MGA-30689 40MHz - 3000MHz Flat Gain High Linearity Gain Block Data Sheet Description Features Avago Technologies’ MGA-30689 is a flat gain, high linearity, low noise, 22dBm Gain Block with good OIP3 achieved through the use of Avago Technologies’ proprietary 0.25um GaAs Enhancement-mode pHEMT process. • • • • • • • • • • The device required simple dc biasing components to achieve wide bandwidth performance. The temperature compensated internal bias circuit provides stable current over temperature and process threshold voltage variation. The MGA-30689 is housed inside a standard SOT89 package (4.5 x 4.1 x 1.5 mm). Specifications Applications • 900MHz; 5V, 104mA (typical) – 14.3 dB Gain – 43 dBm Output IP3 – 3.0 dB Noise Figure – 22.3 dBm Output Power at 1dB gain compression • IF amplifier, RF driver amplifier • General purpose gain block Component Image • 1950MHz, 5V, 104mA (typical) – 14.6 dB Gain – 40 dBm Output IP3 – 3.3 dB Noise Figure – 22.5 dBm Output Power at 1dB gain compression 6GX #1 #2 RFin GND Top View Flat Gain 14dB +/-0.5dB, 40MHz to 2600MHz High linearity Built in temperature compensated internal bias circuitry No RF matching components required GaAs E-pHEMT Technology[1] Standard SOT89 package Single, Fixed 5V supply Excellent uniformity in product specifications MSL-2 and Lead-free halogen free High MTTF for base station application #3 RFout #3 #2 RFout GND #1 RFin Bottom View Notes: Package marking provides orientation and identification “6G” = Device Code “X” = Month of manufacture Note: 1. Enhancement mode technology employs positive gate voltage, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices. Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 75 V ESD Human Body Model = 450 V Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control. Absolute Maximum Rating [2] TA=25°C Symbol Parameter Units Absolute Max. Vdd,max Device Voltage, RF output to ground V 5.5 Pin,max CW RF Input Power dBm 20 Pdiss Total Power Dissipation [4] W 0.75 Tj, max Junction Temperature °C 150 TSTG Storage Temperature °C -65 to 150 Thermal Resistance [3] θjc = 53.5°C/W (Vdd = 5V, Ids = 100mA, Tc = 85°C) Notes: 2. Operation of this device in excess of any of these limits may cause permanent damage. 3. Thermal resistance measured using Infrared measurement technique. 4. This is limited by maximum Vdd and Ids. Derate 18.7 mW/°C for Tc>110°C. Product Consistency Distribution Charts[5, 6] LSL USL 80 90 100 110 120 15 15.5 16 16.5 LSL 38 39 40 41 42 43 44 45 Figure 3. OIP3, LSL=37.5dBm, nominal=41.5dBm 3 3.2 3.4 Figure 5. NF, nominal=3.23dB, USL=4dB 3.6 21.2 21.6 22 22.4 22.8 23.2 Figure 4. P1dB, LSL=21.2dBm, nominal=22.5dBm USL 2 14.5 Figure 2. Gain, LSL=13.7dB, nominal=14.6dB, USL=16.7dB LSL 2.8 USL 14 13.5 Figure 1. Ids, LSL=80mA , nominal=104mA, USL=125mA 37 LSL 3.8 4 Notes: 5. Distribution data sample size is 500 samples taken from 3 different wafer lots and 6 different wafers. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits. 6. Measurements were made on a characterization test board, which represents a trade-off between optimal OIP3, gain and P1dB. Circuit trace losses have not been de-embedded from measurements above. Electrical Specifications [7] TA = 25°C, Vdd =5V Symbol Parameter and Test Condition Frequency Units Min. Typ. Max. Ids Quiescent current N/A mA 80 104 125 Gain Gain 40MHz 900MHz 1950MHz dB 13.7 14.8 14.3 14.6 16.7 40MHz 900MHz 1950MHz dBm 37.5 40 43 40 – 40MHz 900MHz 1950MHz dB – 2.9 3.0 3.3 4 OIP3 [8] NF Output Third Order Intercept Point Noise Figure S11 Input Return Loss, 50Ω source 40MHz 900MHz 1950MHz dB -13 -12 -15 S22 Output Return Loss, 50Ω load 40MHz 900MHz 1950MHz dB -18 -15 -12 S12 Reverse Isolation 40MHz 900MHz 1950MHz dB -20 -22 -25 OP1dB Output Power at 1dB Gain Compression 40MHz 900MHz 1950MHz dBm 21.8 22.4 22.5 21.2 – Notes: 7. Measurements obtained using demo board described in Figure 30 and 31. 40MHz data was taken with 40MHz – 2GHz Application Test Circuit, 900MHz data with 0.2GHz – 3GHz Application Test Circuit and 1.95GHz data with 1.5GHz – 2.6GHz Application Test Circuit respectively. 8. OIP3 test condition: FRF1 – FRF2 = 10MHz with input power of -15dBm per tone measured at worse side band. 9. Use proper bias, heat sink and de-rating to ensure maximum channel temperature is not exceeded. See absolute maximum ratings and application note (if applicable) for more details. 3 Typical Performance (40MHz – 2GHz) TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 1. 120 16 15.5 15 Gain (dB) Ids (mA) 110 100 90 14.5 14 13.5 13 85°C 25°C -40°C 12.5 80 -40 -30 -20 -10 0 48 25 46 24 44 23 42 22 40 38 36 85°C 25°C -40°C 34 32 30 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Frequency (GHz) 1.6 1.8 2.0 Figure 7. Gain over Frequency and Temperature P1dB(dBm) OIP3 (dBm) Figure 6. Ids over Temperature 0.8 1.0 1.2 Frequency (GHz) Figure 8. OIP3 over Frequency and Temperature 4 12 10 20 30 40 50 60 70 80 90 Temperature (°C) 1.4 1.6 1.8 21 20 19 85°C 25°C -40°C 18 17 2.0 16 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Frequency (GHz) Figure 9. P1dB over Frequency and Temperature 1.6 1.8 2.0 Typical Performance (40MHz – 2GHz) TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 1. 0 0 85°C 25°C -40°C -5 -10 S22 (dB) S11 (dB) -10 -15 -20 -25 -25 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Frequency (GHz) 1.6 1.8 -30 2.0 Figure 10. S11 over Frequency and Temperature -20 0.4 0.6 0.8 1.0 1.2 1.4 Frequency (GHz) 1.6 1.8 2.0 85°C 25°C -40°C 5.5 5.0 -21 4.5 -22 NF(dB) S12 (dB) 0.2 6.0 85°C 25°C -40°C -19 -23 -24 4.0 3.5 -25 3.0 -26 2.5 -27 0.0 Figure 11. S22 over Frequency and Temperature -18 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Frequency (GHz) Figure 12. S12 over Frequency and Temperature 5 -15 -20 -30 85°C 25°C -40°C -5 1.6 1.8 2.0 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Frequency (GHz) Figure 13. Noise Figure over Frequency and Temperature 1.6 1.8 2.0 Typical Performance (0.2GHz – 3GHz) TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 2. 120 16 15.5 15 Gain (dB) Ids (mA) 110 100 14.5 14 13.5 13 90 85°C 25°C -40°C 12.5 80 -40 -30 -20 -10 0 12 10 20 30 40 50 60 70 80 90 Temperature (°C) Figure 14. Ids over Temperature 44 1.4 1.8 Frequency (GHz) 2.2 2.6 3.0 24 23 42 P1dB(dBm) OIP3 (dBm) 1.0 25 85°C 25°C -40°C 46 40 38 36 22 21 20 19 34 18 32 17 0.2 0.6 1.0 1.4 1.8 Frequency (GHz) Figure 16. OIP3 over Frequency and Temperature 6 0.6 Figure 15. Gain over Frequency and Temperature 48 30 0.2 2.2 2.6 3.0 16 0.2 85°C 25°C -40°C 0.6 1.0 1.4 1.8 Frequency (GHz) 2.2 2.6 Figure 17. P1dB over Frequency and Temperature 3.0 Typical Performance (0.2GHz – 3GHz) TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 2. 0 0 85°C 25°C -40°C -5 -10 S22 (dB) S11 (dB) -10 -15 -20 -25 -25 0.2 0.6 1.0 1.4 1.8 Frequency (GHz) 2.2 2.6 -21 6.0 -23 5.5 -25 5.0 0.6 1.0 1.4 1.8 Frequency (GHz) 2.2 2.6 3.0 2.2 2.6 3.0 85°C 25°C -40°C 4.5 -27 -29 -31 85°C 25°C -40°C -33 -35 0.2 Figure 19. S22 over Frequency and Temperature NF(dB) S12 (dB) -30 3.0 Figure 18. S11 over Frequency and Temperature 0.2 0.6 4.0 3.5 3.0 2.5 1.0 1.4 1.8 Frequency (GHz) Figure 20. S12 over Frequency and Temperature 7 -15 -20 -30 85°C 25°C -40°C -5 2.2 2.6 3.0 2.0 0.2 0.6 1.0 1.4 1.8 Frequency (GHz) Figure 21. Noise Figure over Frequency and Temperature Typical Performance (1.5GHz – 2.6GHz) TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 3. 16 120 15.5 15 Gain (dB) Ids (mA) 110 100 14.5 14 13.5 13 90 85°C 25°C -40°C 12.5 80 -40 -30 -20 -10 0 25 85°C 25°C -40°C 24 23 22 21 20 19 85°C 25°C -40°C 18 17 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Frequency (GHz) Figure 24. OIP3 over Frequency and Temperature 8 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Frequency (GHz) Figure 23. Gain over Frequency and Temperature P1dB(dBm) OIP3 (dBm) Figure 22. Ids over Temperature 45 44 43 42 41 40 39 38 37 36 35 12 10 20 30 40 50 60 70 80 90 Temperature (°C) 16 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Frequency (GHz) Figure 25. P1dB over Frequency and Temperature Typical Performance (1.5GHz – 2.6GHz) 0 0 -5 -5 -10 -10 S22 (dB) S11 (dB) TA = +25°C, Vdd = 5V, Input Signal = CW. Application Test Circuit is shown in Figure 30 and Table 3. -15 -20 -20 85°C 25°C -40°C -25 S12 (dB) -20 -21 -22 -23 -24 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Frequency (GHz) Figure 27. S22 over Frequency and Temperature 6.0 85°C 25°C -40°C -25 -26 -27 -28 -29 -30 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Frequency (GHz) Figure 28. S12 over Frequency and Temperature 9 -30 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Frequency (GHz) Figure 26. S11 over Frequency and Temperature 85°C 25°C -40°C -25 85°C 25°C -40°C 5.5 5.0 4.5 NF(dB) -30 -15 4.0 3.5 3.0 2.5 2.0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Frequency (GHz) Figure 29. Noise Figure over Frequency and Temperature Application Schematic Components Table and Demo Board Vdd C1/ C4 Top View C2/ C5 C3/ C6 L1/L2 RFin C7 RFin 1 GND 2 Vdd RFout 3 C8 RFout Figure 30. Application Schematic – Recommended PCB material is 10 mils Rogers RO4350, with FR4 backing for mechanical strength. – Suggested component values may vary according to layout and PCB material. Figure 31. Demo board Layout 10 Demo board Part List Table 1. 40 MHz – 2 GHz Application Schematic Components Circuit Symbol Size Value Part Number Description L2 0805 820nH LLQ2012-series (Toko) Wire Wound Chip Inductor C4 0402 100pF GRM1555C1H101JZ01B (Murata) Ceramic Chip Capacitor C5 0402 0.1uF GRM155R71C104KA88D (Murata) Ceramic Chip Capacitor C6 0805 2.2uF GRM21BR61E225KA12L (Murata) Ceramic Chip Capacitor C7 0402 0.1uF GRM155R71C104KA88D (Murata) Ceramic Chip Capacitor C8 0402 0.1uF GRM155R71C104KA88D (Murata) Ceramic Chip Capacitor Table 2. 0.2 GHz – 3 GHz Application Schematic Components Circuit Symbol Size Value Part Number Description L1 0402 100nH LL1005-FHLR10J (Toko) MLC Inductor C1 0402 10pF GRM1555C1H100JZ01B (Murata) Ceramic Chip Capacitor C2 0402 0.1uF GRM155R71C104KA88D (Murata) Ceramic Chip Capacitor C3 0805 2.2uF GRM21BR61E225KA12L (Murata) Ceramic Chip Capacitor C7 0402 100pF GRM1555C1H101JZ01B (Murata) Ceramic Chip Capacitor C8 0402 100pF GRM1555C1H101JZ01B (Murata) Ceramic Chip Capacitor Table 3. 1.5 GHz – 2.6 GHz Application Schematic Components Circuit Symbol Size Value Part Number Description L1 0402 5.6nH LL1005-FHL5N6S (Toko) MLC Inductor C1 0402 100pF GRM1555C1H101JZ01B (Murata) Ceramic Chip Capacitor C2 0402 0.1uF GRM155R71C104KA88D (Murata) Ceramic Chip Capacitor C3 0805 2.2uF GRM21BR61E225KA12L (Murata) Ceramic Chip Capacitor C7 0402 20pF GRM1555C1H200JZ01B (Murata) Ceramic Chip Capacitor C8 0402 20pF GRM1555C1H200JZ01B (Murata) Ceramic Chip Capacitor Test Circuit for S-Parameter and Noise Parameter Top View Port1 RFin 1 GND 2 Vdd RFout Figure 32. S-parameter and Noise parameter test circuit 11 3 Port2/ Bias Tee Typical S-Parameter (Vdd=5V, T=25°C, 50 ohm) Freq (GHz) S11 (dB) S11 (ang) S21 (dB) S21 (ang) S12 (dB) S12 (ang) S22 (dB) S22 (ang) 0.04 -12.99 -32.00 15.06 168.04 -20.92 5.28 -16.84 -127.51 0.1 -14.08 -27.40 14.79 169.90 -20.96 -2.48 -19.24 -154.22 0.2 -14.01 -38.85 14.76 165.35 -21.03 -8.75 -19.58 -162.15 0.3 -13.91 -53.66 14.74 159.56 -21.12 -14.11 -19.26 -164.02 0.4 -13.77 -68.63 14.73 153.53 -21.22 -19.09 -18.74 -163.03 0.5 -13.35 -83.56 14.73 147.37 -21.33 -23.96 -18.11 -160.98 0.6 -13.00 -97.71 14.73 141.14 -21.47 -28.71 -17.39 -160.35 0.7 -12.72 -111.41 14.73 134.86 -21.62 -33.44 -16.68 -161.36 0.8 -12.52 -124.63 14.74 128.51 -21.80 -38.09 -16.06 -163.41 0.9 -12.39 -137.62 14.76 122.08 -22.00 -42.67 -15.52 -166.34 1 -12.34 -150.05 14.78 115.62 -22.22 -47.13 -15.24 -169.82 1.1 -12.41 -161.87 14.82 109.17 -22.44 -51.53 -15.28 -173.97 1.2 -12.54 -175.41 14.84 102.50 -22.70 -55.82 -14.89 -179.03 1.3 -12.69 170.65 14.85 95.82 -22.99 -60.06 -14.57 175.40 1.4 -12.82 156.26 14.87 89.03 -23.31 -64.12 -14.31 169.62 1.5 -12.93 141.66 14.88 82.19 -23.64 -68.01 -14.12 163.81 1.6 -13.01 126.78 14.89 75.26 -23.99 -71.72 -14.00 157.96 1.7 -13.03 111.68 14.90 68.25 -24.35 -75.22 -13.93 152.01 1.8 -13.01 96.50 14.90 61.16 -24.71 -78.44 -13.94 146.11 1.9 -12.95 81.20 14.90 53.95 -25.07 -81.61 -14.00 140.34 2 -12.88 65.77 14.90 46.65 -25.43 -84.49 -14.15 134.63 2.1 -12.81 50.14 14.89 39.20 -25.77 -87.34 -14.40 129.04 2.2 -12.70 34.17 14.87 31.61 -26.12 -90.10 -14.76 123.74 2.3 -12.58 17.76 14.83 23.90 -26.47 -92.75 -15.29 118.58 2.4 -12.41 0.95 14.78 16.00 -26.81 -95.33 -16.00 113.77 2.5 -12.16 -16.14 14.71 7.96 -27.17 -98.00 -16.96 109.37 2.6 -11.80 -33.20 14.61 -0.24 -27.55 -100.74 -18.30 105.50 2.7 -11.33 -49.82 14.49 -8.55 -28.00 -103.33 -20.25 102.35 2.8 -10.76 -65.59 14.34 -17.05 -28.53 -105.61 -23.31 101.97 2.9 -10.13 -80.17 14.15 -25.68 -29.14 -107.36 -28.97 113.12 3 -9.48 -93.20 13.93 -34.41 -29.83 -107.91 -32.62 -162.21 4 -4.21 -168.28 7.93 -120.56 -27.04 -106.92 -5.05 172.01 5 -3.59 147.25 0.81 -166.87 -26.54 -152.31 -5.03 119.44 6 -3.85 96.49 -4.08 149.56 -27.32 163.02 -5.99 64.27 7 -2.69 44.14 -9.83 107.31 -29.75 120.51 -4.59 18.14 8 -1.77 16.03 -14.96 78.14 -31.67 91.43 -3.79 -4.64 9 -1.75 -9.43 -17.88 50.07 -31.40 63.78 -4.06 -28.88 10 -1.78 -50.02 -20.61 13.00 -31.03 27.56 -3.96 -68.59 11 -1.13 -83.66 -24.77 -17.84 -32.33 -2.54 -2.84 -99.28 12 -0.68 -93.53 -27.85 -31.54 -32.97 -16.55 -2.41 -112.27 13 -0.60 -96.96 -28.26 -42.20 -31.56 -29.12 -3.06 -124.68 14 -0.75 -111.43 -27.18 -66.26 -29.27 -55.40 -5.12 -151.90 15 -0.78 -137.85 -27.02 -107.10 -28.39 -98.30 -10.11 172.41 16 -0.60 -158.35 -29.80 -158.40 -30.72 -150.20 -13.09 -114.20 17 -0.46 -169.66 -36.11 159.22 -36.78 166.86 -4.23 -127.84 18 -0.46 -177.82 -41.41 126.91 -42.05 133.28 -2.40 -147.29 19 -0.56 173.41 -43.20 81.20 -44.00 83.71 -2.16 -162.89 20 -0.76 158.69 -40.61 50.84 -41.28 51.14 -2.26 -173.39 12 Typical Noise Parameters (Vdd=5V, T=25°C, 50 ohm) Freq (GHz) Fmin (dB) Γopt Mag Γopt Ang Rn/Z0 0.4 3.04 0.203 13.20 0.522 0.9 2.80 0.205 14.50 0.466 1.0 2.87 0.208 16.30 0.468 1.7 2.82 0.211 19.80 0.496 1.85 2.81 0.214 20.80 0.512 2.0 2.83 0.217 26.10 0.526 2.5 3.05 0.280 51.60 0.59 3.0 3.84 0.356 95.30 0.596 3.5 4.27 0.468 142.00 0.362 4.0 5.18 0.537 174.50 0.234 4.5 5.20 0.522 -163.90 0.29 5.0 6.16 0.534 -142.24 0.618 13 SOT89 Package Dimensions D D D1 D1 E1 POLISH E1 OR E L L e e S S e1 C e1 1.625 D2 MATTE FINISH HALF ETCHING DEPTH 0.100 1.23 2.35 0.77 0.2 D1 E b b1 b POLISH 1.24 E A OR b1 Dimensions in mm 14 Dimensions in inches Symbols Minimum Nominal Maximum Minimum Nominal Maximum A 1.40 1.50 1.60 0.055 0.059 0.063 0.047 L 0.89 1.04 1.20 0.0350 0.041 b 0.36 0.42 0.48 0.014 0.016 0.018 b1 0.41 0.47 0.53 0.016 0.018 0.030 C 0.38 0.40 0.43 0.014 0.015 0.017 D 4.40 4.50 4.60 0.173 0.177 0.181 D1 1.40 1.60 1.75 0.055 0.062 0.069 D2 1.45 1.65 1.80 0.055 0.062 0.069 E 3.94 - 4.25 0.155 - 0.167 E1 2.40 2.50 2.60 0.094 0.098 0.102 e1 2.90 3.00 3.10 0.114 0.118 0.122 S 0.65 0.75 0.85 0.026 0.030 0.034 e 1.40 1.50 1.60 0.054 0.059 0.063 Part Number Ordering Information Part Number No. of Devices Container MGA-30689-BLKG 100 antistatic bag MGA-30689-TR1G 3000 13” Tape/ Reel Device Orientation USER FEED DIRECTION 6GX 6GX 6GX CARRIER TAPE 6GX REEL COVER TAPE Tape Dimensions Ø 1.5 +0.1/-0.0 8.00 0.30 ± .05 Ø 1.50 MIN. 2.00 ± .05 SEE NOTE 3 4.00 SEE NOTE 1 A R 0.3 MAX. 1.75 ± .10 5.50 ± .05 SEE NOTE 3 Bo 12.0 ± .3 Ko SECTION A - A 15 Ao Ao = 4.60 Bo = 4.90 Ko = 1.90 R 0.3 TYP. A DIMENSIONS IN MM NOTES: 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2 2. CAMBER IN COMPLIANCE WITH EIA 481 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE Reel Dimensions – 13” Reel R LOKREEL R MINNEAPOLIS USA U.S PAT 4726534 102.0 REF 1.5 ATTENTION Electrostatic Sensitive Devices Safe Handling Required 88 REF 330.0 REF "A" 96.5 6 PS Detail "B" 6 PS Detail "A" 8.4 - 0.2 (MEASURED AT HUB) 11.1 MAX. Ø 20.2 Dimensions in mm M IN +0.5 Ø 13.0 -0.2 2.0 ± 0.5 For product information and a complete list of distributors, please go to our web site: +0.3 (MEASURED AT HUB) www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. AV02-1876EN - May 23, 2013