TI CD74HCT14PW High-speed cmos logic hex inverting schmitt trigger Datasheet

[ /Title
(CD74H
C14,
CD74H
CT14)
/Subject
(High
Speed
CMOS
Logic
Hex
Invert-
CD54HC14, CD74HC14,
CD54HCT14, CD74HCT14
Data sheet acquired from Harris Semiconductor
SCHS129F
High-Speed CMOS Logic
Hex Inverting Schmitt Trigger
January 1998 - Revised May 2005
Features
Description
• Unlimited Input Rise and Fall Times
The ’HC14 and ’HCT14 each contain six inverting Schmitt
triggers in one package.
• Exceptionally High Noise Immunity
Ordering Information
• Fanout (Over Temperature Range)
- Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
PART NUMBER
TEMP. RANGE
(oC)
PACKAGE
• Wide Operating Temperature Range . . . -55oC to 125oC
CD54HC14F3A
-55 to 125
14 Ld CERDIP
• Balanced Propagation Delay and Transition Times
CD54HCT14F3A
-55 to 125
14 Ld CERDIP
• Significant Power Reduction Compared to LSTTL
Logic ICs
CD74HC14E
-55 to 125
14 Ld PDIP
CD74HC14M
-55 to 125
14 Ld SOIC
• HC Types
- 2V to 6V Operation
- High Noise Immunity: NIL = 30%, NIH = 30% of VCC
at VCC = 5V
CD74HC14MT
-55 to 125
14 Ld SOIC
CD74HC14M96
-55 to 125
14 Ld SOIC
CD74HC14PW
-55 to 125
14 Ld TSSOP
• HCT Types
- 4.5V to 5.5V Operation
- CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
CD74HC14PWR
-55 to 125
14 Ld TSSOP
CD74HCT14E
-55 to 125
14 Ld PDIP
CD74HCT14M
-55 to 125
14 Ld SOIC
CD74HCT14MT
-55 to 125
14 Ld SOIC
CD74HCT14M96
-55 to 125
14 Ld SOIC
CD74HCT14PW
-55 to 125
14 Ld TSSOP
CD74HCT14PWR
-55 to 125
14 Ld TSSOP
NOTE: When ordering, use the entire part number. The suffix 96
denotes tape and reel. The suffix T denotes a small-quantity reel
of 250.
Pinout
CD54HC14, CD54HCT14
(CERDIP)
CD74HC14, CD74HCT14
(PDIP, SOIC, TSSOP)
TOP VIEW
1A 1
14 VCC
1Y 2
13 6A
2A 3
12 6Y
2Y 4
11 5A
3A 5
10 5Y
3Y 6
9 4A
GND 7
8 4Y
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright
© 2005, Texas Instruments Incorporated
1
CD54HC14, CD74HC14, CD54HCT14, CD74HCT14
Functional Diagram
1A
2A
3A
4A
5A
6A
1
2
3
4
5
6
9
8
11
10
13
12
1Y
2Y
3Y
4Y
5Y
6Y
GND = 7
VCC = 14
TRUTH TABLE
INPUT (A)
OUTPUT (Y)
L
H
H
L
H= High Level
L= Low Level
Logic Diagram
nA
nY
VH
VO
VH = VT+ - VTVI
VT-
VT+
V T+
VT -
VCC
VH
VI
GND
VCC
VO
GND
FIGURE 3. HYSTERESIS DEFINITION, CHARACTERISTIC, AND TEST SETUP
2
CD54HC14, CD74HC14, CD54HCT, CD74HCT14
Absolute Maximum Ratings
Thermal Information
DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, IIK
For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, IOK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Drain Current, per Output, IO
For -0.5V < VO < VCC +0.5V . . . . . . . . . . . . . . . . . . . . . . . . . .±25mA
DC Output Source or Sink Current per Output Pin, IO
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
PW (TSSOP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
113
Maximum Junction Temperature (Hermetic Package or Die) . . . 175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, VCC
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. The package thermal impedance is calculated in accordance with JESD 51-7.
DC Electrical Specifications
TEST
CONDITIONS
PARAMETER
SYMBOL
VI (V)
VT+
-
25oC
IO (mA) VCC (V)
-40oC TO 85oC
-55oC TO 125oC
MIN
MAX
MIN
MAX
MIN
MAX
UNITS
2
0.7
1.5
0.7
1.5
0.7
1.5
V
4.5
1.7
3.15
1.7
3.15
1.7
3.15
V
6
2.1
4.2
2.1
4.2
2.1
4.2
V
2
0.3
1.0
0.3
1.0
0.3
1.0
V
4.5
0.9
2.2
0.9
2.2
0.9
2.2
V
6
1.2
3.0
1.2
3.0
1.2
3.0
V
2
0.2
1.0
0.2
1.0
0.2
1.0
V
4.5
0.4
1.4
0.4
1.4
0.4
1.4
V
6
0.6
1.6
0.6
1.6
0.6
1.6
V
-0.02
2
1.9
-
1.9
-
1.9
-
V
-0.02
4.5
4.4
-
4.4
-
4.4
-
V
-0.02
6
5.9
-
5.9
-
5.9
-
V
-
-
-
-
-
-
-
-
V
-4
4.5
3.98
-
3.84
-
3.7
-
V
-5.2
6
5.48
-
5.34
-
5.2
-
V
0.02
2
-
0.1
-
0.1
-
0.1
V
0.02
4.5
-
0.1
-
0.1
-
0.1
V
0.02
6
-
0.1
-
0.1
-
0.1
V
HC TYPES
Input Switch Points
VT-
VH
High Level Output
Voltage CMOS Loads
VOH
-
-
V T-
High Level Output
Voltage TTL Loads
Low Level Output Voltage
CMOS Loads
Low Level Output Voltage
TTL Loads
VOL
VT+
-
-
-
-
-
-
-
-
-
-
-
V
4
4.5
-
0.26
-
0.33
-
0.4
V
5.2
6
-
0.26
-
0.33
-
0.4
V
3
CD54HC14, CD74HC14, CD54HCT14, CD74HCT14
DC Electrical Specifications
(Continued)
TEST
CONDITIONS
PARAMETER
Input Leakage Current
Quiescent Device
Current
SYMBOL
VI (V)
II
VCC or
GND
-
ICC
VCC or
GND
VT+
-
25oC
IO (mA) VCC (V)
-40oC TO 85oC
-55oC TO 125oC
MIN
MAX
MIN
MAX
MIN
MAX
UNITS
6
-
±0.1
-
±1
-
±1
µA
0
6
-
2
-
20
-
40
µA
-
4.5
1.2
1.9
1.2
1.9
1.2
1.9
V
5.5
1.4
2.1
1.4
2.1
1.4
2.1
V
4.5
0.5
1.2
0.5
1.2
0.5
1.2
V
5.5
0.6
1.4
0.6
1.4
0.6
1.4
V
4.5
0.4
1.4
0.4
1.4
0.4
1.4
V
5.5
0.4
1.5
0.4
1.5
0.4
1.5
V
-0.02
4.5
4.4
-
4.4
-
4.4
-
V
-4
4.5
3.98
-
3.84
-
3.7
-
V
0.02
4.5
-
0.1
-
0.1
-
0.1
V
4
4.5
-
0.26
-
0.33
-
0.4
V
HCT TYPES
Input Switch Points
VT-
VH
High Level Output
Voltage CMOS Loads
VOH
V T-
High Level Output
Voltage TTL Loads
Low Level Output Voltage
CMOS Loads
VOL
VT+
Low Level Output Voltage
TTL Loads
Input Leakage Current
Quiescent Device
Current
Additional Quiescent
Device Current Per Input
Pin: 1 Unit Load
II
VCC
and
GND
-
5.5
-
±0.1
-
±1
-
±1
µA
ICC
VCC or
GND
0
5.5
-
2
-
20
-
40
µA
∆ICC
(Note 2)
VCC
- 2.1
-
4.5 to
5.5
-
360
-
450
-
490
µA
NOTE:
2. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.
HCT Input Loading Table
INPUT
UNIT LOADS
nA
0.6
NOTE: Unit Load is ∆ICC limit specified in DC Electrical Specifications table, e.g., 360µA max at 25oC.
4
Switching Specifications Input tr, tf = 6ns
PARAMETER
25oC
-40oC TO 85oC -55oC TO 125oC
SYMBOL
TEST
CONDITIONS
VCC
(V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
tPLH, tPHL
CL = 50pF
2
-
-
135
-
170
-
205
ns
CL = 50pF
4.5
-
-
27
-
34
-
41
ns
CL = 15pF
5
-
11
-
-
-
-
-
ns
CL = 50pF
6
-
-
23
-
29
-
35
ns
CL = 50pF
2
-
-
75
-
95
18
110
ns
4.5
-
-
15
-
19
-
22
ns
6
-
-
13
-
16
-
19
ns
HC TYPES
Propagation Delay,
A to Y
Output Transition Times
tTLH, tTHL
Input Capacitance
Power Dissipation Capacitance
(Notes 3, 4)
CI
-
-
-
-
10
-
10
-
10
pF
CPD
-
5
-
20
-
-
-
-
-
pF
CL = 50pF
4.5
-
-
38
-
48
-
57
ns
CL = 15pF
5
-
16
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
15
-
19
-
22
ns
HCT TYPES
Propagation Delay,
A to Y
tPLH, tPHL
Output Transition Times
tTLH, tTHL
Input Capacitance
Power Dissipation Capacitance
(Notes 3, 4)
CI
-
-
-
-
10
-
10
-
10
pF
CPD
-
5
-
20
-
-
-
-
-
pF
NOTES:
3. CPD is used to determine the dynamic power consumption, per inverter.
4. PD = VCC2 fi (CPD + CL) where fi = input frequency, CL = output load capacitance, VCC = supply voltage.
Test Circuits and Waveforms
tr = 6ns
tf = 6ns
90%
50%
10%
INPUT
GND
tTLH
GND
tTHL
90%
50%
10%
INVERTING
OUTPUT
3V
2.7V
1.3V
0.3V
INPUT
tTHL
tPHL
tf = 6ns
tr = 6ns
VCC
tTLH
90%
1.3V
10%
INVERTING
OUTPUT
tPHL
tPLH
FIGURE 4. HC TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
tPLH
FIGURE 5. HCT TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
5
PACKAGE OPTION ADDENDUM
www.ti.com
15-Oct-2009
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
CD54HC14F
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
CD54HC14F3A
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
CD54HCT14F
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
CD54HCT14F3A
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
CD74HC14E
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC14EE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC14M
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14M96
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14M96E4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14M96G4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14ME4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14MG4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14MT
ACTIVE
SOIC
D
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14MTE4
ACTIVE
SOIC
D
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14MTG4
ACTIVE
SOIC
D
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14PW
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14PWE4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14PWG4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14PWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14PWRE4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC14PWRG4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14E
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT14EE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT14M
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14M96
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14M96E4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14M96G4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
15-Oct-2009
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
CD74HCT14ME4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14MG4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14MT
ACTIVE
SOIC
D
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14MTE4
ACTIVE
SOIC
D
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14MTG4
ACTIVE
SOIC
D
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14PW
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14PWE4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14PWG4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14PWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14PWRE4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT14PWRG4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
no Sb/Br)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
15-Oct-2009
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
CD74HC14M96
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
CD74HC14M96
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
CD74HC14MT
SOIC
D
14
250
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
CD74HC14PWR
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
CD74HCT14M96
SOIC
D
14
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
CD74HCT14MT
SOIC
D
14
250
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
CD74HCT14PWR
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CD74HC14M96
SOIC
D
14
2500
367.0
367.0
38.0
CD74HC14M96
SOIC
D
14
2500
333.2
345.9
28.6
CD74HC14MT
SOIC
D
14
250
367.0
367.0
38.0
CD74HC14PWR
TSSOP
PW
14
2000
367.0
367.0
35.0
CD74HCT14M96
SOIC
D
14
2500
367.0
367.0
38.0
CD74HCT14MT
SOIC
D
14
250
367.0
367.0
38.0
CD74HCT14PWR
TSSOP
PW
14
2000
367.0
367.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
Similar pages