256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM DDR SDRAM UNBUFFERED DIMM MT16VDDT3264A – 256MB MT16VDDT6464A – 512MB MT16VDDT12864A – 1GB MT16VDDT25664A – 2GB (ADVANCE)‡ For the latest data sheet, please refer to the Micron Web site: www.micron.com/products/modules Features Figure 1: 184-Pin DIMM (MO-206) • 184-pin, dual in-line memory module (DIMM) • Fast data transfer rates: PC2100 or PC2700 • Utilizes 266 MT/s and 333 MT/s DDR SDRAM components • 256MB (32 Meg x 64), 512MB (64 Meg x 64), 1GB (128 Meg x 64), and 2GB (256 Meg x 64) • VDD = VDDQ = +2.5V • VDDSPD = +2.3V to +3.6V • 2.5V I/O (SSTL_2 compatible) • Commands entered on each positive CK edge • DQS edge-aligned with data for READs; centeraligned with data for WRITEs • Internal, pipelined double data rate (DDR) architecture; two data accesses per clock cycle • Bidirectional data strobe (DQS) transmitted/ received with data—i.e., source-synchronous data capture • Differential clock inputs (CK and CK#) • Four internal device banks for concurrent operation • Programmable burst lengths: 2, 4, or 8 • Auto precharge option • Auto Refresh and Self Refresh Modes • 15.6µs (256MB), 7.8125µs (512MB, 1GB, and 2GB) maximum average periodic refresh interval • Serial Presence Detect (SPD) with EEPROM • Programmable READ CAS latency • Gold edge contacts Standard 1.25in. (31.75mm) Low-Profile 1.15in. (29.21mm) OPTIONS MARKING • Package G 184-pin DIMM (standard) 1 Y 184-pin DIMM (lead-free) 2 • Memory Clock, Speed, CAS Latency -335 6ns/166MHz (333 MT/s) CL = 2.5 -2621 7.5ns/133 MHz (266 MT/s) CL = 2 -26A1 7.5ns/133 MHz (266 MT/s) CL = 2 -265 7.5ns/133 MHz (266 MT/s) CL = 2.5 • PCB See page 2 note Standard 1.25in. (31.75mm) See page 2 note Low-Profile 1.20in. (30.48mm) NOTE: 1. Consult Micron for product availability. 2. CL = CAS (READ) Latency. Table 1: Address Table Refresh Count Row Addressing Device Bank Addressing Device Configuration Column Addressing Module Rank Addressing pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN ‡PRODUCTS 256MB 512MB 1GB 2GB 4K 4K (A0–A11) 4 (BA0, BA1) 128Mb (16 Meg x 8) 1K (A0–A9) 2 (S0#, S1#) 8K 8K (A0–A12) 4 (BA0, BA1) 256Mb (32 Meg x 8) 1K (A0–A9) 2 (S0#, S1#) 8K 8K (A0–A12) 4 (BA0, BA1) 512Mb (64 Meg x 8) 2K (A0–A9, A11) 2 (S0#, S1#) 8K 16K (A0–A13) 4 (BA0, BA1) 1Gb (128 Meg x 8) 2K (A0–A9, A11) 2 (S0#, S1#) 1 ©2004 Micron Technology, Inc. AND SPECIFICATIONS DISCUSSED HEREIN ARE FOR EVALUATION AND REFERENCE PURPOSES ONLY AND ARE SUBJECT TO CHANGE BY MICRON WITHOUT NOTICE. PRODUCTS ARE ONLY WARRANTED BY MICRON TO MEET MICRON’S PRODUCTION DATA SHEET SPECIFICATIONS. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 2: Part Numbers and Timing Parameters PART NUMBER MT16VDDT3264AG-335__ MT16VDDT3264AY-335__ MT16VDDT3264AG-262__ MT16VDDT3264AY-262__ MT16VDDT3264AG-26A__ MT16VDDT3264AY-26A__ MT16VDDT3264AG-265__ MT16VDDT3264AY-265__ MT16VDDT6464AG-335__ MT16VDDT6464AY-335__ MT16VDDT6464AG-262__ MT16VDDT6464AY-262__ MT16VDDT6464AG-26A__ MT16VDDT6464AY-26A__ MT16VDDT6464AG-265__ MT16VDDT6464AY-265__ MT16VDDT12864AG-335__ MT16VDDT12864AY-335__ MT16VDDT12864AG-262__ MT16VDDT12864AY-262__ MT16VDDT12864AG-26A__ MT16VDDT12864AY-26A__ MT16VDDT12864AG-265__ MT16VDDT12864AY-265__ MT16VDDT25664AG-335__ MT16VDDT25664AY-335__ MT16VDDT25664AG-262__ MT16VDDT25664AY-262__ MT16VDDT25664AG-26A__ MT16VDDT25664AY-26A__ MT16VDDT25664AG-265__ MT16VDDT25664AY-265__ MODULE DENSITY CONFIGURATION MODULE BANDWIDTH MEMORY CLOCK/ DATA RATE LATENCY (CL - tRCD - tRP) 256MB 256MB 256MB 256MB 256MB 256MB 256MB 256MB 512MB 512MB 512MB 512MB 512MB 512MB 512MB 512MB 1GB 1GB 1GB 1GB 1GB 1GB 1GB 1GB 2GB 2GB 2GB 2GB 2GB 2GB 2GB 2GB 32 Meg x 64 32 Meg x 64 32 Meg x 64 32 Meg x 64 32 Meg x 64 32 Meg x 64 32 Meg x 64 32 Meg x 64 64 Meg x 64 64 Meg x 64 64 Meg x 64 64 Meg x 64 64 Meg x 64 64 Meg x 64 64 Meg x 64 64 Meg x 64 128 Meg x 64 128 Meg x 64 128 Meg x 64 128 Meg x 64 128 Meg x 64 128 Meg x 64 128 Meg x 64 128 Meg x 64 256 Meg x 64 256 Meg x 64 256 Meg x 64 256 Meg x 64 256 Meg x 64 256 Meg x 64 256 Meg x 64 256 Meg x 64 2.7 GB/s 2.7 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.7 GB/s 2.7 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.7 GB/s 2.7 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.7 GB/s 2.7 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 2.1 GB/s 6ns/333 MT/s 6ns/333 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 6ns/333 MT/s 6ns/333 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 6ns/333 MT/s 6ns/333 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 6ns/333 MT/s 6ns/333 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 7.5ns/266 MT/s 2.5-3-3 2.5-3-3 2-2-2 2-2-2 2-3-3 2-3-3 2.5-3-3 2.5-3-3 2.5-3-3 2.5-3-3 2-2-2 2-2-2 2-3-3 2-3-3 2.5-3-3 2.5-3-3 2.5-3-3 2.5-3-3 2-2-2 2-2-2 2-3-3 2-3-3 2.5-3-3 2.5-3-3 2.5-3-3 2.5-3-3 2-2-2 2-2-2 2-3-3 2-3-3 2.5-3-3 2.5-3-3 NOTE: All part numbers end with a two-place code (not shown), designating component and PCB revisions. Consult factory for current revision codes. Example: MT16VDDT6464AG-265A1. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 2 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 3: Table 4: Pin Assignment (184-Pin DIMM Front) Pin Assignment (184-Pin DIMM Back) PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 93 94 95 96 97 98 VREF DQ0 VSS DQ1 DQS0 DQ2 VDD DQ3 NC NC VSS DQ8 DQ9 DQS1 VDDQ CK1 CK1# VSS DQ10 DQ11 CKE0 VDDQ DQ16 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 DQ17 DQS2 VSS A9 DQ18 A7 VDDQ DQ19 A5 DQ24 VSS DQ25 DQS3 A4 VDD DQ26 DQ27 A2 VSS A1 DNU DNU VDD 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 DNU A0 DNU VSS DNU BA1 DQ32 VDDQ DQ33 DQS4 DQ34 VSS BA0 DQ35 DQ40 VDDQ WE# DQ41 CAS# VSS DQS5 DQ42 DQ43 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 VDD NC DQ48 DQ49 VSS CK2# CK2 VDDQ DQS6 DQ50 DQ51 VSS NC DQ56 DQ57 VDD DQS7 DQ58 DQ59 VSS NC SDA SCL VSS DQ4 DQ5 VDDQ DM0 DQ6 99 DQ7 100 VSS 101 NC 102 NC 103 NC 104 VDDQ 105 DQ12 106 DQ13 107 DM1 108 VDD 109 DQ14 110 DQ15 111 CKE1 112 VDDQ 113 NC 114 DQ20 115 NC/A12 116 117 118 119 120 121 VSS DQ21 A11 DM2 VDD DQ22 139 140 141 142 143 144 VSS DNU A10 DNU VDDQ DNU 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 A8 DQ23 VSS A6 DQ28 DQ29 VDDQ DM3 A3 DQ30 VSS DQ31 DNU DNU VDDQ CK0 CK0# 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 VSS DQ36 DQ37 VDD DM4 DQ38 DQ39 VSS DQ44 RAS# DQ45 VDDQ S0# S1# DM5 VSS DQ46 162 163 164 165 166 DQ47 NC VDDQ DQ52 DQ53 2 NC/A13 167 168 VDD 169 DM6 170 DQ54 171 DQ55 172 VDDQ 173 NC 174 DQ60 175 DQ61 176 VSS 177 DM7 178 DQ62 179 DQ63 180 VDDQ 181 SA0 182 SA1 183 SA2 184 VDDSPD NOTE: 1. Pin 115 is No Connect for 256MB, or A12 for 512MB, 1GB, 2GB. 2. Pin 167 is No Connect (NC) for 256MB, 512MB, and 1GB, or A13 for 2GB. Figure 2: Pin Locations: 184-Pin DIMM Front View Standard 1.25in. (31.75mm) Front View Low-Profile 1.15in. (29.21mm) U10 U1 U2 U3 U4 PIN 1 U6 PIN 52 U7 U8 U9 U3 Back View U6 U4 PIN 52 PIN 1 PIN 92 PIN 53 U2 U1 U7 U8 PIN 53 U9 PIN 92 Back View U19 U10 PIN 184 U11 U12 U13 PIN 145 U15 U17 U18 U19 PIN 184 PIN 93 PIN 144 Indicates a VDD or VDDQ pin pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN U16 U18 U17 U14 U16 PIN 145 3 U12 U11 PIN 93 PIN 144 Indicates a VDD or VDDQ pin Indicates a VSS pin U13 Indicates a VSS pin Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 5: Pin Descriptions Pin numbers may not correlate with symbols; refer to Pin Assignment tables on page 3 for more information PIN NUMBERS SYMBOL TYPE 63, 65, 154 WE#, CAS#, RAS# Input 16, 17, 75, 76, 137, 138 CK0, CK0#, CK1, CK1#, CK2, CK2# 21, 111 CKE0, CKE1 157, 158 S0#, S1# 52, 59 BA0, BA1 27, 29, 32, 37, 41, 43, 48, 115 (512MB, 1GB, 2GB), 118, 122, 125, 130, 141, 167 (2GB) A0–A11 (256MB) A0–A12 (512MB, 1GB) A0–A13 (2GB) 5, 14, 25, 36, 56, 67, 78, 86 DQS0–DQS7 97, 107, 119, 129, 149, 159, 169, 177 DM0–DM7 pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN DESCRIPTION Command Inputs: RAS#, CAS#, and WE# (along with S#) define the command being entered. Input Clock: CK, CK# are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK,and negative edge of CK#. Output data (DQs and DQS) is referenced to the crossings of CK and CK#. Input Clock Enable: CKE HIGH activates and CKE LOW deactivates the internal clock, input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all device banks idle), or ACTIVE POWERDOWN (row ACTIVE in any device bank). CKE is synchronous for POWER-DOWN entry and exit, and for SELF REFRESH entry. CKE is asynchronous for SELF REFRESH exit and for disabling the outputs. CKE must be maintained HIGH throughout read and write accesses. Input buffers (excluding CK, CK# and CKE) are disabled during POWER-DOWN. Input buffers (excluding CKE) are disabled during SELF REFRESH. CKE is an SSTL_2 input but will detect an LVCMOS LOW level after VDD is applied and until CKE is first brought HIGH. After CKE is brought HIGH, it becomes an SSTL_2 input only. Input Chip Selects: S# enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when S# is registered HIGH. S# is considered part of the command code. Input Bank Address: BA0 and BA1 define to which device bank an ACTIVE, READ, WRITE, or PRECHARGE command is being applied. Input Address Inputs: Provide the row address for ACTIVE commands, and the column address and auto precharge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective device bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one device bank (A10 LOW, device bank selected by BA0, BA1) or all device banks (A10 HIGH). The address inputs also provide the op-code during a MODE REGISTER SET command. BA0 and BA1 define which mode register (mode register or extended mode register) is loaded during the LOAD MODE REGISTER command. Input/ Data Strobe: Output with READ data, input with WRITE data. Output DQS is edge-aligned with READ data, centered in WRITE data. Used to capture data. Input Data Write Mask: DM LOW allows WRITE operation. DM HIGH blocks WRITE operation. DM lines do not affect READ operation. 4 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 5: Pin Descriptions (Continued) Pin numbers may not correlate with symbols; refer to Pin Assignment tables on page 3 for more information PIN NUMBERS SYMBOL 2, 4, 6, 8, 12, 13, 19, 20, 23, 24, 28, 31, 33, 35, 39, 40, 53, 55, 57, 60, 61, 64, 68, 69, 72, 73, 79, 80, 83, 84, 87, 88, 94, 95, 98, 99, 105, 106, 109, 110, 114, 117, 121, 123, 126, 127, 131, 133, 146, 147, 150, 151, 153, 155, 161, 162, 165, 166, 170, 171, 174, 175, 178, 179 92 DQ0–DQ63 181,182, 183 SA0–SA2 91 SDA 1 15, 22, 30, 54, 62, 77, 96, 104, 112, 128, 136, 143, 156, 164, 172, 180 7, 38, 46, 70, 85, 108, 120, 148, 168 3, 11, 18, 26, 34, 42, 50, 58, 66, 74, 81, 89, 93, 100, 116, 124, 132, 139, 145, 152, 160, 176 184 44, 45, 47, 49, 51, 134, 135, 140, 142, 144 9, 10, 71, 82, 90, 101, 102, 103, 113, 115 (256MB), 163, 167 (256MB, 512MB, 1GB), 173 VREF VDDQ pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN SCL TYPE DESCRIPTION Input/ Data I/Os: Data bus. Output Input Serial Clock for Presence-Detect: SCL is used to synchronize the presence-detect data transfer to and from the module. Input Presence-Detect Address Inputs: These pins are used to configure the presence-detect device. Input/ Serial Presence-Detect Data: SDA is a bidirectional pin used to Output transfer addresses and data into and out of the presencedetect device. Supply SSTL_2 reference voltage. Supply DQ Power Supply: +2.5V ±0.2V. VDD Supply Power Supply: +2.5V ±0.2V. VSS Supply Ground. VDDSPD DNU NC Supply Serial EEPROM positive power supply: +2.3V to +3.6V. — Do Not Use: These pins are not connected on these modules, but are assigned pins on other modules in this product family. — No Connect: These pins should be left unconnected. 5 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Figure 3: Functional Block Diagram – Standard PCB S1# S0# DQS0 DQS4 DM0 DM4 DM CS# DQS DQ U1 DQ DQ DQ DQ DQ DQ DQ DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM CS# DQS DQ DQ U17 DQ DQ DQ DQ DQ DQ DQS1 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DM CS# DQS DQ DQ U13 DQ DQ DQ DQ DQ DQ DM CS# DQS DQ U5 DQ DQ DQ DQ DQ DQ DQ DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM CS# DQS DQ U6 DQ DQ DQ DQ DQ DQ DQ DM CS# DQS DQ DQ U12 DQ DQ DQ DQ DQ DQ DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DM CS# DQS DQ DQ U11 DQ DQ DQ DQ DQ DQ DM CS# DQS DQ U7 DQ DQ DQ DQ DQ DQ DQ DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM CS# DQS DQ U8 DQ DQ DQ DQ DQ DQ DQ DM CS# DQS DQ U10 DQ DQ DQ DQ DQ DQ DQ DQS5 DM1 DM5 DM CS# DQS DQ DQ U16 DQ DQ DQ DQ DQ DQ DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DM CS# DQS DQ U2 DQ DQ DQ DQ DQ DQ DQ DQS2 DQS6 DM2 DM6 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM CS# DQS DQ DQ U3 DQ DQ DQ DQ DQ DQ DM CS# DQS DQ DQ U15 DQ DQ DQ DQ DQ DQ DQS3 DQS7 DM3 DM7 DM CS# DQS DQ U14 DQ DQ DQ DQ DQ DQ DQ DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DM CS# DQS DQ U4 DQ DQ DQ DQ DQ DQ DQ 120 BA0, BA1 A0-A11 (256MB) A0-A12 (512MB, 1GB) A0-A13 (2GB) RAS# CAS# WE# 3 3 3 3 3 3 3 CK0 CK0# BA0, BA1: DDR SDRAMS A0-A11: DDR SDRAMS 3pF A0-A12: DDR SDRAMS 120 A0-A13: DDR SDRAMS CAS#: DDR SDRAMS 120 WE#: DDR SDRAMS CKE0: DDR SDRAMS U1, U3, U6, U8, U11, U13, U14, U16 CKE0 CKE1: DDR SDRAMS U2, U4, U5, U7, U10, U12, U15, U17 DDR SDRAMS VDD DDR SDRAMS VREF DDR SDRAMS VSS DDR SDRAMS SCL WP U7-U12 A0 U19 A1 A2 SDA SA0 SA1 SA2 Standard modules use the following SDRAM devices: MT46V16M8TG (256MB); MT46V32M8TG (512MB); MT46V64M8TG (1GB); MT46V128M8TG (2GB) NOTE: 1. All resistor values are 22Ω unless otherwise specified. 2. Per industry standard, Micron modules utilize various component speed grades, as referenced in the module part number guide at www.micron.com/numberguide. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN CK2 CK2# SERIAL PD SPD/EEPROM VDDQ U1-U3, U16-U18 CK1 CK1# RAS#: DDR SDRAMS CKE1 VDDSPD U4, U6, U13, U15 Lead-free modules use the following SDRAM devices: MT46V16M8P (256MB); MT46V32M8P (512MB); MT46V64M8P (1GB); MT46V128M8P (2GB) 6 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Figure 4: Functional Block Diagram – Low-Profile PCB S1# S0# DQS0 DQS4 DM0 DM4 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM CS# DQS DQ DQ DQ DQ U11 DQ DQ DQ DQ DM CS# DQS DQ DQ DQ U1 DQ DQ DQ DQ DQ DQS1 DM CS# DQS DQ DQ DQ U6 DQ DQ DQ DQ DQ DM CS# DQS DQ DQ DQ DQ U16 DQ DQ DQ DQ DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM CS# DQS DQ DQ DQ U7 DQ DQ DQ DQ DQ DM CS# DQS DQ DQ DQ DQ U17 DQ DQ DQ DQ DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DM CS# DQS DQ DQ DQ U8 DQ DQ DQ DQ DQ DM CS# DQS DQ DQ DQ DQ U18 DQ DQ DQ DQ DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM CS# DQS DQ DQ DQ U9 DQ DQ DQ DQ DQ DM CS# DQS DQ DQ DQ DQ U19 DQ DQ DQ DQ DQS5 DM1 DM5 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DM CS# DQS DQ DQ DQ U2 DQ DQ DQ DQ DQ DM CS# DQS DQ DQ DQ DQ U12 DQ DQ DQ DQ DQS2 DQS6 DM2 DM6 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM CS# DQS DQ DQ DQ DQ U13 DQ DQ DQ DQ DM CS# DQS DQ DQ DQ U3 DQ DQ DQ DQ DQ DQS3 DQS7 DM3 DM7 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 BA0, BA1 DM CS# DQS DQ DQ DQ U4 DQ DQ DQ DQ DQ DM CS# DQS DQ DQ DQ DQ U14 DQ DQ DQ DQ SERIAL PD BA0, BA1: DDR SDRAMS A0-A11 (256MB) A0-A11: DDR SDRAMS A0-A12 (512MB, 1GB) A0-A12: DDR SDRAMS SCL WP U10 A0 RAS# CAS# RAS#: DDR SDRAMS CKE0 CKE0: DDR SDRAMS U1–U4, U6–U9 CKE1 CKE1: DDR SDRAMS U11, U14, U16–U19 120 WE#: DDR SDRAMS WE# A1 A2 VDDSPD SDA DDR SDRAMS VDD DDR SDRAMS VREF DDR SDRAMS VSS DDR SDRAMS CAS#: DDR SDRAMS 3pF DDR SDRAM X4 SPD VDDQ SA0 SA1 SA2 CK0 CK0# 120 CK1 CK1# 3pF DDR CK2 SDRAM CK2# X6 120 DDR SDRAM X6 3pF Standard modules use MT46V16M8TG for 256MB; MT46V32M8TG for 512MB; MT46V64M8TG for 1GB NOTE: 1. All resistor values are 22Ω unless otherwise specified. 2. Per industry standard, Micron modules utilize various component speed grades, as referenced in the module part number guide at www.micron.com/numberguide. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 Lead-free modules use MT46V16M8P for 256MB; MT46V32M8P for 512MB; MT46V64M8P for 1GB 7 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM General Description The pipelined, multibank architecture of DDR SDRAM modules allows for concurrent operation, thereby providing high effective bandwidth by hiding row precharge and activation time. An auto refresh mode is provided, along with a power-saving power-down mode. All inputs are compatible with the JEDEC Standard for SSTL_2. All outputs are SSTL_2, Class II compatible. For more information regarding DDR SDRAM operation, refer to the 128Mb, 256Mb, 512Mb, or 1Gb DDR SDRAM component data sheets. The MT16VDDT3264A, MT16VDDT6464A, MT16VDDT12864A, and MT16VDDT25664A are highspeed CMOS, dynamic random-access, 256MB, 512MB, 1GB and 2GB memory modules organized in x64 configuration. DDR SDRAM modules use internally configured quad-bank DDR SDRAM devices. DDR SDRAM modules use a double data rate architecture to achieve high-speed operation. Double data rate architecture is essentially a 2n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the DDR SDRAM module effectively consists of a single 2n-bit wide, one-clock-cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins. A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in data capture at the receiver. DQS is an intermittent strobe transmitted by the DDR SDRAM during READs and by the memory controller during WRITEs. DQS is edge-aligned with data for READs and center-aligned with data for WRITEs. DDR SDRAM modules operate from differential clock inputs (CK and CK#); the crossing of CK going HIGH and CK# going LOW will be referred to as the positive edge of CK. Commands (address and control signals) are registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS, as well as to both edges of CK. Read and write accesses to DDR SDRAM modules are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the device bank and row to be accessed (BA0, BA1 select devices bank; A0–A11 select device row for 256MB; A0–A12 select device row for 512MB, 1GB; A0–A13 select device row for 2GB). The address bits registered coincident with the READ or WRITE command are used to select the device bank and the starting device column location for the burst access. DDR SDRAM modules provide for programmable READ or WRITE burst lengths of 2, 4, or 8 locations. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst access. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN Serial Presence-Detect Operation DDR SDRAM modules incorporate serial presencedetect (SPD). The SPD function is implemented using a 2,048-bit EEPROM. This nonvolatile storage device contains 256 bytes. The first 128 bytes can be programmed by Micron to identify the module type and various SDRAM organizations and timing parameters. The remaining 128 bytes of storage are available for use by the customer. System READ/WRITE operations between the master (system logic) and the slave EEPROM device (DIMM) occur via a standard I2C bus using the DIMM’s SCL (clock) and SDA (data) signals, together with SA (2:0), which provide eight unique DIMM/EEPROM addresses. Write protect (WP) is tied to ground on the module, permanently disabling hardware write protect. Mode Register Definition The mode register is used to define the specific mode of operation of the DDR SDRAM. This definition includes the selection of a burst length, a burst type, a CAS latency and an operating mode, as shown in Figure 5, Mode Register Definition Diagram, on page 9. The mode register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 0) and will retain the stored information until it is programmed again or the device loses power (except for bit A8, which is self-clearing). Reprogramming the mode register will not alter the contents of the memory, provided it is performed correctly. The mode register must be loaded (reloaded) when all device banks are idle and no bursts are in progress, and the controller must wait the specified time before initiating the subsequent operation. Violating either of these requirements will result in unspecified operation. 8 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Figure 5: Mode Register Definition Diagram Mode register bits A0–A2 specify the burst length, A3 specifies the type of burst (sequential or interleaved), A4–A6 specify the CAS latency, and A7–A11 (256MB) or A7–A12 (512MB, 1GB), or A7–A13 (2GB) specify the operating mode. 256MB Module BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address Bus Burst Type 13 12 0* 0* Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit M3. The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in Table 6, Burst Definition Table, on page 10. 11 10 9 8 7 6 5 4 3 2 1 0 Operating Mode CAS Latency BT Burst Length Mode Register (Mx) * M13 and M12 (BA0 and BA1) must be “0, 0” to select the base mode register (vs. the extended mode register). 512MB and 1GB Modules BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 14 13 12 11 10 9 8 Operating Mode 0* 0* Burst Length 7 6 5 4 3 2 1 0 CAS Latency BT Burst Length Mode Register (Mx) * M14 and M13 (BA0 and BA1) must be “0, 0” to select the base mode register (vs. the extended mode register). Read and write accesses to the DDR SDRAM are burst oriented, with the burst length being programmable, as shown in Figure 5, Mode Register Definition Diagram. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 2, 4, or 8 locations are available for both the sequential and the interleaved burst types. Reserved states should not be used, as unknown operation or incompatibility with future versions may result. When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, meaning that the burst will wrap within the block if a boundary is reached. The block is uniquely selected by A1–Ai when the burst length is set to two, by A2-Ai when the burst length is set to four and by A3Ai when the burst length is set to eight (where Ai is the most significant column address bit for a given configuration; see Note 5, of Table 6, Burst Definition Table, on page 10). The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. The programmed burst length applies to both READ and WRITE bursts. 2GB Module BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 15 14 0* 0* 13 12 11 10 9 8 7 Operating Mode 6 5 4 3 2 1 * M15 and M14 (BA1 and BA0) must be “0, 0” to select the base mode register (vs. the extended mode register). 0 Mode Register (Mx) Burst Length M2 M1 M0 M3 = 0 0 0 0 Reserved 0 0 1 2 0 1 0 4 0 1 1 8 1 0 0 Reserved 1 0 1 Reserved 1 1 0 Reserved 1 1 1 Reserved Burst Type M3 0 Sequential 1 Interleaved CAS Latency M6 M5 M4 0 0 0 Reserved 0 0 1 Reserved 0 1 0 2 0 1 1 Reserved 1 0 0 Reserved 1 0 1 Reserved The READ latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first bit of output data. The latency can be set to 2 or 2.5 clocks, as shown in Figure 6, CAS Latency Diagram. 1 1 0 2.5 1 1 1 Reserved M13 M12 M11 M10 M9 M8 M7 9 Address Bus CAS Latency BT Burst Length Read Latency pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN Address Bus M6-M0 Operating Mode 0 0 0 0 0 0 0 Valid Normal Operation 0 0 0 0 0 1 0 Valid Normal Operation/Reset DLL - - - - - - - - All other states reserved Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 6: ORDER OF ACCESSES WITHIN A BURST STARTING COLUMN ADDRESS BURST LENGTH Figure 6: CAS Latency Diagram Burst Definition Table TYPE = SEQUENTIAL T0 T1 T2 READ NOP NOP T3 T3n CK TYPE = INTERLEAVED COMMAND NOP CL = 2 A0 2 T2n CK# 0 1 0-1 1-0 0-1 1-0 0-1-2-3 1-2-3-0 2-3-0-1 3-0-1-2 0-1-2-3 1-0-3-2 2-3-0-1 3-2-1-0 DQS DQ A1 A0 0 0 1 1 4 0 1 0 1 CK# T0 T1 T2 READ NOP NOP 8 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 COMMAND T3n NOP CL = 2.5 0-1-2-3-4-5-6-7 1-2-3-4-5-6-7-0 2-3-4-5-6-7-0-1 3-4-5-6-7-0-1-2 4-5-6-7-0-1-2-3 5-6-7-0-1-2-3-4 6-7-0-1-2-3-4-5 7-0-1-2-3-4-5-6 DQS 0-1-2-3-4-5-6-7 1-0-3-2-5-4-7-6 2-3-0-1-6-7-4-5 3-2-1-0-7-6-5-4 4-5-6-7-0-1-2-3 5-4-7-6-1-0-3-2 6-7-4-5-2-3-0-1 7-6-5-4-3-2-1-0 DQ Burst Length = 4 in the cases shown Shown with nominal tAC, tDQSCK, and tDQSQ TRANSITIONING DATA 1. For a burst length of two, A1–Ai select the two-dataelement block; A0 selects the first access within the block. 2. For a burst length of four, A2–Ai select the four-dataelement block; A0–A1 select the first access within the block. 3. For a burst length of eight, A3–Ai select the eight-dataelement block; A0–A2 select the first access within the block. 4. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block. 5. i = 9 for 256MB, 512MB; i = 9, 11 for 1GB, 2GB. Operating Mode The normal operating mode is selected by issuing a MODE REGISTER SET command with bits A7–A11 (256MB), A7–A12 (512MB, 1GB), or A7–A13 (2GB) each set to zero, and bits A0–A6 set to the desired values. A DLL reset is initiated by issuing a MODE REGISTER SET command with bits A7 and A9–A11 (256MB), A7 and A9–A12 (512MB, 1GB), or A7 and A9–A13 (2GB)each set to zero, bit A8 set to one, and bits A0–A6 set to the desired values. Although not required by the Micron device, JEDEC specifications recommend when a LOAD MODE REGISTER command is issued to reset the DLL, it should always be followed by a LOAD MODE REGISTER command to select normal operating mode. All other combinations of values for A7–A11 (256MB), A7–A12 (512MB, 1GB), or A7–A13 (2GB) are reserved for future use and/or test modes. Test modes CAS Latency (CL) Table ALLOWABLE OPERATING CLOCK FREQUENCY (MHZ) SPEED CL = 2 CL = 2.5 -335 -262 -26A -265 75 ≤ f ≤ 133 75 ≤ f ≤ 133 75 ≤ f ≤ 133 75 ≤ f ≤ 100 75 ≤ f ≤ 167 75 ≤ f ≤ 133 75 ≤ f ≤ 133 75 ≤ f ≤ 133 pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN DON’T CARE If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available nominally coincident with clock edge n + m. Figure 7, CAS Latency (CL) Table, indicates the operating frequencies at which each CAS latency setting can be used. Reserved states should not be used as unknown operation or incompatibility with future versions may result. NOTE: Table 7: T3 CK A2 A1 A0 0 0 0 0 1 1 1 1 T2n 10 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Figure 7: Extended Mode Register Definition Diagram and reserved states should not be used because unknown operation or incompatibility with future versions may result. 256MB Module BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Extended Mode Register The extended mode register controls functions beyond those controlled by the mode register; these additional functions are DLL enable/disable and output drive strength. These functions are controlled via the bits shown in Figure 7, Extended Mode Register Definition Diagram. The extended mode register is programmed via the LOAD MODE REGISTER command to the mode register (with BA0 = 1 and BA1 = 0) and will retain the stored information until it is programmed again or the device loses power. The enabling of the DLL should always be followed by a LOAD MODE REGISTER command to the mode register (BA0/BA1 both LOW) to reset the DLL. The extended mode register must be loaded when all device banks are idle and no bursts are in progress, and the controller must wait the specified time before initiating any subsequent operation. Violating either of these requirements could result in unspecified operation. 13 12 11 10 9 8 7 6 5 Operating Mode 01 11 4 3 1 2 Extended Mode Register (Ex) DS DLL 512MB and 1GB Modules BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 14 13 12 11 10 9 8 7 6 5 Operating Mode 01 11 4 3 1 2 0 Address Bus Extended Mode Register (Ex) DS DLL 2GB Module BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 15 14 13 12 11 10 9 8 7 6 5 Operating Mode 01 11 4 3 2 The DLL must be enabled for normal operation. DLL enable is required during power-up initialization and upon returning to normal operation after having disabled the DLL for the purpose of debug or evaluation. (When the device exits self refresh mode, the DLL is enabled automatically.) Any time the DLL is enabled, 200 clock cycles with CKE HIGH must occur before a READ command can be issued. 1 0 E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1, E0 Address Bus Extended Mode Register (Ex) DS DLL DLL Enable/Disable pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 0 Address Bus E0 DLL 0 Enable 1 Disable E1 Drive Strength 0 Normal Operating Mode 0 0 0 0 0 0 0 0 0 0 0 0 Valid Reserved – – – – – – – – – – – – – Reserved NOTE: 1. BA1 and BA0 (E13 and E12 for 256MB, E14 and E13 for 512MB, 1GB, or E15 and E14 for 2GB) must be “0, 1” to select the Extended Mode Register (vs. the base Mode Register). 2. QFC# is not supported. 11 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Commands Table 8, Commands Truth Table, and Table 9, DM Operation Truth Table, provide a general reference of available commands. For a more detailed description Table 8: of commands and operations, refer to the 128Mb, 256Mb, 512Mb, or 1Gb DDR SDRAM component data sheets. Commands Truth Table CKE is HIGH for all commands shown except SELF REFRESH; all states and sequences not shown are illegal or reserved NAME (FUNCTION) CS# RAS# CAS# WE# ADDR NOTES H L L L L L L L L X H L H H H L L L X H H L L H H L L X H H H L L L H L X X Bank/Row Bank/Col Bank/Col X Code X Op-Code 1 1 2 3 3 4 5 6, 7 8 DESELECT (NOP) NO OPERATION (NOP) ACTIVE (Select bank and activate row) READ (Select bank and column, and start READ burst) WRITE (Select bank and column, and start WRITE burst) BURST TERMINATE PRECHARGE (Deactivate row in bank or banks) AUTO REFRESH or SELF REFRESH (Enter self refresh mode) LOAD MODE REGISTER NOTE: 1. DESELECT and NOP are functionally interchangeable. 2. BA0–BA1 provide device bank address and A0–A11 (256MB), A0–A12 (512MB, 1GB), or A0–A13 (2GB) provide row address. 3. BA0–BA1 provide device bank address; A0–A9 (256MB, 512MB) or A0–A9, A11(1GB, 2GB), provide column address; A10 HIGH enables the auto precharge feature (nonpersistent), and A10 LOW disables the auto precharge feature. 4. Applies only to read bursts with auto precharge disabled; this command is undefined (and should not be used) for READ bursts with auto precharge enabled and for WRITE bursts. 5. A10 LOW: BA0–BA1 determine which device bank is precharged. A10 HIGH: all device banks are precharged and BA0– BA1 are “Don’t Care.” 6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW. 7. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE. 8. BA0–BA1 select either the mode register or the extended mode register (BA0 = 0, BA1 = 0 select the mode register; BA0 = 1, BA1 = 0 select extended mode register; other combinations of BA0–BA1 are reserved). A0–A11 (256MB), A0–A12 (512MB, 1GB), or A0–A13 (2GB) provide the op-code to be written to the selected mode register. Table 9: DM Operation Truth Table Used to mask write data; provided coincident with the corresponding data NAME (FUNCTION) WRITE Enable WRITE Inhibit pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 12 DM DQS L H Valid X Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Absolute Maximum Ratings Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the opera- tional sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Voltage on VDD Supply Relative to VSS . . . . . . . . . . . . . . . . . . . . -1V to +3.6V Voltage on VDDQ Supply Relative to VSS . . . . . . . . . . . . . . . . . . . . -1V to +3.6V Voltage on VREF and Inputs Relative to VSS . . . . . . . . . . . . . . . . . . . . -1V to +3.6V Voltage on I/O Pins Relative to VSS . . . . . . . . . . . . -0.5V to VDDQ +0.5V Operating Temperature TA (ambient) . . . . . . . . . . . . . . . . . . . . .. 0°C to +70°C Storage Temperature (plastic) . . . . . . -55°C to +150°C Short Circuit Output Current. . . . . . . . . . . . . . . 50mA Table 10: DC Electrical Characteristics and Operating Conditions Notes: 1–5, 14, 48; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C PARAMETER/CONDITION SYMBOL Supply Voltage I/O Supply Voltage I/O Reference Voltage I/O Termination Voltage (system) Input High (Logic 1) Voltage Input Low (Logic 0) Voltage INPUT LEAKAGE CURRENT Command/ Any input 0V ≤ VIN ≤ VDD, VREF pin 0V ≤ VIN ≤ Address, RAS#, 1.35V (All other pins not under test = 0V) CAS#, WE# CKE, S# CK0, CK0# CK1, CK1# CK2, CK2# DM OUTPUT LEAKAGE CURRENT DQ, DQS (DQs are disabled; 0V ≤ VOUT ≤ VDDQ) OUTPUT LEVELS High Current (VOUT = VDDQ-0.373V, minimum VREF, minimum VTT) Low Current (VOUT = 0.373V, maximum VREF, maximum VTT) VDD VDDQ VREF VTT VIH(DC) VIL(DC) MIN MAX UNITS NOTES V V V V V V 32, 36 32, 36, 39 6, 39 7, 39 25 25 µA 47 2.3 2.7 2.3 2.7 0.49 × VDDQ 0.51 × VDDQ VREF - 0.04 VREF + 0.04 VREF + 0.15 VDD + 0.3 -0.3 VREF - 0.15 -32 32 -16 -8 -12 16 8 12 IOZ -4 -10 4 10 µA 47 IOH IOL -16.8 16.8 – – mA mA 33, 34 II Table 11: AC Input Operating Conditions Notes: 1–5, 14, 48, 49; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V PARAMETER/CONDITION Input High (Logic 1) Voltage Input Low (Logic 0) Voltage I/O Reference Voltage pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN SYMBOL MIN MAX UNITS NOTES VIH(AC) VIL(AC) VREF(AC) VREF + 0.310 – 0.49 × VDDQ – VREF - 0.310 0.51 × VDDQ V V V 12, 25, 35 12, 25, 35 6 13 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 12: IDD Specifications and Conditions – 256MB DDR SDRAM components only Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V MAX -26A/ -265 UNITS NOTES PARAMETER/CONDITION SYM -335 -262 OPERATING CURRENT: One device bank; Active-Precharge; tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing once per clock cyle; Address and control inputs changing once every two clock cycles OPERATING CURRENT: One device bank; Active -Read Precharge; Burst = 2; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and control inputs changing once per clock cycle PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW) IDD0a 1,024 904 864 mA 20, 42 IDD1a 1,104 984 984 mA 20, 42 IDD2Nb 48 48 48 mA 21, 28, 44 IDD2Fb 720 720 640 mA 45 IDD3Pb 400 400 320 mA 21, 28, 44 IDD3Nb 800 800 720 mA 40 IDD4Ra 1,144 1,064 1,024 mA 20, 42 IDD4Wa 1,144 1,024 1,024 mA 20 IDD5b 4,240 3,520 3,520 mA IDD5Ab 80 80 80 mA 20, 24, 44 IDD6b IDD7a 48 48 32 mA 9 2,864 2,664 2,624 mA 20, 43 IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK = tCK MIN; CKE = HIGH; Address and other control inputs changing once per clock cycle. VIN = VREF for DQ, DQS, and DM ACTIVE POWER-DOWN STANDBY CURRENT: One device bank active; Power-down mode; tCK = tCK (MIN); CKE = LOW ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM andDQS inputs changing twice per clock cycle; Address and other control inputs changing once per clock cycle OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One bank active; Address and control inputs chan-ging once per clock cycle; tCK = tCK (MIN); IOUT = 0mA OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One device bank active; Address and control inputs changing once per clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing twice per clock cycle tREFC = tRFC (MIN) AUTO REFRESH CURRENT t REFC = 15.625µs SELF REFRESH CURRENT: CKE ≤ 0.2V OPERATING CURRENT: Four device bank interleaving READs (BL = 4) with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and control inputs change only during Active READ, or WRITE commands NOTE: a: Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode. b: Value calculated reflects all module ranks in this operating condition. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 14 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 13: IDD Specifications and Conditions – 512MB DDR SDRAM Components only Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V MAX PARAMETER/CONDITION OPERATING CURRENT: One device bank; Active-Precharge; t RC = tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing once per clock cyle; Address and control inputs changing once every two clock cycles OPERATING CURRENT: One device bank; Active -Read Precharge; Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and control inputs changing once per clock cycle PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW) IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK = tCK MIN; CKE = HIGH; Address and other control inputs changing once per clock cycle. VIN = VREF for DQ, DQS, and DM ACTIVE POWER-DOWN STANDBY CURRENT: One device bank active; Power-down mode; tCK = tCK (MIN); CKE = LOW ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM andDQS inputs changing twice per clock cycle; Address and other control inputs changing once per clock cycle OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One bank active; Address and control inputs changing once per clock cycle; tCK = tCK (MIN); IOUT = 0mA OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One device bank active; Address and control inputs changing once per clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing twice per clock cycle t AUTO REFRESH CURRENT REFC = tRFC (MIN) tREFC SYM -335 -262 -26A/ -265 UNITS NOTES a 1,032 1,032 992 mA 20, 42 IDD1a 1,392 1,312 1,192 mA 20, 42 IDD2Pb 64 64 64 mA 21, 28, 44 IDD2Fb 800 720 720 mA 45 IDD3Pb 480 400 400 mA 21, 28, 44 IDD3Nb 960 800 800 mA 40 IDD4Ra 1,432 1,232 1,232 mA 20, 42 IDD4Wa 1,432 1,232 1,232 mA 20 IDD5b 4,080 3,760 3,760 mA 20, 44 IDD5Ab 96 96 96 mA 20, 44 IDD0 = 7.8125µs SELF REFRESH CURRENT: CKE ≤ 0.2V b OPERATING CURRENT: Four device bank interleaving READs (BL = 4) with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and control inputs change only during Active READ, or WRITE commands IDD6 IDD7a 64 64 64 mA 9 3,312 2,832 2,832 mA 20, 43 NOTE: a: Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode. b: Value calculated reflects all module ranks in this operating condition. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 15 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 14: IDD Specifications and Conditions – 1GB DDR SDRAM Components only Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2VV MAX PARAMETER/CONDITION OPERATING CURRENT: One device bank; Active-Precharge; tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing once per clock cyle; Address and control inputs changing once every two clock cycles OPERATING CURRENT: One device bank; Active -Read Precharge; Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and control inputs changing once per clock cycle PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW) IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK = tCK MIN; CKE = HIGH; Address and other control inputs changing once per clock cycle. VIN = VREF for DQ, DQS, and DM ACTIVE POWER-DOWN STANDBY CURRENT: One device bank active; Power-down mode; tCK = tCK (MIN); CKE = LOW ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM andDQS inputs changing twice per clock cycle; Address and other control inputs changing once per clock cycle OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One bank active; Address and control inputs changing once per clock cycle; tCK = tCK (MIN); IOUT = 0mA OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One device bank active; Address and control inputs changing once per clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing twice per clock cycle tREFC = tRFC (MIN) AUTO REFRESH CURRENT tREFC = 7.8125µs SYM -335 -262 -26A/ -265 a IDD0 1,080 1,080 960 mA 20, 42 IDD1a 1,320 1,320 1,200 mA 20, 42 IDD2Pb 80 80 80 mA 21, 28, 44 IDD2Fb 720 720 640 mA 45 IDD3Pb 560 560 480 mA 21, 28, 44 IDD3Nb 800 800 720 mA 40 IDD4Ra 1,360 1,360 1,200 mA 20, 42 IDD4Wa 1,440 1,280 1,120 mA 20 IDD5b 4,640 4,640 4,480 mA 20, 44 160 160 160 mA 20, 44 b IDD5A UNITS NOTES SELF REFRESH CURRENT: CKE ≤ 0.2V I DD6b 80 80 80 mA 9 OPERATING CURRENT: Four device bank interleaving READs (BL = 4) with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and control inputs change only during Active READ, or WRITE commands IDD7a 3,280 3,240 2,840 mA 20, 43 NOTE: a: Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode. b: Value calculated reflects all module ranks in this operating condition. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 16 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 15: IDD Specifications and Conditions – 2GB DDR SDRAM Components only Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2VV MAX PARAMETER/CONDITION OPERATING CURRENT: One device bank; Active-Precharge; tRC = tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing once per clock cyle; Address and control inputs changing once every two clock cycles OPERATING CURRENT: One device bank; Active -Read Precharge; Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and control inputs changing once per clock cycle PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW) IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK = tCK MIN; CKE = HIGH; Address and other control inputs changing once per clock cycle. VIN = VREF for DQ, DQS, and DM ACTIVE POWER-DOWN STANDBY CURRENT: One device bank active; Power-down mode; tCK = tCK (MIN); CKE = LOW ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM andDQS inputs changing twice per clock cycle; Address and other control inputs changing once per clock cycle OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One bank active; Address and control inputs changing once per clock cycle; tCK = tCK (MIN); IOUT = 0mA OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One device bank active; Address and control inputs changing once per clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing twice per clock cycle tREFC = tRFC (MIN) AUTO REFRESH CURRENT tREFC = 7.8125µs SYM -335 -262 -26A/ -265 a IDD0 1,080 1,080 1,240 mA 20, 42 IDD1a 1,320 1,320 1,520 mA 20, 42 IDD2Pb 80 80 160 mA 21, 28, 44 IDD2Fb 720 720 960 mA 45 IDD3Pb 560 560 480 mA 21, 28, 44 IDD3Nb 720 720 720 mA 40 IDD4Ra 1,360 1,360 1,680 mA 20, 42 IDD4Wa 1,280 1,280 1,760 mA 20 IDD5b 4,640 4,640 5,280 mA 20, 44 160 160 160 mA 20, 44 b IDD5A UNITS NOTES SELF REFRESH CURRENT: CKE ≤ 0.2V I DD6b 80 80 144 mA 9 OPERATING CURRENT: Four device bank interleaving READs (BL = 4) with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and control inputs change only during Active READ, or WRITE commands IDD7a 3,280 3,240 3,960 mA 20, 43 NOTE: a: Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode. b: Value calculated reflects all module ranks in this operating condition. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 17 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 16: Capacitance Note: 11; notes appear on pages 20–23 PARAMETER SYMBOL MIN MAX UNITS CIO CI1 CI1 CI2 CI3 8 32 16 11 12 10 48 24 15 18 pF pF pF pF pF Input/Output Capacitance: DQ, DQS, DM Input Capacitance: Command and Address Input Capacitance: S#, CKE Input Capacitance: CK0, CK0# Input Capacitance: CK1, CK1#; CK2, CK2# Table 17: DDR SDRAM Component Electrical Characteristics and Recommended AC Operating Conditions Notes: 1–5, 13-15, 29, 48, 49; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V AC CHARACTERISTICS -335 PARAMETER -262 -26A/-265 SYMBOL MIN MAX MIN MAX MIN MAX UNITS NOTES Access window of DQs from CK/ CK# CK high-level width tAC -0.7 +0.7 -0.75 +0.75 -0.75 +0.75 ns tCH 0.45 0.55 0.45 0.55 0.45 0.55 tCK 26 CK low-level width tCL 0.45 0.55 0.45 0.55 0.45 0.55 tCK 26 6 13 7.5 13 7.5 13 ns 41, 46 7.5 13 7.5/10 13 7.5/10 13 ns 41, 46 Clock cycle time CL = 2.5 CL = 2 tCK (2.5) tCK (2) DQ and DM input hold time relative to DQS tDH 0.45 0.5 0.5 ns 23, 27 DQ and DM input setup time relative to DQS tDS 0.45 0.5 0.5 ns 23, 27 ns 27 tDIPW 1.75 tDQSCK -0.60 tDQSH 0.35 0.35 0.35 tCK DQS input low pulse width tDQSL 0.35 0.35 0.35 tCK DQS-DQ skew, DQS to last DQ valid, per group, per access Write command to first DQS latching transition tDQSQ DQ and DM input pulse width (for each input) Access window of DQS from CK/ CK# DQS input high pulse width DQS falling edge to CK rising setup time DQS falling edge from CK rising hold time Half clock period Data-out high-impedance window from CK/CK# tDQSS 1.75 +0.60 -0.75 0.45 0.75 1.25 1.75 +0.75 -0.75 0.5 0.75 1.25 0.75 +0.75 ns 0.5 ns 1.25 tCK DSS 0.2 0.2 0.2 t tDSH 0.2 0.2 0.2 tCK t t t t t HP t HZ CH,tCL +0.70 CH,tCL +0.75 CH,tCL +0.75 22, 23 CK ns 31 ns 16, 37 Data-out low-impedance window from CK/CK# tLZ -0.70 -0.75 -0.75 ns 16, 37 Address and control input hold time (fast slew rate) Address and control input setup time (fast slew rate) Address and control input hold time (slow slew rate) tIH 0.75 0.90 .90 ns 12 t ISF 0.75 0.90 .90 ns 12 tIH 0.80 1 1 ns 12 pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN F S 18 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 17: DDR SDRAM Component Electrical Characteristics and Recommended AC Operating Conditions (Continued) Notes: 1–5, 13-15, 29, 48, 49; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V AC CHARACTERISTICS PARAMETER Address and control input setup time (slow slew rate) Address and Control input pulse width (for each input) LOAD MODE REGISTER command cycle time -335 SYMBOL MIN MAX UNITS NOTES ISS 1 1 ns tIPW 2.2 2.2 2.2 ns 15 ns HP - ns t QH Data hold skew factor tQHS ACTIVE to PRECHARGE command tRAS ACTIVE to READ with Auto precharge command ACTIVE to ACTIVE/AUTO REFRESH command period AUTO REFRESH command period 256MB, 512MB, 1GB 2GB ACTIVE to READ or WRITE delay tRAP tRC MIN 12 MRD t DQ-DQS hold, DQS to first DQ to go non-valid, per access MAX -26A/-265 0.80 t MIN -262 MAX 15 t t t tQHS tQHS tQHS HP - HP - 0.55 42 70,000 0.75 40 120,000 40 0.75 ns 120,000 ns 15 15 20 ns 60 60 65 ns 75 75 75 ns 120 15 120 15 120 20 ns ns 12 22, 23 31, 49 44 tRFC tRCD tRP 15 DQS read preamble tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 tCK 38 DQS read postamble tRPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK 38 ACTIVE bank a to ACTIVE bank b command tRRD 12 15 15 ns tWPRE 0.25 0.25 0.25 tCK tWPRES 0 0 0 tWPST 0.4 tWR 15 15 15 ns tWTR 1 1 1 tCK PRECHARGE command period DQS write preamble DQS write preamble setup time DQS write postamble Write recovery time Internal WRITE to READ command delay na Data valid output window REFRESH to REFRESH command interval 256MB 512MB, 1GB, 2GB Average periodic refresh interval 256MB 512MB, 1GB, 2GB Terminating voltage delay to VDD 0.6 tQH -tDQSQ 0.4 20 0.6 tQH -tDQSQ 0.4 ns 0.6 tQH -tDQSQ ns 18, 19 tCK 17 ns 22 tREFC 140.6 70.3 140.6 70.3 140.6 70.3 µs µs 21 21 tREFI 15.6 7.8 15.6 7.8 15.6 7.8 µs µs 21 21 tVTD Exit SELF REFRESH to non-READ command tXSNR Exit SELF REFRESH to READ command t pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 15 XSRD 0 0 0 75 75 75 200 200 200 19 ns ns t CK Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Notes 1. All voltages referenced to VSS. 2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified. 3. Outputs measured with equivalent load: 12. VTT Output (VOUT) 13. 50Ω Reference Point 30pF 14. 4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 1V/ns in the range between VIL(AC) and VIH(AC). 5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level). 6. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in the DC level of the same. Peak-to-peak noise (non-common mode) on VREF may not exceed ±2 percent of the DC value. Thus, from VDDQ/2, VREF is allowed ±25mV for DC error and an additional ±25mV for AC noise. This measurement is to be taken at the nearest VREF bypass capacitor. 7. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF and must track variations in the DC level of VREF. 8. IDD is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time at CL = 2 for -262, and -26A, CL = 2.5 for -335 and -265 with the outputs open. 9. Enables on-chip refresh and address counters. 10. IDD specifications are tested after the device is properly initialized, and is averaged at the defined cycle rate. 11. This parameter is sampled. VDD = +2.5V ±0.2V, VDDQ = +2.5V ±0.2V, VREF = VSS, f = 100 MHz, TA = pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 15. 16. 17. 18. 19. 20. 21. 20 25°C, VOUT (DC) = VDDQ/2, VOUT (peak to peak) = 0.2V. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading. For slew rates less than 1 V/ns and greater than or equal to 0.5 V/ns. If slew rate is less than 0.5 V/ns, timing must be derated: tIS has an additional 50ps per each 100mV/ns reduction in slew rate from 500mV/ns, while tIH is unaffected. If slew rate exceeds 4.5V/ns, functionality is uncertain. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at which CK and CK# cross; the input reference level for signals other than CK/CK# is VREF. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes, CKE ≤ 0.3 x VDDQ is recognized as LOW. The output timing reference level, as measured at the timing reference point indicated in Note 3, is VTT. t HZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to a specific voltage level, but specify when the device output is no longer driving (HZ) or begins driving (LZ). The intent of the Don’t Care state after completion of the postamble is the DQS-driven signal should either be high, low, or high-Z and that any signal transition within the input switching region must follow valid input requirements. That is, if DQS transitions high [above VIHDC (MIN)] then it must not transition low (below VIHDC) prior to t DQSH(MIN). This is not a device limit. The device will operate with a negative value, but system performance could be degraded due to bus turnaround. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE command. The case shown (DQS going from High-Z to logic LOW) applies when no WRITEs were previously in progress on the bus. If a previous WRITE was in progress, DQS could be HIGH during this time, depending on tDQSS. MIN (tRC or tRFC) for IDD measurements is the smallest multiple of tCK that meets the minimum absolute value for the respective parameter. tRAS (MAX) for IDD measurements is the largest multiple of tCK that meets the maximum absolute value for tRAS. The refresh period 64ms. This equates to an average refresh rate of 15.625µs (256MB) or 7.8125µs (512MB, 1GB, 2GB). However, an AUTO REFRESH command must be asserted at least once every Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM 22. 23. 24. 25. 140.6µs (256MB) or 70.3µs (512MB, 1GB, 2GB); burst refreshing or posting by the DRAM controller greater than eight refresh cycles is not allowed. The valid data window is derived by achieving other specifications: tHP (tCK/2), tDQSQ, and tQH (tQH = tHP - tQHS). The data valid window derates directly porportional with the clock duty cycle and a practical data valid window can be derived. The clock is allowed a maximum duty cycle variation of 45/55, beyond which functionality is uncertain. Figure 8, Derating Data Valid Window tHP - tQHS, shows derating curves for duty cycles ranging between 50/50 and 45/55. Each byte lane has a corresponding DQS. This limit is actually a nominal value and does not result in a fail value. CKE is HIGH during REFRESH command period (tRFC [MIN]) else CKE is LOW (i.e., during standby). To maintain a valid level, the transitioning edge of the input must: a. Sustain a constant slew rate from the current AC level through to the target AC level, VIL (AC) or VIH (AC). 26. 27. 28. 29. 30. b. Reach at least the target AC level. c. After the AC target level is reached, continue to maintain at least the target DC level, VIL (DC) or VIH (DC). JEDEC specifies CK and CK# input slew rate must be ≥ 1V/ns (2V/ns differentially). DQ and DM input slew rates must not deviate from DQS by more than 10 percent. If the DQ/ DM/DQS slew rate is less than 0.5V/ns, timing must be derated: 50ps must be added to tDS and tDH for each 100mv/ns reduction in slew rate. If slew rate exceeds 4V/ns, functionality is uncertain. VDD must not vary more than 4 percent if CKE is not active while any bank is active. The clock is allowed up to ±150ps of jitter. Each timing parameter is allowed to vary by the same amount. t HP min is the lesser of tCL minimum and tCH minimum actually applied to the device CK and CK# inputs, collectively during bank active. Figure 8: Derating Data Valid Window tHP - tQHS 3.8 3.750 3.700 3.6 3.650 3.600 3.550 3.500 3.4 3.450 3.400 3.2 3.350 3.300 -262/-26A/-265 @ tCK = 10ns -262/-26A/-265 @ tCK = 7.5ns NA -335 @ tCK = 6ns ns 3.0 3.250 2.8 2.6 2.500 2.463 2.425 2.388 2.4 2.350 2.313 2.275 2.238 2.200 2.163 2.2 2.125 2.0 1.8 50/50 49.5/50.5 49/51 48.5/52.5 48/52 47.5/53.5 47/53 46.5/54.5 46/54 45.5/55.5 45/55 Clock Duty Cycle pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 21 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM 31. READs and WRITEs with auto precharge are not allowed to be issued until tRAS (MIN) can be satisfied prior to the internal precharge command being issued. 32. Any positive glitch in the nominal voltage must be less than 1/3 of the clock and not more than +400mV or 2.9V, whichever is less. Any negative glitch must be less than 1/3 of the clock cycle and not exceed either 300mV or 2.2V, whichever is more positive. However, the DC average cannot be below 2.3V minimum. 33. Normal Output Drive Curves: a. The full variation in driver pull-down current from minimum to maximum process, temperature and voltage will lie within the outer bounding lines of the V-I curve of Figure 9, Pull-Down Characteristics. b. The variation in driver pull-down current within nominal limits of voltage and temperature is expected, but not guaranteed, to lie within the inner bounding lines of the V-I curve of Figure 9, Pull-Down Characteristics. c. The full variation in driver pull-up current from minimum to maximum process, temperature and voltage will lie within the outer bounding lines of the V-I curve of Figure 10, Pull-Up Characteristics. d. The variation in driver pull-up current within nominal limits of voltage and temperature is expected, but not guaranteed, to lie within the inner bounding lines of the V-I curve of Figure 10, Pull-Up Characteristics. e. The full variation in the ratio of the maximum to minimum pull-up and pull-down current should be between 0.71 and 1.4, for device 34. 35. 36. 37. 38. 39. 40. Figure 9: Pull-Down Characteristics pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN drain-to-source voltages from 0.1V to 1.0 Volt, and at the same voltage and temperature. f. The full variation in the ratio of the nominal pull-up to pull-down current should be unity ±10 percent, for device drain-to-source voltages from 0.1V to 1.0V. The voltage levels used are derived from a minimum VDD level and the referenced test load. In practice, the voltage levels obtained from a properly terminated bus will provide significantly different voltage values. VIH overshoot: VIH (MAX) = VDDQ + 1.5V for a pulse width ≤ 3ns and the pulse width can not be greater than 1/3 of the cycle rate. VIL undershoot: VIL (MIN) = -1.5V for a pulse width ≤ 3ns and the pulse width can not be greater than 1/3 of the cycle rate. VDD and VDDQ must track each other. t HZ (MAX) takes precedence over tDQSCK (MAX) + tRPST (MAX) condition. tLZ (MIN) will prevail over tDQSCK (MIN) + tRPRE (MAX) condition. t RPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). During initialization, VDDQ, VTT, and VREF must be equal to or less than VDD + 0.3V. Alternatively, VTT may be 1.35V maximum during power up, even if VDD/VDDQ are 0V, provided a minimum of 42Ω of series resistance is used between the VTT supply and the input pin. For -335, -262, -26A and -265 speed grades, IDD3N is specified to be 35mA per DDR SDRAM at 100 MHz. Figure 10: Pull-Up Characteristics 22 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM 41. The current Micron part operates below the slowest JEDEC operating frequency of 83 MHz. As such, future die may not reflect this option. 42. Random addressing changing and 50 percent of data changing at every transfer. 43. Random addressing changing and 100 percent of data changing at every transfer. 44. CKE must be active (high) during the entire time a refresh command is executed. That is, from the time the AUTO REFRESH command is registered, CKE must be active at each rising clock edge, until tREF later. 45. IDD2N specifies the DQ, DQS, and DM to be driven to a valid high or low logic level. IDD2Q is similar to IDD2F except IDD2Q specifies the pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 46. 47. 48. 49. 23 address and control inputs to remain stable. Although IDD2F, IDD2N, and IDD2Q are similar, IDD2F is “worst case.” Whenever the operating frequency is altered, not including jitter, the DLL is required to be reset. This is followed by 200 clock cycles. Leakage number reflects the worst case leakage possible through the module pin, not what each memory device contributes. When an input signal is HIGH or LOW, it is defined as a steady state logic HIGH or logic LOW. The -335 speed grade will operate with tRAS (MIN) = 40ns and tRAS (MAX) = 120,000ns at any slower frequency. Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Initialization Figure 11: Initialization Flow Diagram To ensure device operation the DRAM must be initialized as described below: 1. Simultaneously apply power to VDD and VDDQ. 2. Apply VREF and then VTT power. 3. Assert and hold CKE at a LVCMOS logic low. 4. Provide stable CLOCK signals. 5. Wait at least 200µs. 6. Bring CKE high and provide at least one NOP or DESELECT command. At this point the CKE input changes from a LVCMOS input to a SSTL2 input only and will remain a SSTL_2 input unless a power cycle occurs. 7. Perform a PRECHARGE ALL command. 8. Wait at least tRP time, during this time NOPs or DESELECT commands must be given. 9. Using the LMR command program the Extended Mode Register (E0 = 0 to enable the DLL and E1 = 0 for normal drive or E1 = 1 for reduced drive, E2 through En must be set to 0; where n = most significant bit). 10. Wait at least tMRD time, only NOPs or DESELECT commands are allowed. 11. Using the LMR command program the Mode Register to set operating parameters and to reset the DLL. Note at least 200 clock cycles are required between a DLL reset and any READ command. 12. Wait at least tMRD time, only NOPs or DESELECT commands are allowed. 13. Issue a PRECHARGE ALL command. 14. Wait at least tRP time, only NOPs or DESELECT commands are allowed. 15. Issue an AUTO REFRESH command (Note this may be moved prior to step 13). 16. Wait at least tRFC time, only NOPs or DESELECT commands are allowed. 17. Issue an AUTO REFRESH command (Note this may be moved prior to step 13). 18. Wait at least tRFC time, only NOPs or DESELECT commands are allowed. 19. Although not required by the Micron device, JEDEC requires a LMR command to clear the DLL bit (set M8 = 0). If a LMR command is issued the same operating parameters should be utilized as in step 11. 20. Wait at least tMRD time, only NOPs or DESELECT commands are allowed. 21. At this point the DRAM is ready for any valid command. Note 200 clock cycles are required between step 11 (DLL Reset) and any READ command. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN Step 24 1 VDD and VDDQ Ramp 2 Apply VREF and VTT 3 CKE must be LVCMOS Low 4 Apply stable CLOCKs 5 Wait at least 200us 6 Bring CKE High with a NOP command 7 PRECHARGE ALL 8 Assert NOP or DESELECT for tRP time 9 Configure Extended Mode Register 10 Assert NOP or DESELECT for tMRD time 11 Configure Load Mode Register and reset DLL 12 Assert NOP or DESELECT for tMRD time 13 PRECHARGE ALL 14 Assert NOP or DESELECT for tRP time 15 Issue AUTO REFRESH command 16 Assert NOP or DESELECT commands for tRFC 17 Issue AUTO REFRESH command 18 Assert NOP or DESELECT for tRFC time 19 Optional LMR command to clear DLL bit 20 Assert NOP or DESELECT for tMRD time 21 DRAM is ready for any valid command Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Figure 12: Component Case Temperature vs. Air Flow 100 Ambient Temperature = 25º C 90 Tmax- memory stress software Degrees Celsius 80 70 Tave- memory stress software 60 50 Tave- 3D gaming software 40 30 Minimum Air Flow 20 2.0 1.0 0.5 0.0 Air Flow (meters/sec) NOTE: 1. Micron Technology, Inc. recommends a minimum air flow of 1 meter/second (~197 LFM) across the module. 2. The component case temperature measurements shown above were obtained experimentally. The typical system to be used for experimental purposes is a dual-processor 600 MHz work station, fully loaded, with four comparable registered memory modules. Case temperatures charted represent worst-case component locations on modules installed in the internal slots of the system. 3. Temperature versus air speed data is obtained by performing experiments with the system motherboard removed from its case and mounted in a Eiffel-type low air speed wind tunnel. Peripheral devices installed on the system motherboard for testing are the processor(s) and video card, all other peripheral devices are mounted outside of the wind tunnel test chamber. 4. The memory diagnostic software used for determining worst-case component temperatures is a memory diagnostic software application developed for internal use by Micron Technology, Inc. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 25 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM SPD Clock and Data Conventions SPD Acknowledge Data states on the SDA line can change only during SCL LOW. SDA state changes during SCL HIGH are reserved for indicating start and stop conditions (as shown in Figure 13, Data Validity, and Figure 14, Definition of Start and Stop). Acknowledge is a software convention used to indicate successful data transfers. The transmitting device, either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle, the receiver will pull the SDA line LOW to acknowledge that it received the eight bits of data (as shown in Figure 15, Acknowledge Response From Receiver). The SPD device will always respond with an acknowledge after recognition of a start condition and its slave address. If both the device and a WRITE operation have been selected, the SPD device will respond with an acknowledge after the receipt of each subsequent eight-bit word. In the read mode the SPD device will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is generated by the master, the slave will continue to transmit data. If an acknowledge is not detected, the slave will terminate further data transmissions and await the stop condition to return to standby power mode. SPD Start Condition All commands are preceded by the start condition, which is a HIGH-to-LOW transition of SDA when SCL is HIGH. The SPD device continuously monitors the SDA and SCL lines for the start condition and will not respond to any command until this condition has been met. SPD Stop Condition All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when SCL is HIGH. The stop condition is also used to place the SPD device into standby power mode. Figure 13: Data Validity Figure 14: Definition of Start and Stop SCL SCL SDA SDA DATA STABLE DATA CHANGE DATA STABLE START BIT STOP BIT Figure 15: Acknowledge Response From Receiver SCL from Master 8 9 Data Output from Transmitter Data Output from Receiver Acknowledge pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 26 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 18: EEPROM Device Select Code The most significant bit (b7) is sent first DEVICE TYPE IDENTIFIER SELECT CODE CHIP ENABLE RW b7 b6 b5 b4 b3 b2 b1 b0 1 0 0 1 1 1 0 0 SA2 SA2 SA1 SA1 SA0 SA0 RW RW Memory Area Select Code (two arrays) Protection Register Select Code Table 19: EEPROM Operating Modes MODE RW BIT WC BYTES 1 0 1 1 0 0 VIH or VIL VIH or VIL VIH or VIL VIH or VIL VIL VIL 1 1 1 ≥1 1 ≤ 16 Current Address Read Random Address Read Sequential Read Byte Write Page Write INITIAL SEQUENCE START, Device Select, RW = ‘1’ START, Device Select, RW = ‘0’, Address reSTART, Device Select, RW = ‘1’ Similar to Current or Random Address Read START, Device Select, RW = ‘0’ START, Device Select, RW = ‘0’ Figure 16: SPD EEPROM Timing Diagram tF t HIGH tR t LOW SCL t SU:STA t HD:STA t SU:DAT t HD:DAT t SU:STO SDA IN t DH t AA t BUF SDA OUT UNDEFINED pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 27 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 20: Serial Presence-Detect EEPROM DC Operating Conditions All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V PARAMETER/CONDITION SYMBOL MIN MAX UNITS VDDSPD VIH VIL VOL ILI ILO ISB ICC 2.3 VDD × 0.7 -1 – – – – – 3.6 VDD + 0.5 VDD +0.3 0.4 10 10 30 2 V V V V µA µA µA mA SUPPLY VOLTAGE INPUT HIGH VOLTAGE: Logic 1; All inputs INPUT LOW VOLTAGE: Logic 0; All inputs OUTPUT LOW VOLTAGE: IOUT = 3mA INPUT LEAKAGE CURRENT: VIN = GND to VDD OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other inputs = VSS or VDD POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz Table 21: Serial Presence-Detect EEPROM AC Operating Conditions All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V PARAMETER/CONDITION SCL LOW to SDA data-out valid Time the bus must be free before a new transition can start Data-out hold time SDA and SCL fall time Data-in hold time Start condition hold time Clock HIGH period Noise suppression time constant at SCL, SDA inputs Clock LOW period SDA and SCL rise time SCL clock frequency Data-in setup time Start condition setup time Stop condition setup time WRITE cycle time SYMBOL MIN MAX UNITS NOTES tAA 0.2 1.3 200 0.9 µs µs ns ns µs µs µs ns µs µs KHz ns µs µs ms 1 tBUF tDH tF tHD:DAT tHD:STA tHIGH 300 0 0.6 0.6 tI tLOW 50 1.3 tR 0.3 400 fSCL tSU:DAT tSU:STA t SU:STO tWRC 100 0.6 0.6 10 2 2 3 4 NOTE: 1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL = 1 and the falling or rising edge of SDA. 2. This parameter is sampled. 3. For a reSTART condition, or following a WRITE cycle. 4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 28 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 22: Serial Presence-Detect Matrix (256MB, 512MB, and 1GB) “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31 BYTE DESCRIPTION ENTRY (VERSION) 0 1 2 3 Number of SPD Bytes Used by Micron Total Number of Bytes in SPD Device Fundamental Memory Type Number of Row Addresses on Assembly Number of Column Addresses on Assembly Number of Physical Ranks on DIMM Module Data Width Module Data Width (Continued) Module Voltage Interface Levels 128 256 SDRAM DDR 12, 13 80 08 07 0C 80 08 07 0D 80 08 07 0D 10, 11 0A 0A 0B 02 40 00 04 60 70 75 70 75 2 40 00 04 60 70 75 70 75 2 40 00 04 60 70 75 70 75 00 80 08 00 82 08 00 82 08 00 01 00 01 00 01 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 MT16VDDT3264A MT16VDDT6464A MT16VDDT12864A 2 64 0 SSTL 2.5V 6ns (-335) SDRAM Cycle Time, tCK, (CAS Latency 7ns (-262/-26A) = 2.5) (See note 1) 7.5ns (-265) 0.7ns (-335) SDRAM Access From Clock, tAC 0.75ns (-262/-26A/-265) (CAS Latency = 2.5) None Module Configuration Type 15.62µs, 7.8µs/SELF Refresh Rate/Type 8 SDRAM Device Width (Primary DDR SDRAM) None Error-Checking DDR SDRAM Data Width 1 clock Minimum Clock Delay, Back-to-Back Random Column Access 2, 4, 8 Burst Lengths Supported 4 Number of Banks on DDR SDRAM Device 2, 2.5 CAS Latencies Supported 0 CS Latency 1 WE Latency Unbuffered/Diff. SDRAM Module Attributes Clock Fast/Concurrent AP SDRAM Device Attributes: General 7.5ns (-335/-262/-26A) SDRAM Cycle Time, tCK 10ns (-265 (CAS Latency = 2) 0E 04 0C 01 02 20 0E 04 0C 01 02 20 0E 04 0C 01 02 20 C0 75 A0 C0 75 A0 C0 75 A0 0.7ns (-335) 0.75ns (-262/-26A/-265) 70 75 70 75 70 75 24 SDRAM Access From CK, tAC (CAS Latency = 2) 25 SDRAM Cycle Time, tCK (CAS Latency = 1.5) N/A 00 00 00 26 SDRAM Access From CK, tAC (CAS Latency = 1.5) N/A 00 00 00 27 Minimum Row Precharge Time, tRP (see note 4) 18ns (-335) 15ns (-262) 20ns (-26A/-265) 48 3C 50 48 3C 50 48 3C 50 pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 29 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 22: Serial Presence-Detect Matrix (256MB, 512MB, and 1GB) (Continued) “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31 BYTE 28 29 30 31 DESCRIPTION 12ns (-335) Minimum Row Active to Row Active, t 15ns (-262/-26A/-265) RRD 18ns (-335) Minimum Ras# to CAS# Delay, tRCD 15ns (-262) (see note 4) 20ns (-26A/-265) 42ns (-335) Minimum RAS# Pulse Width, tRAS, 45ns (-262/-26A/-265) (see note 2) Module Rank Density 32 Address and Command Setup Time, tIS, (see note 3) 33 Address and Command Hold Time, tIH, (see note 3) 34 Data/Data Mask Input Setup Time, tDS 35 Data/Data Mask Input Hold Time, tDH 36-40 Reserved 41 Min Active Auto Refresh Time, tRC 42 43 SDRAM Device Max DQS-DQ Skew Time, tDQSQ 45 SDRAM Device Max Read Data Hold Skew Factor, tQHS 46-61 Reserved 47 DIMM Height 46-61 Reserved 62 SPD Revision 63 Checksum For Bytes 0-62 Manufacturer’s JEDEC ID Code Manufacturer’s JEDEC ID Code Manufacturing Location Module Part Number (ASCII) PCB Identification Code Identification Code (Continued) Year of Manufacture in BCD pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN MT16VDDT3264A MT16VDDT6464A MT16VDDT12864A 30 3C 30 3C 30 3C 48 3C 50 2A 2D 48 3C 50 2A 2D 48 3C 50 2A 2D 128MB, 256MB, 512MB 0.8ns (-335) 1.0ns (-262-26A/-265) 20 40 80 80 A0 80 A0 80 A0 0.8ns (-335) 1.0ns (-262/-26A/-265) 80 A0 80 A0 80 A0 0.45ns (-335) 0.5ns (-262/-26A/-265) 45 50 45 50 45 50 0.45ns (-335) 0.5ns (-262/-26A/-265) 45 50 45 50 45 50 00 3C 41 48 4B 00 3C 41 48 4B 00 3C 41 48 4B 30 34 30 34 30 34 0.45ns (-335) 0.5ns (-262/-26A/-265) 2D 32 2D 32 2D 32 0.55ns (-335) 0.75ns (-262/-26A/-265) 55 75 55 75 55 75 00 01/11 00 10 05/15 98/A8 C5/D5 F5/05 2C FF 01–0C Variable Data Variable Data 00 Variable Data 00 01/11 00 10 28/38 BB/CB E8/F8 18/28 2C FF 01–0C Variable Data Variable Data 00 Variable Data 00 01/11 00 10 69/79 FC/0C 29/39 59/69 2C FF 01–0C Variable Data Variable Data 00 Variable Data 60ns (-335/-262) 65ns (-26A/-265) 72ns (-335) Minimum Auto Refresh to Active/ tRFC 75ns (-262/-26A/-265) Auto Refresh Command Period, 12ns (-335) SDRAM Device Max Cycle Time, tCKMAX 13ns (-262/-26A/-265) 44 64 65-71 72 73-90 91 92 93 ENTRY (VERSION) Standard/Low-Profile Release 1.0 -335 -262 -26A -265 MICRON (Continued) 01–12 0 30 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 22: Serial Presence-Detect Matrix (256MB, 512MB, and 1GB) (Continued) “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31 BYTE DESCRIPTION ENTRY (VERSION) 94 Week of Manufacture in BCD 95-98 Module Serial Number 99-127 Manufacturer-Specific Data (RSVD) MT16VDDT3264A MT16VDDT6464A MT16VDDT12864A Variable Data Variable Data – Variable Data Variable Data – Variable Data Variable Data – NOTE: 1. Value for -26A tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device spec. value is 7.5ns. 2. The value of tRAS used for -26A/-265 modules is calculated from tRC - tRP. Actual device spec. value is 40 ns. 3. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the faster minimum slew rate is met. 4. The value of tRP, tRCD and tRAP for -335 modules indicated as 18ns to align with industry specifications; actual DDR SDRAM device specification is 15ns. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 31 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 23: Serial Presence-Detect Matrix (2GB) “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31 BYTE 0 1 2 3 4 5 6 7 8 9 DESCRIPTION Number of SPD Bytes Used by Micron Total Number of Bytes in SPD Device Fundamental Memory Type Number of Row Addresses on Assembly Number of Column Addresses on Assembly Number of Physical Ranks on DIMM Module Data Width Module Data Width (Continued) Module Voltage Interface Levels SDRAM Cycle Time, tCK, (CAS Latency = 2.5) (See note 1) ENTRY (VERSION) MT16VDDT25664A 128 256 SDRAM DDR 14 11 2 64 0 SSTL 2.5V 6ns (-335) 7ns (-262/-26A) 7.5ns (-265) 0.7ns (-335) 0.75ns (-262/-26A/-265) None 15.62µs, 7.8µs/SELF 8 None 1 clock 80 08 07 0E 0B 02 40 00 04 60 70 75 70 75 00 82 08 00 01 2, 4, 8 4 2, 2.5 0 1 Unbuffered/Diff. Clock Fast/Concurrent AP 7.5ns (-335/-262/-26A) 10ns (-265) 0.7ns (-335) 0.75ns (-262/-26A/-265) N/A 0E 04 0C 01 02 20 C0 75 A0 70 75 00 10 SDRAM Access From Clock, tAC, (CAS Latency = 2.5) 11 12 13 14 15 16 17 18 19 20 21 22 23 Module Configuration Type Refresh Rate/Type SDRAM Device Width (Primary DDR SDRAM) Error-Checking DDR SDRAM Data Width Minimum Clock Delay, Back-to-Back Random Column Access Burst Lengths Supported Number of Banks on DDR SDRAM Device CAS Latencies Supported CS Latency WE Latency SDRAM Module Attributes SDRAM Device Attributes: General SDRAM Cycle Time, tCK, (CAS Latency = 2) 24 SDRAM Access From CK, tAC, (CAS Latency = 2) 25 SDRAM Cycle Time, tCK, (CAS Latency = 1.5) 26 SDRAM Access From CK, tAC, (CAS Latency = 1.5) N/A 00 27 Minimum Row Precharge Time, tRP (see note 4) 28 Minimum Row Active to Row Active, tRRD 29 Minimum Ras# to CAS# Delay, tRCD (see note 4) 30 Minimum RAS# Pulse Width, tRAS, (see note 2) 31 32 Module Rank Density 18ns (-335) 15ns (-262) 20ns (-26A/-265) 12ns (-335) 15ns (-262/-26A/-265) 18ns (-335) 15ns (-262) 20ns (-26A/-265) 42ns (-335) 45ns (-262/-26A/-265) 1GB 0.8ns (-335) 1.0ns (-262-26A/-265) 48 3C 50 30 3C 48 3C 50 2A 2D 01 80 A0 Address and Command Setup Time, tIS, (see note 3) pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 32 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Table 23: Serial Presence-Detect Matrix (2GB) (Continued) “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31 BYTE DESCRIPTION 33 Address and Command Hold Time, tIH, (See note 2) 34 Data/Data Mask Input Setup Time, tDS 35 Data/Data Mask Input Hold Time, tDH 36-40 41 ENTRY (VERSION) MT16VDDT25664A 0.8ns (-335) 1.0ns (-262/-26A/-265) 0.45ns (-335) 0.5ns (-262/-26A/-265) 0.45ns (-335) 0.5ns (-262/-26A/-265) 60ns (-335/-262) 65ns (-26A/-265) 120ns (all speed grades) 80 A0 45 50 45 50 00 3C 41 78 12ns (-335) 13ns (-262/-26A/-265) 0.45ns (-335) 0.5ns (-262/-26A/-265) 0.55ns (-335) 0.75ns (-262/-26A/-265) 30 34 2D 32 55 75 Reserved Min Active Auto Refresh Time tRC 42 Minimum Auto Refresh to Active/ Auto Refresh Command Period, tRFC 43 SDRAM Device Max Cycle Time tCKMAX 44 SDRAM Device Max DQS-DQ Skew Time tDQSQ 45 46-61 47 46-61 62 63 SDRAM Device Max Read Data Hold Skew Factor tQHS Reserved DIMM Height Reserved SPD Revision Checksum For Bytes 0-62 64 65-71 72 73-90 91 92 93 94 95-98 99-127 Manufacturer’s JEDEC ID Code Manufacturer’s JEDEC ID Code Manufacturing Location Module Part Number (ASCII) PCB Identification Code Identification Code (Continued) Year of Manufacture in BCD Week of Manufacture in BCD Module Serial Number Manufacturer-specific Data (RSVD) Standard/Low-Profile Release 1.0 -335 -262 -26A -265 MICRON (Continued) 01–12 0 00 01/11 00 10 1B/2B AB/BB D8/E8 1C/2C 2C FF 01–0C Variable Data Variable Data 00 Variable Data Variable Data Variable Data – NOTE: 1. Value for -26A tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device spec. value is 7.5ns. 2. The value of tRAS used for -26A/-265 modules is calculated from tRC - tRP. Actual device spec. value is 40 ns. 3. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the faster minimum slew rate is met. 4. The value of tRP, tRCD and tRAP for -335 modules indicated as 18ns to align with industry specifications; actual DDR SDRAM device specification is 15ns. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 33 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Figure 17: 184-PIN DDR DIMM Dimensions – Standard PCB 0.157 (4.00) MAX FRONT VIEW 5.256 (133.50) 5.244 (133.20) 0.079 (2.00) R (4X) U1 U2 U3 U4 U6 U7 U8 U9 1.256 (31.9) 1.244 (31.6) 0.700 (17.78) TYP. 0.098 (2.50) D (2X) 0.091 (2.30) TYP. 0.035 (0.90) R PIN 1 PIN 92 0.250 (6.35) TYP. 0.050 (1.27) TYP. 0.091 (2.30) TYP. 0.054 (1.37) 0.046 (1.17) 0.040 (1.02) TYP. 4.750 (120.65) BACK VIEW U19 U10 U11 U12 U13 PIN 184 U15 U16 U18 PIN 93 0.150 (3.80) 1.95 (49.53) U17 2.55 (64.77) 0.150 (3.80) 0.394 (10.00) TYP. TYP. NOTE: All dimensions are in inches (millimeters); MAX or typical where noted. MIN pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 34 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. 256MB, 512MB, 1GB, 2GB (x64, DR) 184-PIN DDR SDRAM UDIMM Figure 18: 184-PIN DDR DIMM Dimensions – Low-Profile PCB 5.256 (133.50) 5.244 (133.20) U10 .00) R (4X) U2 U1 U3 U7 U6 U4 U8 U9 1.156 (29.36) 1.144 (29.06) 0.700 (17.78) TYP. .50) D (2X) 0) TYP. 0.035 (0.90) R PIN 1 PIN 92 0.250 (6.35) TYP. 0.050 (1.27) TYP. 0.091 (2.30) TYP. 0. 0. 0.040 (1.02) TYP. 4.750 (120.65) TYP. BACK VIEW U19 U18 U17 U14 U16 U13 U12 U11 PIN 93 PIN 184 0.150 (3.80) 0.394 (10.00) TYP TYP NOTE: All dimensions arein inches (millimeters); MAX or typical where noted. MIN Data Sheet Designation devices. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur. The Released designation applies to MT16VDDT3264A, MT16VDDT6464A, and MT16VDDT12864A only. Advance: This datasheet contains initial descriptions of products still under development. The Advance designation applies to MT16VDDT25664A only. Released (No Mark): This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range for production ® 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 E-mail: [email protected], Internet: http://www.micron.com, Customer Comment Line: 800-932-4992 Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc. All other trademarks are the property of their respective owners. pdf: 09005aef80739fa5, source: 09005aef807397e5 DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN 35 Micron Technology, Inc., reserves the right to change products or specifications without notice.. ©2004 Micron Technology, Inc