PD -96175 IRFP4568PbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits D G S VDSS RDS(on) typ. max. ID (Silicon Limited) Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free 150V 4.8m 5.9m 171 : : D G D S TO-247AC IRFP4568PbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS Parameter Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) c Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw e dv/dt TJ TSTG Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy c d f Units 171 121 684 517 3.45 ± 30 18.5 -55 to + 175 A W W/°C V V/ns °C 300 x x 10lb in (1.1N m) 763 See Fig. 14, 15, 22a, 22b, mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA www.irf.com Parameter j Junction-to-Case Case-to-Sink, Flat Greased Surface Junction-to-Ambient ij Typ. Max. Units ––– 0.24 ––– 0.29 ––– 40 °C/W 1 09/08/08 IRFP4568PbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Min. Typ. Max. Units 150 ––– ––– 3.0 ––– ––– ––– ––– ––– ––– 0.17 4.8 ––– ––– ––– ––– ––– 1.0 Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 5mA 5.9 mΩ VGS = 10V, ID = 103A 5.0 V VDS = VGS, ID = 250µA VDS =150V, VGS = 0V 20 µA 250 VDS = 150V, VGS = 0V, TJ = 125°C 100 VGS = 20V nA VGS = -20V -100 ––– Ω c f Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) g h 162 ––– ––– ––– 151 227 ––– 52 ––– ––– 55 ––– ––– 96 ––– ––– 27 ––– ––– 119 ––– ––– 47 ––– ––– 84 ––– ––– 10470 ––– ––– 977 ––– ––– 203 ––– ––– 897 ––– ––– 1272 ––– Conditions S VDS = 50V, ID = 103A ID = 103A VDS = 75V nC VGS = 10V ID = 103A, VDS =0V, VGS = 10V VDD = 98V ID =103A ns RG =1.0Ω VGS = 10V VGS = 0V VDS = 50V pF ƒ = 1.0MHz, (See Fig 5) VGS = 0V, VDS = 0V to 120V (SeeFig.11) VGS = 0V, VDS = 0V to 120V f f f h g Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM c Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.144mH RG = 25Ω, IAS = 103A, VGS =10V. Part not recommended for use above this value. ISD ≤ 103A, di/dt ≤ 360A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 Min. Typ. Max. Units ––– ––– 171 A ––– ––– 684 A Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 103A, VGS = 0V TJ = 25°C VR = 100V, TJ = 125°C IF = 103A di/dt = 100A/µs TJ = 25°C f S ––– ––– 1.3 V ––– 110 ––– ns ––– 133 ––– ––– 515 ––– nC TJ = 125°C ––– 758 ––– ––– 8.8 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) f Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. www.irf.com IRFP4568PbF 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 1 ≤60µs PULSE WIDTH Tj = 25°C 0.1 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 4.5V ≤60µs PULSE WIDTH Tj = 175°C 4.5V 1 0.01 0.1 1 10 0.1 100 Fig 1. Typical Output Characteristics 100 Fig 2. Typical Output Characteristics 1000 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) T J = 175°C 100 T J = 25°C 10 1 VDS = 50V ≤60µs PULSE WIDTH 0.1 ID = 103A VGS = 10V 2.5 2.0 1.5 1.0 0.5 3 4 5 6 7 8 9 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd 100000 C oss = C ds + C gd Ciss 10000 Coss 1000 Crss 100 14.0 VGS, Gate-to-Source Voltage (V) 1000000 C, Capacitance (pF) 1 ID= 103A 12.0 VDS= 120V VDS= 75V 10.0 VDS= 30V 8.0 6.0 4.0 2.0 0.0 10 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 50 100 150 200 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFP4568PbF 10000 T J = 175°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 25°C 100 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 100 1msec DC 10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 1.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.1 1.8 160 ID, Drain Current (A) 140 120 100 80 60 40 20 0 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 180 75 Id = 5mA 185 180 175 170 165 160 155 150 145 140 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 3500 EAS , Single Pulse Avalanche Energy (mJ) 12.0 ID TOP 21.5A 29.3A BOTTOM 103A 3000 10.0 2500 8.0 Energy (µJ) 1000 190 T C , Case Temperature (°C) 2000 6.0 1500 4.0 1000 2.0 500 0 0.0 0 20 40 60 80 100 120 140 160 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 50 10 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 25 1 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFP4568PbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 τJ 0.001 1E-005 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 R1 R1 0.0001 τ3 τ3 τC 0.06336 τ 0.11088 τi (sec) 0.000278 0.005836 0.11484 0.053606 Ri (°C/W) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 0.05 10 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 900 800 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 103A 700 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFP4568PbF 60 5.0 4.5 4.0 3.5 3.0 ID = 250µA 40 TJ = 25°C TJ = 125°C 2.0 30 20 ID = 1.0mA ID = 1.0A 2.5 10 1.5 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 400 600 800 1000 T J , Temperature ( °C ) diF /dt (A/µs) Fig 16. Threshold Voltage vs. Temperature Fig. 17 - Typical Recovery Current vs. dif/dt 70 3600 IF = 103A V R = 100V 60 IF = 68A V R = 100V 3200 TJ = 25°C TJ = 125°C 50 TJ = 25°C TJ = 125°C 2800 2400 40 QRR (A) IRR (A) 50 IF = 68A V R = 100V 5.5 IRR (A) VGS(th), Gate threshold Voltage (V) 6.0 2000 30 1600 20 1200 10 800 0 400 0 200 400 600 800 1000 0 200 diF /dt (A/µs) 400 600 800 1000 diF /dt (A/µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 4000 IF = 103A V R = 100V 3600 3200 TJ = 25°C TJ = 125°C QRR (A) 2800 2400 2000 1600 1200 800 400 0 200 400 600 800 1000 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFP4568PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFP4568PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. 8 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2008 www.irf.com