 package, power and reference pins (VDDA, VSSA, VREFP, VREFN)
are brought out on separate pins for superior noise immunity.
7.14 General purpose external event counter/timers
The LPC1315/16/17/45/46/47 includes two 32-bit counter/timers and two 16-bit
counter/timers. The counter/timer is designed to count cycles of the system derived clock.
It can optionally generate interrupts or perform other actions at specified timer values,
based on four match registers. Each counter/timer also includes one capture input to trap
the timer value when an input signal transitions, optionally generating an interrupt.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
29 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
7.14.1 Features
• A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.
• Counter or timer operation.
• One capture channel per timer, that can take a snapshot of the timer value when an
input signal transitions. A capture event may also generate an interrupt.
• Four match registers per timer that allow:
– Continuous operation with optional interrupt generation on match.
– Stop timer on match with optional interrupt generation.
– Reset timer on match with optional interrupt generation.
• Up to four external outputs corresponding to match registers, with the following
capabilities:
– Set LOW on match.
– Set HIGH on match.
– Toggle on match.
– Do nothing on match.
• The timer and prescaler may be configured to be cleared on a designated capture
event. This feature permits easy pulse-width measurement by clearing the timer on
the leading edge of an input pulse and capturing the timer value on the trailing edge.
7.15 Repetitive Interrupt (RI) timer
The repetitive interrupt timer provides a free-running 48-bit counter which is compared to
a selectable value, generating an interrupt when a match occurs. Any bits of the
timer/compare can be masked such that they do not contribute to the match detection.
The repetitive interrupt timer can be used to create an interrupt that repeats at
predetermined intervals.
7.15.1 Features
• 48-bit counter running from the main clock. Counter can be free-running or can be
reset when an RIT interrupt is generated.
• 48-bit compare value.
• 48-bit compare mask. An interrupt is generated when the counter value equals the
compare value, after masking. This allows for combinations not possible with a simple
compare.
• Support for ETM timestamp generator.
7.16 System tick timer
The ARM Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).
7.17 Windowed WatchDog Timer (WWDT)
The purpose of the watchdog is to reset the controller if software fails to periodically
service it within a programmable time window.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
30 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
7.17.1 Features
• Internally resets chip if not periodically reloaded during the programmable time-out
period.
• Optional windowed operation requires reload to occur between a minimum and
maximum time period, both programmable.
• Optional warning interrupt can be generated at a programmable time prior to
watchdog time-out.
• Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be
disabled.
•
•
•
•
Incorrect feed sequence causes reset or interrupt if enabled.
Flag to indicate watchdog reset.
Programmable 24-bit timer with internal prescaler.
Selectable time period from (Tcy(WDCLK)  256  4) to (Tcy(WDCLK)  224  4) in
multiples of Tcy(WDCLK)  4.
• The Watchdog Clock (WDCLK) source can be selected from the IRC or the watchdog
oscillator (WDO). This gives a wide range of potential timing choices of watchdog
operation under different power conditions.
7.18 Clocking and power control
7.18.1 Integrated oscillators
The LPC1315/16/17/45/46/47 include three independent oscillators. These are the
system oscillator, the Internal RC oscillator (IRC), and the watchdog oscillator. Each
oscillator can be used for more than one purpose as required in a particular application.
Following reset, the LPC1315/16/17/45/46/47 will operate from the internal RC oscillator
until switched by software. This allows systems to operate without any external crystal and
the bootloader code to operate at a known frequency.
See Figure 9 for an overview of the LPC1315/16/17/45/46/47 clock generation.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
31 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
SYSTEM CLOCK
DIVIDER
CPU, system control,
PMU
system clock
n
memories,
peripheral clocks
SYSAHBCLKCTRLn
(AHB clock enable)
IRC oscillator
main clock
SSP0 PERIPHERAL
CLOCK DIVIDER
SSP0
USART PERIPHERAL
CLOCK DIVIDER
UART
SSP1 PERIPHERAL
CLOCK DIVIDER
SSP1
USB 48 MHz CLOCK
DIVIDER
USB
CLKOUT PIN CLOCK
DIVIDER
CLKOUT pin
watchdog oscillator
MAINCLKSEL
(main clock select)
IRC oscillator
SYSTEM PLL
system oscillator
SYSPLLCLKSEL
(system PLL clock select)
USB PLL
system oscillator
USBPLLCLKSEL
(USB clock select)
USBCLKSEL
(USB clock select)
IRC oscillator
system oscillator
watchdog oscillator
CLKOUTSEL
(CLKOUT clock select)
IRC oscillator
WDT
watchdog oscillator
WDCLKSEL
(WDT clock select)
002aag563
The USB clock divider is available on parts LPC1345/46/47 only.
Fig 9.
LPC1315/16/17/45/46/47 clocking generation block diagram
7.18.1.1
Internal RC oscillator
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the
system PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC
is trimmed to 1 % accuracy over the entire voltage and temperature range.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
32 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Upon power-up, any chip reset, or wake-up from Deep power-down mode, the
LPC1315/16/17/45/46/47 use the IRC as the clock source. Software may later switch to
one of the other available clock sources.
7.18.1.2
System oscillator
The system oscillator can be used as the clock source for the CPU, with or without using
the PLL. On the LPC1315/16/17/45/46/47, the system oscillator must be used to provide
the clock source to USB.
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be
boosted to a higher frequency, up to the maximum CPU operating frequency, by the
system PLL.
7.18.1.3
Watchdog oscillator
The watchdog oscillator can be used as a clock source that directly drives the CPU, the
watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is
programmable between 9.4 kHz and 2.3 MHz. The frequency spread over processing and
temperature is 40 % (see also Table 13).
7.18.2 System PLL and USB PLL
The LPC1315/16/17/45/46/47 contain a system PLL and a dedicated PLL for generating
the 48 MHz USB clock. The system and USB PLLs are identical.
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within
its frequency range while the PLL is providing the desired output frequency. The output
divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. The PLL output
frequency must be lower than 100 MHz. Since the minimum output divider value is 2, it is
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed
following a chip reset and may be enabled by software. The program must configure and
activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source.
The PLL settling time is 100 s.
7.18.3 Clock output
The LPC1315/16/17/45/46/47 features a clock output function that routes the IRC
oscillator, the system oscillator, the watchdog oscillator, or the main clock to an output pin.
7.18.4 Wake-up process
The LPC1315/16/17/45/46/47 begin operation at power-up and when awakened from
Deep power-down mode by using the 12 MHz IRC oscillator as the clock source. This
allows chip operation to resume quickly. If the main oscillator or the PLL is needed by the
application, software will need to enable these features and wait for them to stabilize
before they are used as a clock source.
7.18.5 Power control
The LPC1315/16/17/45/46/47 support a variety of power control features. There are four
special modes of processor power reduction: Sleep mode, Deep-sleep mode,
Power-down mode, and Deep power-down mode. The CPU clock rate may also be
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
33 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering
the CPU clock divider value. This allows a trade-off of power versus processing speed
based on application requirements. In addition, a register is provided for shutting down the
clocks to individual on-chip peripherals, allowing fine tuning of power consumption by
eliminating all dynamic power use in any peripherals that are not required for the
application. Selected peripherals have their own clock divider which provides even better
power control.
7.18.5.1
Power profiles
The power consumption in Active and Sleep modes can be optimized for the application
through simple calls to the power profile. The power configuration routine configures the
LPC1315/16/17/45/46/47 for one of the following power modes:
• Default mode corresponding to power configuration after reset.
• CPU performance mode corresponding to optimized processing capability.
• Efficiency mode corresponding to optimized balance of current consumption and CPU
performance.
• Low-current mode corresponding to lowest power consumption.
In addition, the power profile includes routines to select the optimal PLL settings for a
given system clock and PLL input clock.
Remark: When using the USB, configure the LPC1345/46/47 in Default mode.
7.18.5.2
Sleep mode
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep
mode does not need any special sequence but re-enabling the clock to the ARM core.
In Sleep mode, execution of instructions is suspended until either a reset or interrupt
occurs. Peripheral functions continue operation during Sleep mode and may generate
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic
power used by the processor itself, memory systems and related controllers, and internal
buses.
7.18.5.3
Deep-sleep mode
In Deep-sleep mode, the LPC1315/16/17/45/46/47 is in Sleep-mode and all peripheral
clocks and all clock sources are off with the exception of the IRC. The IRC output is
disabled unless the IRC is selected as input to the watchdog timer. In addition all analog
blocks are shut down and the flash is in stand-by mode. In Deep-sleep mode, the user has
the option to keep the watchdog oscillator and the BOD circuit running for self-timed
wake-up and BOD protection.
The LPC1315/16/17/45/46/47 can wake up from Deep-sleep mode via reset, selected
GPIO pins, a watchdog timer interrupt, or an interrupt generating USB port activity.
Deep-sleep mode saves power and allows for short wake-up times.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
34 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
7.18.5.4
Power-down mode
In Power-down mode, the LPC1315/16/17/45/46/47 is in Sleep-mode and all peripheral
clocks and all clock sources are off with the exception of watchdog oscillator if selected. In
addition all analog blocks and the flash are shut down. In Power-down mode, the user has
the option to keep the BOD circuit running for BOD protection.
The LPC1315/16/17/45/46/47 can wake up from Power-down mode via reset, selected
GPIO pins, a watchdog timer interrupt, or an interrupt generating USB port activity.
Power-down mode reduces power consumption compared to Deep-sleep mode at the
expense of longer wake-up times.
7.18.5.5
Deep power-down mode
In Deep power-down mode, power is shut off to the entire chip with the exception of the
WAKEUP pin. The LPC1315/16/17/45/46/47 can wake up from Deep power-down mode
via the WAKEUP pin.
The LPC1315/16/17/45/46/47 can be prevented from entering Deep power-down mode by
setting a lock bit in the PMU block. Locking out Deep power-down mode enables the user
to always keep the watchdog timer or the BOD running.
When entering Deep power-down mode, an external pull-up resistor is required on the
WAKEUP pin to hold it HIGH. The RESET pin must also be held HIGH to prevent it from
floating while in Deep power-down mode.
7.18.6 System control
7.18.6.1
Reset
Reset has four sources on the LPC1315/16/17/45/46/47: the RESET pin, the Watchdog
reset, power-on reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin
is a Schmitt trigger input pin. Assertion of chip reset by any source, once the operating
voltage attains a usable level, starts the IRC and initializes the flash controller.
A LOW-going pulse as short as 50 ns resets the part.
When the internal Reset is removed, the processor begins executing at address 0, which
is initially the Reset vector mapped from the boot block. At that point, all of the processor
and peripheral registers have been initialized to predetermined values.
An external pull-up resistor is required on the RESET pin if Deep power-down mode is
used.
7.18.6.2
Brownout detection
The LPC1315/16/17/45/46/47 includes up to four levels for monitoring the voltage on the
VDD pin. If this voltage falls below one of selected levels, the BOD asserts an interrupt
signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable
Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the
signal by reading a dedicated status register. Four threshold levels can be selected to
cause a forced reset of the chip.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
35 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
7.18.6.3
Code security (Code Read Protection - CRP)
This feature of the LPC1315/16/17/45/46/47 allows user to enable different levels of
security in the system so that access to the on-chip flash and use of the Serial Wire
Debugger (SWD) and In-System Programming (ISP) can be restricted. When needed,
CRP is invoked by programming a specific pattern into a dedicated flash location. IAP
commands are not affected by the CRP.
In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For
details see the LPC1315/16/17/45/46/47 user manual.
There are three levels of Code Read Protection:
1. CRP1 disables access to the chip via the SWD and allows partial flash update
(excluding flash sector 0) using a limited set of the ISP commands. This mode is
useful when CRP is required and flash field updates are needed but all sectors can
not be erased.
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and
update using a reduced set of the ISP commands.
3. Running an application with level CRP3 selected fully disables any access to the chip
via the SWD pins and the ISP. This mode effectively disables ISP override using
PIO0_1 pin, too. It is up to the user’s application to provide (if needed) flash update
mechanism using IAP calls or call reinvoke ISP command to enable flash update via
the USART.
CAUTION
If level three Code Read Protection (CRP3) is selected, no future factory testing can be
performed on the device.
In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be
disabled. For details see the LPC1315/16/17/45/46/47 user manual.
7.18.6.4
APB interface
The APB peripherals are located on one APB bus.
7.18.6.5
AHBLite
The AHBLite connects the CPU bus of the ARM Cortex-M3 to the flash memory, the main
static RAM, and the ROM.
7.18.6.6
External interrupt inputs
All GPIO pins can be level or edge sensitive interrupt inputs.
7.19 Emulation and debugging
Debug functions are integrated into the ARM Cortex-M3. Serial wire debug functions are
supported in addition to a standard JTAG boundary scan. The ARM Cortex-M0 is
configured to support up to four breakpoints and two watch points.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
36 of 77
NXP Semiconductors
LPC1315/16/17/45/46/47
32-bit ARM Cortex-M3 microcontroller
The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM
SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the
LPC1315/16/17/45/46/47 is in reset.
Remark: Boundary scan operations should not be started until 250 s after POR, and the
test TAP should be reset after the boundary scan. Boundary scan is not affected by Code
Read Protection.
Remark: The JTAG interface cannot be used for debug purposes.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
37 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
8. Limiting values
Table 5.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]
Symbol
Parameter
VDD
supply voltage (core and
external rail)
VI
input voltage
Conditions
5 V tolerant I/O pins; only valid
when the VDD supply voltage is
present
[2]
Min
Max
Unit
2.0
3.6
V
0.5
+5.5
V
IDD
supply current
per supply pin
-
100
mA
ISS
ground current
per ground pin
-
100
mA
Ilatch
I/O latch-up current
(0.5VDD) < VI < (1.5VDD);
-
100
mA
Tstg
storage temperature
non-operating
65
+150
C
Tj(max)
maximum junction temperature
-
150
C
Ptot(pack)
total power dissipation (per
package)
based on package heat transfer, not
device power consumption
-
1.5
W
VESD
electrostatic discharge voltage
human body model; all pins
5000
+5000
V
Tj < 125 C
[1]
[3]
[4]
The following applies to the limiting values:
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated
maximum.
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless
otherwise noted.
[2]
Including voltage on outputs in 3-state mode.
[3]
The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined
based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details.
[4]
Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
38 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
9. Static characteristics
Table 6.
Static characteristics
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol Parameter
VDD
supply voltage (core
and external rail)
IDD
supply current
Conditions
[2]
Min
Typ[1]
Max
Unit
2.0
3.3
3.6
V
-
0.5
-
mA
-
2
-
mA
-
14
-
mA
-
1
-
mA
Active mode; VDD = 3.3 V;
Tamb = 25 C; code
while(1){}
executed from flash;
[3][5][6]
system clock = 1 MHz
[7][8][9]
[4][5][6]
system clock = 12 MHz
[7][8][9]
[5][6][7]
system clock = 72 MHz
[8][9][10]
Sleep mode;
VDD = 3.3 V; Tamb = 25 C;
[4][5][6]
[7][8][9]
system clock = 12 MHz
Deep-sleep mode; VDD = 3.3 V;
Tamb = 25 C
[5][8]
-
280
-
A
Power-down mode; VDD = 3.3 V;
Tamb = 25 C
[5][8]
-
2.1
-
A
[11]
-
220
-
nA
Deep power-down mode;
VDD = 3.3 V; Tamb = 25 C
Standard port pins, RESET
IIL
LOW-level input current VI = 0 V; on-chip pull-up resistor
disabled
-
0.5
10
nA
IIH
HIGH-level input
current
VI = VDD; on-chip pull-down resistor
disabled
-
0.5
10
nA
IOZ
OFF-state output
current
VO = 0 V; VO = VDD; on-chip
pull-up/down resistors disabled
-
0.5
10
nA
VI
input voltage
pin configured to provide a digital
function
0
-
5.0
V
0
-
VDD
V
[12][13]
[14]
VO
output voltage
VIH
HIGH-level input
voltage
0.7VDD
-
-
V
VIL
LOW-level input voltage
-
-
0.3VDD
V
Vhys
hysteresis voltage
-
0.4
-
V
VOH
HIGH-level output
voltage
2.5 V VDD  3.6 V; IOH = 4 mA
VDD  0.4 -
-
V
2.0 V  VDD 2.5 V; IOH = 3 mA
VDD  0.4 -
-
V
LOW-level output
voltage
2.5 V  VDD  3.6 V; IOL = 4 mA
-
-
0.4
V
2.0 V  VDD 2.5 V; IOL = 3 mA
-
-
0.4
V
VOL
LPC1315_16_17_45_46_47
Product data sheet
output active
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
39 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Table 6.
Static characteristics …continued
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol Parameter
Conditions
Min
Typ[1]
Max
Unit
IOH
2.5 V VDD  3.6 V;
VOH = VDD  0.4 V
4
-
-
mA
2.0 V  VDD 2.5 V;
VOH = VDD  0.4 V
3
-
-
mA
2.5 V  VDD  3.6 V; VOL = 0.4 V
4
-
-
mA
IOL
HIGH-level output
current
LOW-level output
current
2.0 V  VDD 2.5 V; VOL = 0.4 V
3
-
-
mA
-
-
45
mA
-
-
50
mA
IOHS
HIGH-level short-circuit VOH = 0 V
output current
[15]
IOLS
LOW-level short-circuit
output current
[15]
Ipd
pull-down current
VI = 5 V
10
50
150
A
Ipu
pull-up current
VI = 0 V;
15
50
85
A
VOL = VDD
2.0 V VDD  3.6 V
VDD = 2.0 V
VDD < VI < 5 V
10
50
85
A
0
0
0
A
High-drive output pin (PIO0_7)
IIL
LOW-level input current VI = 0 V; on-chip pull-up resistor
disabled
-
0.5
10
nA
IIH
HIGH-level input
current
VI = VDD; on-chip pull-down resistor
disabled
-
0.5
10
nA
IOZ
OFF-state output
current
VO = 0 V; VO = VDD; on-chip
pull-up/down resistors disabled
-
0.5
10
nA
VI
input voltage
pin configured to provide a digital
function
0
-
5.0
V
0
-
VDD
V
[12][13]
[14]
VO
output voltage
VIH
HIGH-level input
voltage
0.7VDD
-
-
V
VIL
LOW-level input voltage
-
-
0.3VDD
V
Vhys
hysteresis voltage
0.4
-
-
V
VOH
HIGH-level output
voltage
2.5 V  VDD  3.6 V; IOH = 20 mA
VDD  0.4 -
-
V
2.0 V  VDD < 2.5 V; IOH = 12 mA
VDD  0.4 -
-
V
LOW-level output
voltage
2.5 V VDD 3.6 V; IOL = 4 mA
-
-
0.4
V
2.0 V VDD < 2.5 V; IOL = 3 mA
-
-
0.4
V
HIGH-level output
current
2.5 V  VDD  3.6 V;
VOH = VDD  0.4 V
20
-
-
mA
2.0 V  VDD  2.5 V;
VOH = VDD  0.4 V;
12
-
-
mA
VOL
IOH
output active
LOW-level output
current
2.5 V VDD 3.6 V; VOL = 0.4 V
4
-
-
mA
2.0 V VDD < 2.5 V; VOL = 0.4 V
3
-
-
mA
IOLS
LOW-level short-circuit
output current
VOL = VDD
-
-
50
mA
Ipd
pull-down current
VI = 5 V
10
50
150
A
IOL
LPC1315_16_17_45_46_47
Product data sheet
[15]
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
40 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Table 6.
Static characteristics …continued
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol Parameter
Conditions
Min
Typ[1]
Max
Unit
Ipu
VI = 0 V
15
50
85
A
10
50
85
A
0
0
0
A
pull-up current
2.0 V < VDD  3.6 V
VDD = 2.0 V
VDD < VI < 5 V
I2C-bus
pins (PIO0_4 and PIO0_5)
VIH
HIGH-level input
voltage
0.7VDD
-
-
V
VIL
LOW-level input voltage
-
-
0.3VDD
V
Vhys
hysteresis voltage
-
0.05VDD
-
V
3.5
-
-
mA
LOW-level output
current
IOL
I2C-bus
VOL = 0.4 V;
pins configured
as standard mode pins
2.5 V  VDD  3.6 V
2.0 V  VDD < 2.5 V
LOW-level output
current
IOL
VOL = 0.4 V; I2C-bus pins configured
as Fast-mode Plus pins
3.0
-
-
mA
20
-
-
mA
16
-
-
-
2
4
A
-
10
22
A
2.5 V  VDD  3.6 V
2.0 V  VDD < 2.5 V
input leakage current
ILI
[16]
VI = VDD
VI = 5 V
Oscillator pins
Vi(xtal)
crystal input voltage
0.5
1.8
1.95
V
Vo(xtal)
crystal output voltage
0.5
1.8
1.95
V
[2]
-
-
10
A
[2]
-
-
5.25
V
0.2
-
-
V
USB pins
IOZ
OFF-state output
current
VBUS
bus supply voltage
0 V < VI < 3.3 V
VDI
differential input
sensitivity voltage
(D+)  (D)
[2]
VCM
differential common
mode voltage range
includes VDI range
[2]
0.8
-
2.5
V
Vth(rs)se
single-ended receiver
switching threshold
voltage
[2]
0.8
-
2.0
V
VOL
LOW-level output
voltage
for low-/full-speed;
RL of 1.5 k to 3.6 V
[2]
-
-
0.18
V
VOH
HIGH-level output
voltage
driven; for low-/full-speed;
RL of 15 k to GND
[2]
2.8
-
3.5
V
Ctrans
transceiver capacitance pin to GND
[2]
-
-
20
pF
ZDRV
driver output
with 33  series resistor; steady state
impedance for driver
drive
which is not high-speed
capable
36
-
44.1

[17][2]
[1]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.
[2]
For USB operation 3.0 V  VDD  3.6 V. Guaranteed by design.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
41 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
[3]
System oscillator enabled; PLL and IRC disabled.
[4]
IRC enabled; system oscillator disabled; system PLL disabled.
[5]
IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.
[6]
BOD disabled.
[7]
All peripherals disabled in the AHBCLKCTRL register. Peripheral clocks to USART, SSP0/1 disabled in the syscon block.
[8]
USB_DP and USB_DM pulled LOW externally.
[9]
Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.
[10] IRC disabled; system oscillator enabled; system PLL enabled.
[11] WAKEUP pin pulled HIGH externally. An external pull-up resistor is required on the RESET pin for the Deep power-down mode.
[12] Including voltage on outputs in 3-state mode.
[13] VDD supply voltage must be present.
[14] 3-state outputs go into 3-state mode in Deep power-down mode.
[15] Allowed as long as the current limit does not exceed the maximum current allowed by the device.
[16] To VSS.
[17] Includes external resistors of 33   1 % on USB_DP and USB_DM.
9.1 BOD static characteristics
Table 7.
BOD static characteristics[1]
Tamb = 25 C.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Vth
threshold voltage
interrupt level 1
assertion
-
2.22
-
V
de-assertion
-
2.35
-
V
assertion
-
2.52
-
V
de-assertion
-
2.66
-
V
assertion
-
2.80
-
V
de-assertion
-
2.90
-
V
interrupt level 2
interrupt level 3
reset level 0
assertion
-
1.46
-
V
de-assertion
-
1.63
-
V
assertion
-
2.06
-
V
de-assertion
-
2.15
-
V
assertion
-
2.35
-
V
de-assertion
-
2.43
-
V
assertion
-
2.63
-
V
de-assertion
-
2.71
-
V
reset level 1
reset level 2
reset level 3
[1]
LPC1315_16_17_45_46_47
Product data sheet
Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see
LPC1315/16/17/45/46/47 user manual.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
42 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
9.2 Power consumption
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the
following conditions (see LPC1315/16/17/45/46/47 user manual):
• Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.
• Configure GPIO pins as outputs using the GPIOnDIR registers.
• Write 0 to all GPIOnDATA registers to drive the outputs LOW.
002aag900
18
72 MHz
60 MHz
48 MHz
36 MHz
24 MHz
12 MHz
6 MHz
3 MHz
1 MHz
IDD
(mA)
12
6
0
2
2.2
2.4
2.6
2.8
3
3.2
3.4
VDD (V)
3.6
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash;
internal pull-up resistors disabled; BOD disabled; all peripherals disabled in the
SYSAHBCLKCTRL register; all peripheral clocks disabled; USB_DP and USB_DM pulled LOW
externally.
1 MHz - 6 MHz: system oscillator enabled; PLL, IRC disabled.
12 MHz: IRC enabled; system oscillator, PLL disabled.
24 MHz - 72 MHz: IRC disabled; system oscillator, PLL enabled.
Fig 10. Typical supply current versus regulator supply voltage VDD in active mode
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
43 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
002aag901
18
72 MHz
60 MHz
48 MHz
36 MHz
24 MHz
12 MHz
6 MHz
3 MHz
1 MHz
IDD
(mA)
14.4
10.8
7.2
3.6
0
-40
-15
10
35
60
temperature (°C)
85
Conditions: VDD = 3.3 V; Active mode entered executing code while(1){} from flash; internal
pull-up resistors disabled; BOD disabled; all peripherals disabled in the SYSAHBCLKCTRL
register; all peripheral clocks disabled; USB_DP and USB_DM pulled LOW externally.
1 MHz - 6 MHz: system oscillator enabled; PLL, IRC disabled.
12 MHz: IRC enabled; system oscillator, PLL disabled.
24 MHz - 72 MHz: IRC disabled; system oscillator, PLL enabled.
Fig 11. Typical supply current versus temperature in Active mode
002aag902
6
72 MHz
60 MHz
48 MHz
36 MHz
24 MHz
12 MHz
6 MHz
3 MHz
1 MHz
IDD
(mA)
4
2
0
-40
-15
10
35
60
temperature (°C)
85
Conditions: VDD = 3.3 V; Sleep mode entered from flash; internal pull-up resistors disabled; BOD
disabled; all peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled;
USB_DP and USB_DM pulled LOW externally.
1 MHz - 6 MHz: system oscillator enabled; PLL, IRC disabled.
12 MHz: IRC enabled; system oscillator, PLL disabled.
24 MHz - 72 MHz: IRC disabled; system oscillator, PLL enabled.
Fig 12. Typical supply current versus temperature in Sleep mode
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
44 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
002aag891
300
IDD
(μA)
290
3.6 V
3.3 V
2.0 V
280
270
260
250
-40
-15
10
35
60
temperature (°C)
85
Conditions: BOD disabled; all oscillators and analog blocks turned off in the PDSLEEPCFG
register; USB_DP and USB_DM pulled LOW externally.
Fig 13. Typical supply current versus temperature in Deep-sleep mode
002aag892
18
IDD
(μA)
12
3.6 V
3.3 V
2.0 V
6
0
-40
-15
10
35
60
temperature (°C)
85
Conditions: BOD disabled; all oscillators and analog blocks turned off in the PDSLEEPCFG
register; USB_DP and USB_DM pulled LOW externally.
Fig 14. Typical supply current versus temperature in Power-down mode
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
45 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
002aag893
0.8
IDD
(μA)
0.6
3.6 V
3.3 V
2.0 V
0.4
0.2
0
-40
-15
10
35
60
temperature (°C)
85
Fig 15. Typical supply current versus temperature in Deep power-down mode
Table 8.
Power consumption for individual analog and digital blocks
The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and
the peripheral block disabled in the SYSAHBCLKCTRL or PDRUNCFG (for analog blocks) registers. All other blocks are
disabled in both registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless noted otherwise,
the system oscillator and PLL are running in both measurements.
Typical supply current per peripheral
in mA for different system clock
frequencies
Notes
n/a
12 MHz
48 MHz
72 MHz
IRC
0.23
-
-
-
System oscillator running; PLL off; independent of main clock
frequency.
System oscillator
at 12 MHz
0.23
-
-
-
IRC running; PLL off; independent of main clock frequency.
Watchdog
oscillator at
500 kHz/2
0.002
-
-
-
System oscillator running; PLL off; independent of main clock
frequency.
BOD
0.045
-
-
-
Independent of main clock frequency.
Main PLL or USB
PLL
-
0.26
0.34
0.48
ADC
-
0.07
0.25
0.37
CLKOUT
-
0.14
0.56
0.82
CT16B0
-
0.01
0.05
0.08
CT16B1
-
0.01
0.04
0.06
CT32B0
-
0.01
0.05
0.07
CT32B1
-
0.01
0.04
0.06
GPIO
-
0.21
0.80
1.17
IOCON
-
0.00
0.02
0.02
I2C
-
0.03
0.12
0.17
LPC1315_16_17_45_46_47
Product data sheet
Main clock divided by 4 in the CLKOUTDIV register.
GPIO pins configured as outputs and set to LOW. Direction
and pin state are maintained if the GPIO is disabled in the
SYSAHBCLKCFG register.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
46 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Table 8.
Power consumption for individual analog and digital blocks
The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and
the peripheral block disabled in the SYSAHBCLKCTRL or PDRUNCFG (for analog blocks) registers. All other blocks are
disabled in both registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless noted otherwise,
the system oscillator and PLL are running in both measurements.
Typical supply current per peripheral
in mA for different system clock
frequencies
n/a
12 MHz
48 MHz
72 MHz
ROM
-
0.04
0.15
0.22
SSP0
-
0.11
0.41
0.60
SSP1
-
0.11
0.41
0.60
USART
-
0.20
0.76
1.11
WDT
-
0.01
0.05
0.08
USB
-
-
1.2
-
Notes
Main clock selected as clock source for the WDT.
9.3 Electrical pin characteristics
002aae990
3.6
VOH
(V)
T = 85 °C
25 °C
−40 °C
3.2
2.8
2.4
2
0
10
20
30
40
50
60
IOH (mA)
Conditions: VDD = 3.3 V; on pin PIO0_7.
Fig 16. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level
output current IOH.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
47 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
002aaf019
60
T = 85 °C
25 °C
−40 °C
IOL
(mA)
40
20
0
0
0.2
0.4
0.6
VOL (V)
Conditions: VDD = 3.3 V; on pins PIO0_4 and PIO0_5.
Fig 17. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus
LOW-level output voltage VOL
002aae991
15
IOL
(mA)
T = 85 °C
25 °C
−40 °C
10
5
0
0
0.2
0.4
0.6
VOL (V)
Conditions: VDD = 3.3 V; standard port pins and PIO0_7.
Fig 18. Typical LOW-level output current IOL versus LOW-level output voltage VOL
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
48 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
002aae992
3.6
VOH
(V)
T = 85 °C
25 °C
−40 °C
3.2
2.8
2.4
2
0
8
16
24
IOH (mA)
Conditions: VDD = 3.3 V; standard port pins.
Fig 19. Typical HIGH-level output voltage VOH versus HIGH-level output source current
IOH
002aae988
10
Ipu
(μA)
−10
−30
T = 85 °C
25 °C
−40 °C
−50
−70
0
1
2
3
4
5
VI (V)
Conditions: VDD = 3.3 V; standard port pins.
Fig 20. Typical pull-up current Ipu versus input voltage VI
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
49 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
002aae989
80
T = 85 °C
25 °C
−40 °C
Ipd
(μA)
60
40
20
0
0
1
2
3
4
5
VI (V)
Conditions: VDD = 3.3 V; standard port pins.
Fig 21. Typical pull-down current Ipd versus input voltage VI
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
50 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
10. Dynamic characteristics
10.1 Flash/EEPROM memory
Table 9.
Flash characteristics
Tamb = 40 C to +85 C, unless otherwise specified.
Symbol
Parameter
Conditions
Min
[1]
Nendu
endurance
tret
retention time
ter
erase time
tprog
programming time
Typ
Max
Unit
10000
100000
-
cycles
powered
10
-
-
years
unpowered
20
-
-
years
sector or multiple
consecutive sectors
95
100
105
ms
0.95
1
1.05
ms
[2]
[1]
Number of program/erase cycles.
[2]
Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash
in blocks of 256 bytes.
Table 10. EEPROM characteristics
Tamb = 40 C to +85 C; VDD = 2.7 V to 3.6 V.
Symbol
Parameter
Min
Typ
Max
Unit
fclk
clock frequency
Conditions
200
375
400
kHz
Nendu
endurance
100000
1000000
-
cycles
tret
retention time
powered
100
200
-
years
unpowered
150
300
-
years
ter
erase time
64 bytes
-
1.8
-
ms
tprog
programming
time
64 bytes
-
1.1
-
ms
10.2 External clock
Table 11. Dynamic characteristic: external clock
Tamb = 40 C to +85 C; VDD over specified ranges.[1]
LPC1315_16_17_45_46_47
Product data sheet
Min
Typ[2]
Max
Unit
oscillator frequency
1
-
25
MHz
Symbol
Parameter
fosc
Conditions
Tcy(clk)
clock cycle time
40
-
1000
ns
tCHCX
clock HIGH time
Tcy(clk)  0.4
-
-
ns
tCLCX
clock LOW time
Tcy(clk)  0.4
-
-
ns
tCLCH
clock rise time
-
-
5
ns
tCHCL
clock fall time
-
-
5
ns
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
51 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
tCHCL
tCHCX
tCLCH
tCLCX
Tcy(clk)
002aaa907
Fig 22. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
52 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
10.3 Internal oscillators
Table 12. Dynamic characteristics: IRC
Tamb = 40 C to +85 C; 2.7 V  VDD  3.6 V[1].
Symbol
Parameter
Conditions
Min
Typ[2]
Max
Unit
fosc(RC)
internal RC oscillator
frequency
-
11.88
12
12.12
MHz
[1]
Parameters are valid over operating temperature range unless otherwise specified.
[2]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply
voltages.
002aaf403
12.15
f
(MHz)
12.05
VDD = 3.6 V
3.3 V
3.0 V
2.7 V
2.4 V
2.0 V
11.95
11.85
−40
−15
10
35
60
85
temperature (°C)
Conditions: Frequency values are typical values. 12 MHz  1 % accuracy is guaranteed for
2.7 V  VDD  3.6 V and Tamb = 40 C to +85 C. Variations between parts may cause the IRC to
fall outside the 12 MHz  1 % accuracy specification for voltages below 2.7 V.
Fig 23. Internal RC oscillator frequency versus temperature
LPC1315_16_17_45_46_47
Product data sheet
Table 13.
Dynamic characteristics: Watchdog oscillator
Symbol
Parameter
Conditions
fosc(int)
internal oscillator
frequency
DIVSEL = 0x1F, FREQSEL = 0x1
in the WDTOSCCTRL register;
DIVSEL = 0x00, FREQSEL = 0xF
in the WDTOSCCTRL register
Min
Typ[1] Max Unit
[2][3]
-
9.4
-
kHz
[2][3]
-
2300
-
kHz
[1]
Typical ratings are not guaranteed. The values listed are at nominal supply voltages.
[2]
The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %.
[3]
See the LPC1315/16/17/45/46/47 user manual.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
53 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
10.4 I/O pins
Table 14. Dynamic characteristics: I/O pins[1]
Tamb = 40 C to +85 C; 3.0 V  VDD  3.6 V.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
tr
rise time
pin configured as output
3.0
-
5.0
ns
tf
fall time
pin configured as output
2.5
-
5.0
ns
[1]
Applies to standard port pins and RESET pin.
10.5 I2C-bus
Table 15. Dynamic characteristic: I2C-bus pins[1]
Tamb = 40 C to +85 C.[2]
Symbol
Parameter
Conditions
Min
Max
Unit
fSCL
SCL clock
frequency
Standard-mode
0
100
kHz
Fast-mode
0
400
kHz
Fast-mode Plus
0
1
MHz
of both SDA and SCL
signals
-
300
ns
Fast-mode
20 + 0.1  Cb
300
ns
Fast-mode Plus
fall time
tf
[4][5][6][7]
Standard-mode
tLOW
tHIGH
tHD;DAT
tSU;DAT
LOW period of the
SCL clock
HIGH period of the
SCL clock
data hold time
data set-up time
[3][4][8]
[9][10]
-
120
ns
Standard-mode
4.7
-
s
Fast-mode
1.3
-
s
Fast-mode Plus
0.5
-
s
Standard-mode
4.0
-
s
Fast-mode
0.6
-
s
Fast-mode Plus
0.26
-
s
Standard-mode
0
-
s
Fast-mode
0
-
s
Fast-mode Plus
0
-
s
Standard-mode
250
-
ns
Fast-mode
100
-
ns
Fast-mode Plus
50
-
ns
[1]
See the I2C-bus specification UM10204 for details.
[2]
Parameters are valid over operating temperature range unless otherwise specified.
[3]
tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.
[4]
A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to
bridge the undefined region of the falling edge of SCL.
[5]
Cb = total capacitance of one bus line in pF.
[6]
The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines
without exceeding the maximum specified tf.
[7]
In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should
allow for this when considering bus timing.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
54 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
[8]
The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or
tVD;ACK by a transition time (see UM10204). This maximum must only be met if the device does not stretch the LOW period (tLOW) of the
SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
[9]
tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the
acknowledge.
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.
tf
SDA
tSU;DAT
70 %
30 %
70 %
30 %
tHD;DAT
tf
70 %
30 %
SCL
tVD;DAT
tHIGH
70 %
30 %
70 %
30 %
70 %
30 %
tLOW
S
1 / fSCL
002aaf425
Fig 24. I2C-bus pins clock timing
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
55 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
10.6 SSP interface
Table 16.
Dynamic characteristics: SSP pins in SPI mode
Symbol
Parameter
Conditions
Min
Max
Unit
clock cycle time
full-duplex mode
[1]
40
-
ns
when only transmitting
[1]
27.8
-
ns
in SPI mode;
[2]
15
-
ns
[2]
SSP master
Tcy(clk)
data set-up time
tDS
2.4 V  VDD  3.6 V
2.0 V  VDD < 2.4 V
20
-
ns
tDH
data hold time
in SPI mode
[2]
0
-
ns
tv(Q)
data output valid time
in SPI mode
[2]
-
10
ns
in SPI mode
[2]
0
-
ns
13.9
-
ns
in SPI mode
[3][4]
0
-
ns
in SPI mode
[3][4]
3  Tcy(PCLK) + 4
-
ns
-
3  Tcy(PCLK) + 11
ns
-
2  Tcy(PCLK) + 5
ns
th(Q)
data output hold time
SSP slave
Tcy(PCLK)
PCLK cycle time
data set-up time
tDS
data hold time
tDH
tv(Q)
data output valid time
in SPI mode
[3][4]
th(Q)
data output hold time
in SPI mode
[3][4]
[1]
Tcy(clk) = (SSPCLKDIV  (1 + SCR)  CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the
main clock frequency fmain, the SSP peripheral clock divider (SSPCLKDIV), the SSP SCR parameter (specified in the SSP0CR0
register), and the SSP CPSDVSR parameter (specified in the SSP clock prescale register).
[2]
Tamb = 40 C to 85 C.
[3]
Tcy(clk) = 12  Tcy(PCLK).
[4]
Tamb = 25 C; VDD = 3.3 V.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
56 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Tcy(clk)
tclk(H)
tclk(L)
SCK (CPOL = 0)
SCK (CPOL = 1)
tv(Q)
th(Q)
DATA VALID
MOSI
DATA VALID
tDS
DATA VALID
MISO
tDH
DATA VALID
tv(Q)
MOSI
th(Q)
DATA VALID
DATA VALID
tDH
tDS
MISO
CPHA = 1
DATA VALID
CPHA = 0
DATA VALID
002aae829
Fig 25. SSP master timing in SPI mode
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
57 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Tcy(clk)
tclk(H)
tclk(L)
tDS
tDH
SCK (CPOL = 0)
SCK (CPOL = 1)
MOSI
DATA VALID
DATA VALID
tv(Q)
MISO
th(Q)
DATA VALID
DATA VALID
tDS
MOSI
DATA VALID
tDH
DATA VALID
tv(Q)
MISO
DATA VALID
CPHA = 1
th(Q)
CPHA = 0
DATA VALID
002aae830
Fig 26. SSP slave timing in SPI mode
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
58 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
11. ADC electrical characteristics
Table 17. ADC characteristics
VDDA = 2.7 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified; 12-bit resolution.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VIA
analog input voltage
0
-
VDDA
V
Cia
analog input capacitance
IDDA(ADC)
ADC analog supply current on pin VDDA (LQFP64
package only)
-
5
-
pF
-
5
-
A
-
350
-
A
[2][3]
-
-
1
LSB
[4]
-
-
5
LSB
[5][6]
-
-
2.5
LSB
gain error
[7]
-
-
0.3
%
absolute error
[8]
-
-
7
LSB
Rvsi
voltage source interface
resistance
[9]
-
1
-
k
fclk(ADC)
ADC clock frequency
-
-
15.5
MHz
-
-
500
kHz
[1]
low-power mode
during ADC
conversions
differential linearity error
ED
EL(adj)
integral non-linearity
EO
offset error
EG
ET
fc(ADC)
[10]
ADC conversion frequency
[1]
Select the ADC low-power mode by setting the LPWRMODE bit in the ADC CR register. See the LPC1315/16/17/45/46/47 user manual.
[2]
The ADC is monotonic, there are no missing codes.
[3]
The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 27.
[4]
The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after
appropriate adjustment of gain and offset errors. See Figure 27.
[5]
The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the
ideal curve. See Figure 27.
[6]
ADCOFFS value (bits 7:4) = 2 in the ADC TRM register. See the LPC1315/16/17/45/46/47 user manual.
[7]
The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset
error, and the straight line which fits the ideal transfer curve. See Figure 27.
[8]
The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated
ADC and the ideal transfer curve. See Figure 27.
[9]
See Figure 27.
[10] The conversion frequency corresponds to the number of samples per second.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
59 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
offset
error
EO
gain
error
EG
4095
4094
4093
4092
4091
4090
(2)
7
code
out
(1)
6
5
(5)
4
(4)
3
(3)
2
1 LSB
(ideal)
1
0
1
2
3
4
5
6
7
4090
4091
4092
4093
4094
4095
4096
VIA (LSBideal)
offset error
EO
1 LSB =
VREFP − VREFN
4096
002aad948
(1) Example of an actual transfer curve.
(2) The ideal transfer curve.
(3) Differential linearity error (ED).
(4) Integral non-linearity (EL(adj)).
(5) Center of a step of the actual transfer curve.
Fig 27. 12-bit ADC characteristics
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
60 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
12. Application information
12.1 Suggested USB interface solutions
VDD
USB_CONNECT
LPC1345/46/47
soft-connect switch
R1
1.5 kΩ
USB_VBUS
USB_DP RS = 33 Ω
USB_DM
USB-B
connector
RS = 33 Ω
VSS
002aag564
Fig 28. USB interface on a self-powered device
VDD
LPC1345/46/47
R1
1.5 kΩ
USB_VBUS
USB-B
connector
USB_DP RS = 33 Ω
USB_DM RS = 33 Ω
VSS
002aag565
Fig 29. USB interface on a bus-powered device
12.2 XTAL input
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a
clock in slave mode, it is recommended that the input be coupled through a capacitor with
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave
mode, a minimum of 200 mV(RMS) is needed.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
61 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
LPC1xxx
XTALIN
Ci
100 pF
Cg
002aae788
Fig 30. Slave mode operation of the on-chip oscillator
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF
(Figure 30), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.
The XTALOUT pin in this configuration can be left unconnected.
External components and models used in oscillation mode are shown in Figure 31 and in
Table 18 and Table 19. Since the feedback resistance is integrated on chip, only a crystal
and the capacitances CX1 and CX2 need to be connected externally in case of
fundamental mode oscillation (the fundamental frequency is represented by L, CL and
RS). Capacitance CP in Figure 31 represents the parallel package capacitance and should
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal
manufacturer.
LPC1xxx
L
XTALIN
XTALOUT
=
CL
CP
XTAL
RS
CX2
CX1
002aaf424
Fig 31. Oscillator modes and models: oscillation mode of operation and external crystal
model used for CX1/CX2 evaluation
Table 18.
LPC1315_16_17_45_46_47
Product data sheet
Recommended values for CX1/CX2 in oscillation mode (crystal and external
components parameters) low frequency mode
Fundamental oscillation
frequency FOSC
Crystal load
capacitance CL
Maximum crystal
series resistance RS
External load
capacitors CX1, CX2
1 MHz - 5 MHz
10 pF
< 300 
18 pF, 18 pF
20 pF
< 300 
39 pF, 39 pF
30 pF
< 300 
57 pF, 57 pF
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
62 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Table 18.
Recommended values for CX1/CX2 in oscillation mode (crystal and external
components parameters) low frequency mode
Fundamental oscillation
frequency FOSC
Crystal load
capacitance CL
Maximum crystal
series resistance RS
External load
capacitors CX1, CX2
5 MHz - 10 MHz
10 pF
< 300 
18 pF, 18 pF
20 pF
< 200 
39 pF, 39 pF
30 pF
< 100 
57 pF, 57 pF
10 pF
< 160 
18 pF, 18 pF
20 pF
< 60 
39 pF, 39 pF
10 pF
< 80 
18 pF, 18 pF
10 MHz - 15 MHz
15 MHz - 20 MHz
Table 19.
Recommended values for CX1/CX2 in oscillation mode (crystal and external
components parameters) high frequency mode
Fundamental oscillation
frequency FOSC
Crystal load
capacitance CL
Maximum crystal
series resistance RS
External load
capacitors CX1, CX2
15 MHz - 20 MHz
10 pF
< 180 
18 pF, 18 pF
20 pF
< 100 
39 pF, 39 pF
20 MHz - 25 MHz
10 pF
< 160 
18 pF, 18 pF
20 pF
< 80 
39 pF, 39 pF
12.3 XTAL Printed-Circuit Board (PCB) layout guidelines
The crystal should be connected on the PCB as close as possible to the oscillator input
and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of
third overtone crystal usage have a common ground plane. The external components
must also be connected to the ground plain. Loops must be made as small as possible in
order to keep the noise coupled in via the PCB as small as possible. Also parasitics
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller
accordingly to the increase in parasitics of the PCB layout.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
63 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
12.4 Standard I/O pad configuration
Figure 32 shows the possible pin modes for standard I/O pins with analog input function:
•
•
•
•
•
Digital output driver
Digital input: Pull-up enabled/disabled
Digital input: Pull-down enabled/disabled
Digital input: Repeater mode enabled/disabled
Analog input
VDD
VDD
open-drain enable
pin configured
as digital output
driver
strong
pull-up
output enable
ESD
data output
PIN
strong
pull-down
ESD
VSS
VDD
weak
pull-up
pull-up enable
weak
pull-down
repeater mode
enable
pin configured
as digital input
pull-down enable
data input
10 ns RC
GLITCH FILTER
select data
inverter
select glitch
filter
select analog input
pin configured
as analog input
analog input
002aaf695
Fig 32. Standard I/O pad configuration
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
64 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
12.5 Reset pad configuration
VDD
VDD
VDD
Rpu
ESD
20 ns RC
GLITCH FILTER
reset
PIN
ESD
VSS
002aaf274
Fig 33. Reset pad configuration
12.6 ADC usage notes
The following guidelines show how to increase the performance of the ADC in a noisy
environment beyond the ADC specifications listed in Table 17:
• The ADC input trace must be short and as close as possible to the
LPC1315/16/17/45/46/47 chip.
• The ADC input traces must be shielded from fast switching digital signals and noisy
power supply lines.
• Because the ADC and the digital core share the same power supply, the power supply
line must be adequately filtered.
• To improve the ADC performance in a very noisy environment, put the device in Sleep
mode during the ADC conversion.
Remark: On the LQFP64 package, the analog power supply and the reference voltage
can be connected on separate pins for better noise immunity.
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
65 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
13. Package outline
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;
33 terminals; body 7 x 7 x 0.85 mm
A
B
D
terminal 1
index area
E
A
A1
c
detail X
e1
e
9
16
C
C A B
C
v
w
b
y
y1 C
L
8
17
e
e2
Eh
33
1
terminal 1
index area
24
32
X
25
Dh
0
2.5
scale
Dimensions
Unit
mm
5 mm
A(1)
A1
b
max 1.00 0.05 0.35
nom 0.85 0.02 0.28
min 0.80 0.00 0.23
c
D(1)
Dh
E(1)
0.2
7.1
7.0
6.9
4.85
4.70
4.55
7.1
7.0
6.9
Eh
e
e1
e2
L
0.75
4.85
4.70 0.65 4.55 4.55 0.60
0.45
4.55
v
0.1
w
y
0.05 0.08
y1
0.1
Note
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.
Outline
version
References
IEC
JEDEC
JEITA
---
hvqfn33_po
European
projection
Issue date
09-03-17
09-03-23
Fig 34. Package outline HVQFN33
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
66 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm
SOT313-2
c
y
X
36
25
A
37
24
ZE
e
E HE
A A2
(A 3)
A1
w M
θ
bp
pin 1 index
Lp
L
13
48
detail X
12
1
ZD
e
v M A
w M
bp
D
B
HD
v M B
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HD
HE
L
Lp
v
w
y
mm
1.6
0.20
0.05
1.45
1.35
0.25
0.27
0.17
0.18
0.12
7.1
6.9
7.1
6.9
0.5
9.15
8.85
9.15
8.85
1
0.75
0.45
0.2
0.12
0.1
Z D (1) Z E (1)
θ
0.95
0.55
7o
o
0
0.95
0.55
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT313-2
136E05
MS-026
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
00-01-19
03-02-25
Fig 35. Package outline LQFP48 (SOT313-2)
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
67 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm
SOT314-2
c
y
X
A
48
33
49
32
ZE
e
E HE
A
A2
(A 3)
A1
wM
θ
bp
pin 1 index
64
Lp
L
17
detail X
16
1
ZD
e
v M A
wM
bp
D
B
HD
v M B
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
mm
1.6
0.20
0.05
1.45
1.35
0.25
0.27
0.17
0.18
0.12
10.1
9.9
10.1
9.9
0.5
HD
HE
12.15 12.15
11.85 11.85
L
Lp
v
w
y
1
0.75
0.45
0.2
0.12
0.1
Z D (1) Z E (1)
1.45
1.05
1.45
1.05
θ
7o
o
0
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT314-2
136E10
MS-026
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
00-01-19
03-02-25
Fig 36. Package outline LQFP64 (SOT314-2)
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
68 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
14. Soldering
Footprint information for reflow soldering of HVQFN33 package
OID = 8.20 OA
PID = 7.25 PA+OA
OwDtot = 5.10 OA
evia = 4.25
0.20 SR
chamfer (4×)
W = 0.30 CU
SPD = 1.00 SP
LaE = 7.95 CU
PIE = 7.25 PA+OA
LbE = 5.80 CU
evia = 4.25
evia = 1.05
0.45 DM
SPE = 1.00 SP
GapE = 0.70 SP
4.55 SR
SEhtot = 2.70 SP
EHS = 4.85 CU
OwEtot = 5.10 OA
OIE = 8.20 OA
e = 0.65
0.45 DM
GapD = 0.70 SP
evia = 2.40
B-side
SDhtot = 2.70 SP
4.55 SR
DHS = 4.85 CU
Solder resist
covered via
0.30 PH
LbD = 5.80 CU
0.60 SR cover
LaD = 7.95 CU
0.60 CU
(A-side fully covered)
number of vias: 20
solder land
solder land plus solder paste
solder paste deposit
solder resist
occupied area
Dimensions in mm
Remark:
Stencil thickness: 0.125 mm
001aao134
Fig 37. Reflow soldering of the HVQFN33 package
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
69 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Footprint information for reflow soldering of LQFP48 package
SOT313-2
Hx
Gx
P2
Hy
(0.125)
P1
Gy
By
Ay
C
D2 (8×)
D1
Bx
Ax
Generic footprint pattern
Refer to the package outline drawing for actual layout
solder land
occupied area
DIMENSIONS in mm
P1
P2
0.500
0.560
Ax
Ay
10.350 10.350
Bx
By
C
D1
D2
Gx
7.350
7.350
1.500
0.280
0.500
7.500
Gy
Hx
Hy
7.500 10.650 10.650
sot313-2_fr
Fig 38. Reflow soldering of the LQFP48 package
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
70 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Footprint information for reflow soldering of LQFP64 package
SOT314-2
Hx
Gx
P2
Hy
(0.125)
P1
Gy
By
Ay
C
D2 (8×)
D1
Bx
Ax
Generic footprint pattern
Refer to the package outline drawing for actual layout
solder land
occupied area
DIMENSIONS in mm
P1
0.500
P2
Ax
Ay
Bx
By
0.560 13.300 13.300 10.300 10.300
C
D1
D2
1.500
0.280
0.400
Gx
Gy
Hx
Hy
10.500 10.500 13.550 13.550
sot314-2_fr
Fig 39. Reflow soldering of the LQFP64 package
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
71 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
15. Abbreviations
Table 20.
LPC1315_16_17_45_46_47
Product data sheet
Abbreviations
Acronym
Description
A/D
Analog-to-Digital
ADC
Analog-to-Digital Converter
AHB
Advanced High-performance Bus
APB
Advanced Peripheral Bus
BOD
BrownOut Detection
CDC
Communication Device Class
ETM
Embedded Trace Macrocell
GPIO
General Purpose Input/Output
HID
Human Interface Device
JTAG
Joint Test Action Group
MSC
Mass Storage Class
PLL
Phase-Locked Loop
RC
Resistor-Capacitor
SPI
Serial Peripheral Interface
SSI
Serial Synchronous Interface
SSP
Synchronous Serial Port
TAP
Test Access Port
USART
Universal Synchronous Asynchronous Receiver/Transmitter
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
72 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
16. Revision history
Table 21.
Revision history
Document ID
Release date
Data sheet status
Change
notice
Supersedes
LPC1315_16_17_45_46_47 v.3
20120920
Product data sheet
-
LPC1315_16_17_45_46_47 v.2
•
•
•
LPC1315_16_17_45_46_47 v.2
Modifications:
LPC1315_16_17_45_46_47 v.1
LPC1315_16_17_45_46_47
Product data sheet
Reflow soldering drawing corrected for the HVQFN33 package. See Figure 37.
BOD interrupt trigger level 0 removed. See Table 7.
Pin configuration diagrams updated: Orientation of index sector relative to part
marking corrected in Figure 4 to Figure 7.
20120718
•
•
Product data sheet
-
LPC1315_16_17_45_46_47 v.1
Data sheet status changed to Product data sheet.
Parameters VOL, VOH, IOL, IOH updated for voltage range 2.0 V  VDD < 2.5 V in
Table 6.
•
Condition “The peak current is limited to 25 times the corresponding maximum
current.” removed from parameters IDD and ISS in Table 5.
•
Typical operating frequencies of the watchdog oscillator corrected in Table 13 and
Section 7.18.1.3.
20120229
Preliminary data
sheet
-
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
-
© NXP B.V. 2012. All rights reserved.
73 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
17. Legal information
17.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
17.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
17.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
LPC1315_16_17_45_46_47
Product data sheet
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
74 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
17.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
I2C-bus — logo is a trademark of NXP B.V.
18. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
75 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
19. Contents
1
2
3
4
4.1
5
6
6.1
6.2
7
7.1
7.2
7.3
7.4
7.5
7.6
General description . . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ordering information . . . . . . . . . . . . . . . . . . . . . 3
Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pinning information . . . . . . . . . . . . . . . . . . . . . . 6
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 12
Functional description . . . . . . . . . . . . . . . . . . 24
On-chip flash programming memory . . . . . . . 24
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 24
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 24
Nested Vectored Interrupt Controller
(NVIC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.6.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.6.2
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 26
7.7
IOCON block . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.7.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.8
General Purpose Input/Output GPIO . . . . . . . 26
7.8.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.9
USB interface . . . . . . . . . . . . . . . . . . . . . . . . 27
7.9.1
Full-speed USB device controller . . . . . . . . . . 27
7.9.1.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.10
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.10.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.11
SSP serial I/O controller . . . . . . . . . . . . . . . . . 28
7.11.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.12
I2C-bus serial I/O controller . . . . . . . . . . . . . . 28
7.12.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.13
12-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.13.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.14
General purpose external event
counter/timers . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.14.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.15
Repetitive Interrupt (RI) timer . . . . . . . . . . . . . 30
7.15.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.16
System tick timer . . . . . . . . . . . . . . . . . . . . . . 30
7.17
Windowed WatchDog Timer
(WWDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.17.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.18
Clocking and power control . . . . . . . . . . . . . . 31
7.18.1
Integrated oscillators . . . . . . . . . . . . . . . . . . . 31
7.18.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 32
7.18.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 33
7.18.1.3
7.18.2
7.18.3
7.18.4
7.18.5
7.18.5.1
7.18.5.2
7.18.5.3
7.18.5.4
7.18.5.5
7.18.6
7.18.6.1
7.18.6.2
7.18.6.3
Watchdog oscillator . . . . . . . . . . . . . . . . . . . .
System PLL and USB PLL. . . . . . . . . . . . . . .
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . .
Wake-up process . . . . . . . . . . . . . . . . . . . . . .
Power control . . . . . . . . . . . . . . . . . . . . . . . . .
Power profiles . . . . . . . . . . . . . . . . . . . . . . . .
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . .
Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . .
Power-down mode . . . . . . . . . . . . . . . . . . . . .
Deep power-down mode . . . . . . . . . . . . . . . .
System control . . . . . . . . . . . . . . . . . . . . . . . .
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Brownout detection . . . . . . . . . . . . . . . . . . . .
Code security
(Code Read Protection - CRP) . . . . . . . . . . .
7.18.6.4 APB interface . . . . . . . . . . . . . . . . . . . . . . . . .
7.18.6.5 AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.18.6.6 External interrupt inputs . . . . . . . . . . . . . . . . .
7.19
Emulation and debugging . . . . . . . . . . . . . . .
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . .
9
Static characteristics . . . . . . . . . . . . . . . . . . .
9.1
BOD static characteristics . . . . . . . . . . . . . . .
9.2
Power consumption . . . . . . . . . . . . . . . . . . .
9.3
Electrical pin characteristics. . . . . . . . . . . . . .
10
Dynamic characteristics. . . . . . . . . . . . . . . . .
10.1
Flash/EEPROM memory . . . . . . . . . . . . . . . .
10.2
External clock. . . . . . . . . . . . . . . . . . . . . . . . .
10.3
Internal oscillators . . . . . . . . . . . . . . . . . . . . .
10.4
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.6
SSP interface . . . . . . . . . . . . . . . . . . . . . . . . .
11
ADC electrical characteristics . . . . . . . . . . . .
12
Application information . . . . . . . . . . . . . . . . .
12.1
Suggested USB interface solutions . . . . . . . .
12.2
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.3
XTAL Printed-Circuit Board
(PCB) layout guidelines . . . . . . . . . . . . . . . . .
12.4
Standard I/O pad configuration . . . . . . . . . . .
12.5
Reset pad configuration . . . . . . . . . . . . . . . . .
12.6
ADC usage notes. . . . . . . . . . . . . . . . . . . . . .
13
Package outline. . . . . . . . . . . . . . . . . . . . . . . .
14
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . .
16
Revision history . . . . . . . . . . . . . . . . . . . . . . .
17
Legal information . . . . . . . . . . . . . . . . . . . . . .
17.1
Data sheet status . . . . . . . . . . . . . . . . . . . . . .
33
33
33
33
33
34
34
34
35
35
35
35
35
36
36
36
36
36
38
39
42
43
47
51
51
51
53
54
54
56
59
61
61
61
63
64
65
65
66
69
72
73
74
74
continued >>
LPC1315_16_17_45_46_47
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 3 — 20 September 2012
© NXP B.V. 2012. All rights reserved.
76 of 77
LPC1315/16/17/45/46/47
NXP Semiconductors
32-bit ARM Cortex-M3 microcontroller
17.2
17.3
17.4
18
19
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . .
Contact information. . . . . . . . . . . . . . . . . . . . .
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
74
75
75
76
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2012.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 20 September 2012
Document identifier: LPC1315_16_17_45_46_47
Similar pages