Maxim MAX5580BETP Buffered, fast-settling, quad, 12-/10-/8-bit, voltage-output dac Datasheet

19-3164; Rev 3; 7/07
KIT
ATION
EVALU
E
L
B
A
IL
AVA
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
The MAX5580–MAX5585 quad, 12-/10-/8-bit, voltageoutput, digital-to-analog converters (DACs) offer
buffered outputs and a 3µs maximum settling time at the
12-bit level. The DACs operate from a +2.7V to +5.25V
analog supply and a separate +1.8V to +5.25V digital
supply. The 20MHz, 3-wire, serial interface is compatible with SPI™, QSPI™, MICROWIRE™, and digital signal processor (DSP) protocol applications. Multiple
devices can share a common serial interface in directaccess or daisy-chained configuration. The MAX5580–
MAX5585 provide two multifunctional, user-programmable, digital I/O ports. The externally selectable power-up
states of the DAC outputs are either zero scale, midscale, or full scale. Software-selectable FAST and SLOW
settling modes decrease settling time in FAST mode, or
reduce supply current in SLOW mode.
The MAX5580/MAX5581 are 12-bit DACs, the
MAX5582/MAX5583 are 10-bit DACs, and the
MAX5584/MAX5585 are 8-bit DACs. The MAX5580/
MAX5582/MAX5584 provide unity-gain-configured output buffers, while the MAX5581/MAX5583/MAX5585
provide force-sense-configured output buffers. The
MAX5580–MAX5585 operate over the extended -40°C
to +85°C temperature range and are available in
space-saving, 5mm x 5mm x 0.8mm, 20-pin, thin QFN
and TSSOP packages.
Features
♦ 3µs (max) 12-Bit Settling Time to 0.5 LSB
♦ Quad, 12-/10-/8-Bit Serial DACs in TSSOP and
Thin QFN (5mm x 5mm x 0.8mm) Packages
♦ ±1 LSB (max) INL and DNL at 12-Bit Resolution
♦ Two User-Programmable Digital I/O Ports
♦ Single +2.7V to +5.25V Analog Supply
♦ +1.8V to AVDD Digital Supply
♦ 20MHz, 3-Wire, SPI-/QSPI-/MICROWIRE-/DSPCompatible Serial Interface
♦ Glitch-Free Outputs Power Up to Zero Scale,
Midscale, or Full Scale Controlled by PU Pin
♦ Unity-Gain or Force-Sense-Configured
Output Buffers
Ordering Information
PART
TEMP RANGE
MAX5580AEUP
-40°C to +85°C
20 TSSOP-EP*
MAX5580AETP
-40°C to +85°C
20 Thin QFN-EP*
*EP = Exposed paddle.
Ordering Information continued at end of data sheet.
Selector Guide
Applications
Portable Instrumentation
Automatic Test Equipment (ATE)
Digital Offset and Gain Adjustment
Automatic Tuning
Programmable Voltage and Current Sources
Programmable Attenuators
Industrial Process Controls
Motion Control
Microprocessor (µP)-Controlled Systems
Power Amplifier Control
Fast Parallel-DAC to Serial-DAC Upgrades
Pin Configurations appear at end of data sheet.
SPI/QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.
PIN-PACKAGE
PART
OUTPUT BUFFER
CONFIGURATION
RESOLUTION
(BITS)
INL
(LSB
max)
MAX5580AEUP
Unity gain
12
±1
MAX5580AETP
Unity gain
12
±1
MAX5580BEUP
Unity gain
12
±4
MAX5580BETP
Unity gain
12
±4
MAX5581AEUP
Force sense
12
±1
MAX5581AETP
Force sense
12
±1
MAX5581BEUP
Force sense
12
±4
MAX5581BETP
Force sense
12
±4
MAX5582EUP
Unity gain
10
±1
MAX5582ETP
Unity gain
10
±1
MAX5583EUP
Force sense
10
±1
MAX5583ETP
Force sense
10
±1
MAX5584EUP
Unity gain
8
±0.5
MAX5584ETP
Unity gain
8
±0.5
MAX5585EUP
Force sense
8
±0.5
MAX5585ETP
Force sense
8
±0.5
________________________________________________________________ Maxim Integrated Products
1
For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX5580–MAX5585
General Description
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
ABSOLUTE MAXIMUM RATINGS
AVDD to DVDD ........................................................................±6V
AGND to DGND ..................................................................±0.3V
AVDD to AGND, DGND.............................................-0.3V to +6V
DVDD to AGND, DGND ............................................-0.3V to +6V
FB_, OUT_,
REF to AGND ........-0.3V to the lower of (AVDD + 0.3V) or +6V
SCLK, DIN, CS, PU,
DSP to DGND .......-0.3V to the lower of (DVDD + 0.3V) or +6V
UPIO1, UPIO2
to DGND ...............-0.3V to the lower of (DVDD + 0.3V) or +6V
Maximum Current into Any Pin .........................................±50mA
Continuous Power Dissipation (TA = +70°C)
20-Pin TSSOP (derate 21.7mW/°C above +70°C)........1739mW
20-Pin Thin QFN (derate 20.8mW/°C above +70°C) ....1667mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Junction Temperature ......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(AVDD = 2.7V to 5.25V, DVDD = 1.8V to AVDD, AGND = 0, DGND = 0, VREF = 2.5V (for AVDD = 2.7V to 5.25V), VREF = 4.096V (for
AVDD = 4.5V to 5.25V), RL = 10kΩ, CL = 100pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
STATIC ACCURACY
Resolution
N
MAX5580/MAX5581
12
MAX5582/MAX5583
10
MAX5584/MAX5585
Integral Nonlinearity
Differential Nonlinearity
Offset Error
INL
DNL
VOS
VREF = 2.5V at
AVDD = 2.7V and
VREF = 4.096V at
AVDD = 5.25V
(Note 2)
8
MAX5580A/MAX5581A (12 bit)
MAX5580B/MAX5581B (12 bit)
±4
MAX5582/MAX5583 (10 bit)
±0.5
±1
MAX5584/MAX5585 (8 bit)
±0.125
±0.5
LSB
Guaranteed monotonic (Note 2)
±1
MAX5580A/MAX5581A (12 bit), decimal code = 250
±5
MAX5580B/MAX5581B (12 bit), decimal code = 40
±5
±25
MAX5582/MAX5583 (10 bit), decimal code = 20
±5
±25
MAX5584/MAX5585 (8 bit), decimal code = 5
±5
±25
2
GE
Full-scale output
±1
±5
MAX5580A, VREF = 2.5V
±1.5
±7
MAX5581A, VREF = 4.096V
±0.5
±4
MAX5581A, VREF = 2.5V
±1
±5
MAX5580B/MAX5581B (12 bit)
±20
±40
MAX5582/MAX5583 (10 bit)
±5
±10
MAX5584/MAX5585 (8 bit)
±2
±3
1
_______________________________________________________________________________________
LSB
mV
ppm of
FS/°C
5
MAX5580A, VREF = 4.096V
Gain-Error Drift
±1
±2
Offset-Error Drift
Gain Error
Bits
LSB
ppm of
FS/°C
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
(AVDD = 2.7V to 5.25V, DVDD = 1.8V to AVDD, AGND = 0, DGND = 0, VREF = 2.5V (for AVDD = 2.7V to 5.25V), VREF = 4.096V (for
AVDD = 4.5V to 5.25V), RL = 10kΩ, CL = 100pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
Power-Supply Rejection
Ratio
PSRR
CONDITIONS
MIN
Full-scale output, AVDD = 2.7V to 5.25V
TYP
MAX
200
UNITS
µV/V
REFERENCE INPUT
Reference-Input Range
VREF
Reference-Input
Resistance
RREF
Reference Leakage
Current
0.25
Normal operation (no code dependence)
145
Shutdown mode
AVDD
200
0.5
V
kΩ
1
µA
DAC OUTPUT CHARACTERISTICS
SLOW mode, full scale
Output-Voltage Noise
FAST mode, full scale
Output-Voltage Range
(Note 3)
Unity gain
85
Force sense
67
Unity gain
140
Force sense
110
µVRMS
Unity-gain output
0
AVDD
Force-sense output
0
AVDD / 2
DC Output Impedance
V
Ω
38
AVDD = 5V, OUT_ to AGND, full scale, FAST mode
57
AVDD = 3V, OUT_ to AGND, full scale, FAST mode
45
Power-Up Time
From DVDD, applied until interface is functional
30
Wake-Up Time
Coming out of shutdown, outputs settled
40
µs
Output OUT_ and FB_
Open-Circuit Leakage
Current
Programmed in shutdown mode, force-sense
outputs only
0.01
µA
Short-Circuit Current
mA
60
µs
DIGITAL OUTPUTS (UPIO_)
Output High Voltage
VOH
ISOURCE = 0.5mA
Output Low Voltage
VOL
ISINK = 2mA
DVDD 0.5
V
0.4
V
DIGITAL INPUTS (SCLK, CS, DIN, DSP, UPIO_)
Input High Voltage
VIH
Input Low Voltage
VIL
DVDD ≥ 2.7V
2.4
DVDD < 2.7V
0.7 x
DVDD
V
DVDD > 3.6V
0.8
2.7V ≤ DVDD ≤ 3.6V
0.6
DVDD < 2.7V
0.2
Input Leakage Current
IIN
±0.1
Input Capacitance
CIN
10
±1
V
µA
pF
_______________________________________________________________________________________
3
MAX5580–MAX5585
ELECTRICAL CHARACTERISTICS (continued)
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
ELECTRICAL CHARACTERISTICS (continued)
(AVDD = 2.7V to 5.25V, DVDD = 1.8V to AVDD, AGND = 0, DGND = 0, VREF = 2.5V (for AVDD = 2.7V to 5.25V), VREF = 4.096V (for
AVDD = 4.5V to 5.25V), RL = 10kΩ, CL = 100pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
PU INPUT
Input High Voltage
VIH-PU
Input Low Voltage
VIL-PU
Input Leakage Current
IIN-PU
DVDD 200mV
V
PU still considered floating when connected to a
tri-state bus
200
mV
±200
nA
DYNAMIC PERFORMANCE
Voltage-Output Slew
Rate
SR
FAST mode
3.6
SLOW mode
1.6
FAST
mode
Voltage-Output Settling
Time (Note 4), Figure 5
V/µs
MAX5580/MAX5581 from code 322 to
code 4095 to 0.5 LSB
2
3
MAX5582/MAX5583 from code 10 to
code 1023 to 0.5 LSB
1.5
3
MAX5584/MAX5585 from code 3 to
code 255 to 0.5 LSB
1
2
MAX5580/MAX5581 from code 322 to
code 4095 to 0.5 LSB
3
6
MAX5582/MAX5583 from code 10 to
code 1023 0.5 LSB
2.5
6
MAX5584/MAX5585 from code 3 to
code 255 to 0.5 LSB
2
4
µs
tS
SLOW
mode
FB_ Input Voltage
0
FB_ Input Current
VREF / 2
V
0.1
µA
Unity gain
200
Force sense
150
Digital Feedthrough
CS = DVDD, code = zero scale, any digital input
from 0 to DVDD and DVDD to 0, f = 100kHz
0.1
nV-s
Digital-to-Analog Glitch
Impulse
Major carry transition
2
nV-s
DAC-to-DAC Crosstalk
(Note 6)
15
nV-s
Reference -3dB
Bandwidth (Note 5)
4
_______________________________________________________________________________________
kHz
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
(AVDD = 2.7V to 5.25V, DVDD = 1.8V to AVDD, AGND = 0, DGND = 0, VREF = 2.5V (for AVDD = 2.7V to 5.25V), VREF = 4.096V (for
AVDD = 4.5V to 5.25V), RL = 10kΩ, CL = 100pF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
POWER REQUIREMENTS
Analog Supply Voltage
Range
AVDD
2.70
5.25
V
Digital Supply Voltage
Range
DVDD
1.8
AVDD
V
Operating Supply
Current
Shutdown Supply
Current
IAVDD
+
IDVDD
SLOW mode, all digital inputs Unity gain
at DGND or DVDD, no load,
Force sense
VREF = 4.096V
0.9
1.6
1.6
2.4
FAST mode, all digital inputs
at DGND or DVDD, no load,
VREF = 4.096V
Unity gain
1.6
4
Force sense
2.3
4
0.5
1
IAVDD(SHDN)
No clocks, all digital inputs at DGND or DVDD, all
+
DACs in shutdown mode
IDVDD(SHDN)
mA
µA
Note 1: For the force-sense versions, FB_ is connected to its respective OUT_, and VOUT (max) = VREF / 2, unless otherwise noted.
Note 2: Linearity guaranteed from decimal code 250 to code 4095 for the MAX5580A/MAX5581A (12 bit, A grade), code 40 to code
4095 for the MAX5580B/MAX5581B (12 bit, B grade), code 20 to code 1023 for the MAX5582/MAX5583 (10 bit), and code 5
to code 255 for the MAX5584/MAX5585 (8 bit).
Note 3: Represents the functional range. The linearity is guaranteed at VREF = 2.5V (for AVDD from 2.7V to 5.25V), and VREF =
4.096V (for AVDD = 4.5V to 5.25V). See the Typical Operating Characteristics section for linearity at other voltages.
Note 4: Guaranteed by design.
Note 5: The reference -3dB bandwidth is measured with a 0.1VP-P sine wave on VREF and with full-scale input code.
Note 6: DC crosstalk is measured as follows: outputs of DACA–DACD are set to full scale and the output of DACD is measured.
While keeping DACD unchanged, the outputs of DACA–DACC are transitioned to zero scale and the ∆VOUT of DACD
is measured.
_______________________________________________________________________________________
5
MAX5580–MAX5585
ELECTRICAL CHARACTERISTICS (continued)
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
TIMING CHARACTERISTICS—DSP Mode Disabled (3V, 3.3V, 5V Logic) (Figure 1)
(DVDD = 2.7V to 5.25V, AGND = DGND = 0, TA = TMIN to TMAX, unless otherwise noted.)
PARAMETER
SYMBOL
SCLK Frequency
fSCLK
CONDITIONS
MIN
TYP
2.7V < DVDD < 5.25V
MAX
UNITS
20
MHz
SCLK Pulse-Width High
tCH
(Note 7)
20
SCLK Pulse-Width Low
tCL
(Note 7)
20
ns
ns
CS Fall to SCLK Rise Setup Time
tCSS
10
ns
SCLK Rise to CS Rise Hold Time
tCSH
5
ns
SCLK Rise to CS Fall Setup Time
tCS0
10
ns
DIN to SCLK Rise Setup Time
tDS
12
ns
DIN to SCLK Rise Hold Time
tDH
5
ns
SCLK Rise to DOUTDC1 Valid
Propagation Delay
tDO1
CL = 20pF, UPIO_ = DOUTDC1 mode
30
ns
SCLK Fall to DOUT_ Valid
Propagation Delay
tDO2
CL = 20pF, UPIO_ = DOUTDC0 or DOUTRB
mode
30
ns
CS Rise to SCLK Rise Hold Time
tCS1
MICROWIRE and SPI modes 0 and 3
CS Pulse-Width High
tCSW
10
ns
45
ns
UPIO_ TIMING CHARACTERISTICS
DOUT Tri-State Time when Exiting
DOUTDC0, DOUTDC1, and UPIO
Modes
tDOZ
CL = 20pF, from end of write cycle to UPIO_
in high impedance
100
ns
DOUTRB Tri-State Time from CS
Rise
tDRBZ
CL = 20pF, from rising edge of CS to UPIO_
in high impedance
20
ns
DOUTRB Tri-State Enable Time
from 8th SCLK Rise
tZEN
CL = 20pF, from 8th rising edge of SCLK to
UPIO_ driven out of tri-state
LDAC Pulse-Width Low
tLDL
LDAC Effective Delay
tLDS
CLR, MID, SET Pulse-Width Low
0
ns
Figure 5
20
ns
Figure 6
100
ns
20
tCMS
Figure 5
GPO Output Settling Time
tGP
Figure 6
GPO Output High-Impedance
Time
tGPZ
6
_______________________________________________________________________________________
ns
100
ns
100
ns
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
(DVDD = 1.8V to 2.7V, AGND = DGND = 0, TA = TMIN to TMAX, unless otherwise noted.)
PARAMETER
SYMBOL
SCLK Frequency
fSCLK
SCLK Pulse-Width High
CONDITIONS
MIN
1.8V < DVDD < 2.7V
TYP
MAX
UNITS
10
MHz
tCH
(Note 7)
40
ns
SCLK Pulse-Width Low
tCL
(Note 7)
40
ns
CS Fall to SCLK Rise Setup Time
tCSS
20
ns
SCLK Rise to CS Rise Hold Time
tCSH
5
ns
SCLK Rise to CS Fall Setup TIme
tCS0
10
ns
DIN to SCLK Rise Setup Time
tDS
20
ns
DIN to SCLK Rise Hold Time
tDH
5
ns
SCLK Rise to DOUTDC1 Valid
Propagation Delay
tDO1
CL = 20pF, UPIO_ = DOUTDC1 mode
60
ns
SCLK Fall to DOUT_ Valid
Propagation Delay
tDO2
CL = 20pF, UPIO_ = DOUTDC0 or DOUTRB
mode
60
ns
CS Rise to SCLK Rise Hold Time
tCS1
MICROWIRE and SPI modes 0 and 3
CS Pulse-Width High
tCSW
20
ns
90
ns
UPIO_ TIMING CHARACTERISTICS
DOUT Tri-State Time when
Exiting DOUTDC0, DOUTDC1,
and UPIO Modes
tDOZ
CL = 20pF, from end of write cycle to UPIO_
in high impedance
200
ns
DOUTRB Tri-State Time from CS
Rise
tDRBZ
CL = 20pF, from rising edge of CS to UPIO_
in high impedance
40
ns
DOUTRB Tri-State Enable Time
from 8th SCLK Rise
tZEN
CL = 20pF, from 8th rising edge of SCLK to
UPIO_ driven out of tri-state
LDAC Pulse-Width Low
tLDL
LDAC Effective Delay
tLDS
CLR, MID, SET Pulse-Width Low
0
ns
Figure 5
40
ns
Figure 6
200
ns
tCMS
Figure 5
40
ns
GPO Output Settling Time
tGP
Figure 6
GPO Output High-Impedance
Time
tGPZ
200
ns
200
ns
_______________________________________________________________________________________
7
MAX5580–MAX5585
TIMING CHARACTERISTICS—DSP Mode Disabled (1.8V Logic) (Figure 1)
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
TIMING CHARACTERISTICS—DSP Mode Enabled (3V, 3.3V, 5V Logic) (Figure 2)
(DVDD = 2.7V to 5.25V, AGND = DGND = 0, TA = TMIN to TMAX, unless otherwise noted.)
PARAMETER
SYMBOL
SCLK Frequency
fSCLK
CONDITIONS
MIN
TYP
2.7V < DVDD < 5.25V
MAX
UNITS
20
MHz
SCLK Pulse-Width High
tCH
(Note 7)
20
SCLK Pulse-Width Low
tCL
(Note 7)
20
ns
CS Fall to SCLK Fall Setup Time
tCSS
10
ns
DSP Fall to SCLK Fall Setup Time
tDSS
10
ns
SCLK Fall to CS Rise Hold Time
tCSH
5
ns
SCLK Fall to CS Fall Delay
tCS0
10
ns
SCLK Fall to DSP Fall Delay
tDS0
10
ns
DIN to SCLK Fall Setup Time
tDS
12
ns
DIN to SCLK Fall Hold Time
tDH
5
ns
SCLK Rise to DOUT_ Valid
Propagation Delay
tDO1
CL = 20pF, UPIO_ = DOUTDC1 or DOUTRB
mode
30
ns
SCLK Fall to DOUT_ Valid
Propagation Delay
tDO2
CL = 20pF, UPIO_ = DOUTDC0 mode
30
ns
CS Rise to SCLK Fall Hold Time
tCS1
MICROWIRE and SPI modes 0 and 3
CS Pulse-Width High
tCSW
DSP Pulse-Width High
tDSW
DSP Pulse-Width Low
tDSPWL
(Note 8)
ns
10
ns
45
ns
20
ns
20
ns
UPIO_ TIMING CHARACTERISTICS
DOUT Tri-State Time when
Exiting DOUTDC0, DOUTDC1,
and UPIO Modes
tDOZ
CL = 20pF, from end of write cycle to UPIO_
in high impedance
100
ns
DOUTRB Tri-State Time from CS
Rise
tDRBZ
CL = 20pF, from rising edge of CS to UPIO_
in high impedance
20
ns
DOUTRB Tri-State Enable Time
from 8th SCLK Fall
tZEN
CL = 20pF, from 8th falling edge of SCLK to
UPIO_ driven out of tri-state
0
ns
LDAC Pulse-Width Low
tLDL
Figure 5
20
ns
LDAC Effective Delay
tLDS
Figure 6
100
ns
CLR, MID, SET Pulse-Width Low
tCMS
Figure 5
20
ns
GPO Output Settling Time
tGP
Figure 6
GPO Output High-Impedance
Time
tGPZ
8
_______________________________________________________________________________________
100
ns
100
ns
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
(DVDD = 1.8V to 2.7V, AGND = DGND = 0, TA = TMIN to TMAX, unless otherwise noted.)
PARAMETER
SYMBOL
SCLK Frequency
fSCLK
SCLK Pulse-Width High
CONDITIONS
MIN
1.8V < DVDD < 2.7V
TYP
MAX
UNITS
10
MHz
tCH
(Note 7)
SCLK Pulse-Width Low
tCL
(Note 7)
40
ns
CS Fall to SCLK Fall Setup Time
tCSS
20
ns
DSP Fall to SCLK Fall Setup Time
tDSS
20
ns
SCLK Fall to CS Rise Hold Time
tCSH
5
ns
SCLK Fall to CS Fall Delay
tCS0
10
ns
SCLK Fall to DSP Fall Delay
tDS0
15
ns
DIN to SCLK Fall Setup Time
tDS
20
ns
DIN to SCLK Fall Hold Time
tDH
5
ns
SCLK Rise to DOUT_ Valid
Propagation Delay
tDO1
CL = 20pF, UPIO_ = DOUTDC1 or DOUTRB
mode
60
ns
SCLK Fall to DOUT_ Valid
Propagation Delay
tDO2
CL = 20pF, UPIO_ = DOUTDC0 mode
60
ns
CS Rise to SCLK Fall Hold Time
tCS1
MICROWIRE and SPI modes 0 and 3
20
ns
CS Pulse-Width High
tCSW
90
ns
DSP Pulse-Width High
tDSW
40
ns
DSP Pulse-Width Low
tDSPWL
40
ns
(Note 8)
40
ns
UPIO_ TIMING CHARACTERISTICS
DOUT Tri-State Time when
Exiting DOUTDC0, DOUTDC1,
and UPIO Modes
tDOZ
CL = 20pF, from end of write cycle to UPIO_
in high impedance
200
ns
DOUTRB Tri-State Time from CS
Rise
tDRBZ
CL = 20pF, from rising edge of CS to UPIO_
in high impedance
40
ns
DOUTRB Tri-State Enable Time
from 8th SCLK Fall
tZEN
CL = 20pF, from 8th falling edge of SCLK to
UPIO_ driven out of tri-state
LDAC Pulse-Width Low
tLDL
LDAC Effective Delay
tLDS
CLR, MID, SET Pulse-Width Low
0
ns
Figure 5
40
ns
Figure 6
200
ns
40
tCMS
Figure 5
GPO Output Settling Time
tGP
Figure 6
GPO Output High-Impedance
Time
tGPZ
ns
200
ns
200
ns
Note 7: In some daisy-chain modes, data is required to be clocked in on one clock edge and the shifted data clocked out on the following edge. In the case of a 0.5 clock-period delay, it is necessary to increase the minimum high/low clock times to 25ns
(2.7V) or 50ns (1.8V).
Note 8: The falling edge of DSP starts a DSP-type bus cycle, provided that CS is also active low to select the device. DSP active low and
CS active low must overlap by a minimum of 10ns (2.7V) or 20ns (1.8V). CS can be permanently low in this mode of operation.
_______________________________________________________________________________________
9
MAX5580–MAX5585
TIMING CHARACTERISTICS—DSP Mode Enabled (1.8V Logic) (Figure 2)
Typical Operating Characteristics
(AVDD = DVDD = 5V, VREF = 4.096V, RL = 10kΩ, CL = 100pF, speed mode = FAST, PU = floating, TA = +25°C, unless otherwise noted.)
0.5
0.4
0.3
3
2
0.2
0.2
0.1
1
INL (LSB)
INL (LSB)
INL (LSB)
0.3
4
MAX5580-85 toc02
0.4
MAX5580-85 toc01
0.6
INTEGRAL NONLINEARITY
vs. DIGITAL INPUT CODE (12 BIT)
INTEGRAL NONLINEARITY
vs. DIGITAL INPUT CODE (MAX5581A)
0.1
0
MAX5580-85 toc03
INTEGRAL NONLINEARITY
vs. DIGITAL INPUT CODE (MAX5580A)
0
-1
0
-2
-0.1
-0.1
-3
-0.2
B GRADE
-0.2
-0.3
-4
0
1000
2000
3000
4000
5000
INPUT CODE
INPUT CODE
1024
2048
3072
DIGITAL INPUT CODE
INTEGRAL NONLINEARITY
vs. DIGITAL INPUT CODE (10 BIT)
INTEGRAL NONLINEARITY
vs. DIGITAL INPUT CODE (8 BIT)
DIFFERENTIAL NONLINEARITY
vs. DIGITAL INPUT CODE (12 BIT)
2000
3000
4000
MAX5580-85 toc04
1.00
5000
0.75
0.50
0.50
0.25
0
-0.25
0.25
-0.25
-0.50
4095
0.50
DNL (LSB)
INL (LSB)
INL (LSB)
0.25
0
0
MAX5580-85 toc06
1000
MAX5580-85 toc05
0
0
-0.25
-0.75
-0.50
0
256
512
768
DIGITAL INPUT CODE
-0.50
0
1023
DIFFERENTIAL NONLINEARITY
vs. DIGITAL INPUT CODE (10 BIT)
255
0
0.025
4095
0.50
0.45
0.40
0.35
INL (LSB)
0
1024
2048
3072
DIGITAL INPUT CODE
INTEGRAL NONLINEARITY
vs. REFERENCE VOLTAGE (MAX5580A)
MAX5580-85 toc08
0.050
DNL (LSB)
0.1
128
192
DIGITAL INPUT CODE
DIFFERENTIAL NONLINEARITY
vs. DIGITAL INPUT CODE (8 BIT)
MAX5580-85 toc07
0.2
64
MAX5580-85 toc09
-1.00
DNL (LSB)
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
0
0.30
0.25
0.20
0.15
-0.1
-0.025
-0.2
-0.050
0.10
0.05
0
10
256
512
768
DIGITAL INPUT CODE
1023
0
0
64
128
192
DIGITAL INPUT CODE
255
1.0
1.5
2.0
2.5
3.0
VREF (V)
______________________________________________________________________________________
3.5
4.0
4.5
5.0
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
INTEGRAL NONLINEARITY
vs. REFERENCE VOLTAGE (MAX5581A)
0.8
3
2
0.7
0.4
0.3
DNL (LSB)
INL (LSB)
0
-1
0.3
-3
0
-4
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
-0.3
B GRADE
MIDSCALE
1.0
1.5
-0.4
2.5
VREF (V)
INTEGRAL NONLINEARITY
vs. TEMPERATURE (12 BIT)
3.0 3.5
VREF (V)
4.0
4.5
0
-1
-2
0
-0.1
B GRADE
MIDSCALE
-15
10
35
60
85
3.5
4.0
4.5
5.0
1.0
0.5
SLOW MODE
12 BIT
NO LOAD
-0.2
-40
3.0
1.5
MIDSCALE
-4
2.5
2.0
SUPPLY CURRENT (mA)
0.1
DNL (LSB)
1
2.0
SUPPLY CURRENT
vs. DIGITAL INPUT CODE (FORCE SENSE)
MAX5580-85 toc14
2
1.5
VREF (V)
0.2
MAX5580-85 toc13
3
-3
1.0
5.0
DIFFERENTIAL NONLINEARITY
vs. TEMPERATURE (12 BIT)
4
MIDSCALE
-0.5
2.0
MAX5580-85 toc15
0.1
1.0
0
TEMPERATURE (°C)
TEMPERATURE (°C)
1024
2048
3072
DIGITAL INPUT CODE
SUPPLY CURRENT
vs. DIGITAL INPUT CODE (UNITY GAIN)
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(FORCE SENSE)
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(UNITY GAIN)
SUPPLY CURRENT (mA)
0.75
0.50
0.25
SLOW MODE
12 BIT
NO LOAD
0
0
1024
2048
3072
DIGITAL INPUT CODE
4095
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
-15
10
35
60
85
FAST MODE
SLOW MODE
I = IAVDD + IDVDD
AVDD = DVDD
NO LOAD
2.70
3.40
0
1.6
FAST MODE
1.4
SUPPLY CURRENT (mA)
MAX5580-85 toc16
1.0
-40
MAX5580-85 toc17
INL (LSB)
0
-0.1
-0.2
-2
0.2
SUPPLY CURRENT (mA)
0.1
4095
MAX5580-85 toc18
INL (LSB)
0.5
0.4
0.2
1
0.6
0.5
MAX5580-85 toc12
0.9
MAX5580-85 toc11
4
MAX5580-85 toc10
1.0
DIFFERENTIAL NONLINEARITY
vs. REFERENCE VOLTAGE (12 BIT)
INTEGRAL NONLINEARITY
vs. REFERENCE VOLTAGE (12 BIT)
1.2
SLOW MODE
1.0
0.8
0.6
0.4
I = IAVDD + IDVDD
AVDD = DVDD
NO LOAD
0.2
0
4.10
SUPPLY VOLTAGE (V)
4.80
5.25
2.70
3.40
4.10
4.80
5.25
SUPPLY VOLTAGE (V)
______________________________________________________________________________________
11
MAX5580–MAX5585
Typical Operating Characteristics (continued)
(AVDD = DVDD = 5V, VREF = 4.096V, RL = 10kΩ, CL = 100pF, speed mode = FAST, PU = floating, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(AVDD = DVDD = 5V, VREF = 4.096V, RL = 10kΩ, CL = 100pF, speed mode = FAST, PU = floating, TA = +25°C, unless otherwise noted.)
INTEGRAL NONLINEARITY
vs. TEMPERATURE (A GRADE)
90
85
0.4
INL (LSB)
UNITY GAIN
75
FORCE SENSE
70
55
1.0
0
0
2.70
3.40
4.10
4.80
5.25
-40
-15
10
35
60
SUPPLY VOLTAGE (V)
TEMPERATURE (°C)
OFFSET ERROR vs. TEMPERATURE
GAIN ERROR
vs. TEMPERATURE (A GRADE)
FORCE SENSE
3
-1.0
FORCE SENSE
2
1
UNITY GAIN
-40
-15
10
35
60
85
-15
10
35
60
TEMPERATURE (°C)
TEMPERATURE (°C)
OUTPUT VOLTAGE
vs. OUTPUT SOURCE/SINK CURRENT
MAJOR-CARRY TRANSITION GLITCH
FORCE SENSE
-3
-4
-5
-6
-7
-10
-40
85
UNITY GAIN
B GRADE
UNITY GAIN: 1 LSB = 1mV
FORCE SENSE: 1 LSB = 0.5mV
-40
-15
10
60
85
SETTLING TIME POSITIVE
MAX5580-85 toc27
MAX5580-85 toc25
MIDSCALE
2.0
FULL-SCALE TRANSITION
1.5
CS
2V/div
CS
2V/div
(AC COUPLED)
OUT_
10mV/div
OUT_
2V/div
1.0
0.5
UNITY GAIN
VREF = 4.096V
0
-15
-10
-5
0
5
10
15
200ns/div
400ns/div
IOUT (mA)
12
35
TEMPERATURE (°C)
MAX5580-85 toc26
2.5
85
-2
-9
-2.5
0
60
-1
-8
UNITY GAIN
-2.0
35
GAIN ERROR vs. TEMPERATURE
-0.5
-1.5
10
0
GAIN ERROR (LSB)
4
-15
TEMPERATURE (°C)
MAX5580-85 toc23
MAX5580-85 toc22
CODE = 40
UNITY GAIN: 1 LSB = 1mV
FORCE SENSE: 1 LSB = 0.5mV
B GRADE
-40
85
0
GAIN ERROR (LSB)
OFFSET ERROR (LSB)
1.5
0.5
0.1
50
5
UNITY GAIN
2.0
FORCE SENSE
AVDD = DVDD
NO LOAD
I = IAVDD + IDVDD
60
6
FORCE SENSE
0.3
0.2
65
2.5
MAX5580-85 toc24
80
7
UNITY GAIN
0.5
3.0
OFFSET ERROR (mV)
95
MAX5580-85 toc20
0.6
MAX5580-85 toc19
SHUTDOWN SUPPLY CURRENT (nA)
100
OFFSET ERROR
vs. TEMPERATURE (A GRADE)
MAX5580-85 toc21
SHUTDOWN SUPPLY CURRENT
vs. SUPPLY VOLTAGE
OUTPUT VOLTAGE (V)
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
______________________________________________________________________________________
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
REFERENCE INPUT BANDWIDTH
MAX5580-85 toc28
REFERENCE FEEDTHROUGH AT 1kHz
FULL-SCALE TRANSITION
0
-5
GAIN (dB)
CS
2V/div
-22
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
MAX5580-85 toc29
5
-10
-15
OUT_
2V/div
-20
VREF = 0.1VP-P AT 4.096VDC
UNITY GAIN
-25
-142
1
400ns/div
10
100
1k
10k
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
FREQUENCY (Hz)
DAC-TO-DAC CROSSTALK
MAX5580-85 toc30
SETTLING TIME NEGATIVE
FREQUENCY (kHz)
POWER-UP GLITCH
DIGITAL FEEDTHROUGH
MAX5580-85 toc31
MAX5580–MAX5585
Typical Operating Characteristics (continued)
(AVDD = DVDD = 5V, VREF = 4.096V, RL = 10kΩ, CL = 100pF, speed mode = FAST, PU = floating, TA = +25°C, unless otherwise noted.)
MAX5580-85 toc33
MAX5580-85 toc32
SCLK
2V/div
OUTA–OUTC
2V/div
AVDD
2V/div
OUT_
(AC-COUPLED)
5mV/div
OUTD
2mV/div
OUT_
2V/div
PU = DVDD
200µs/div
1µs/div
20µs/div
EXITING SHUTDOWN TO MIDSCALE
MAX5580-85 toc34
UPIO_
2V/div
OUT_
2V/div
PU = FLOAT
10µs/div
______________________________________________________________________________________
13
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
Pin Description
PIN
MAX5580
MAX5582
MAX5584
MAX5581
MAX5583
MAX5585
NAME
FUNCTION
TSSOP
THIN QFN
TSSOP
THIN QFN
1
19
1
19
AGND
Analog Ground
2
20
2
20
AVDD
Analog Supply
3, 5, 17, 19
1, 3, 15, 17
—
—
N.C.
No Connection. Not internally connected.
—
—
3
1
FBB
4
2
4
2
OUTB
—
—
5
3
FBA
6
4
6
4
OUTA
14
Feedback for DACB
DACB Output
Feedback for DACA
DACA Output
PU
Power-Up State Select Input. Connect PU to DVDD to set OUT_
to full scale upon power-up. Connect PU to DGND to set OUT_
to zero scale upon power-up. Float PU to set OUT_ to midscale
upon power-up.
6
CS
Active-Low Chip-Select Input
7
SCLK
Serial Clock Input
8
DIN
Serial Data Input
7
5
7
5
8
6
8
9
7
9
10
8
10
11
9
11
9
UPIO1
User-Programmable Input/Output 1
12
10
12
10
UPIO2
User-Programmable Input/Output 2
13
11
13
11
DVDD
Digital Supply
14
12
14
12
DGND
Digital Ground
15
13
15
13
DSP
16
14
16
14
OUTD
—
—
17
15
FBD
18
16
18
16
OUTC
—
—
19
17
FBC
Feedback for DACC
20
18
20
18
REF
Reference Input
EP
EP
EP
EP
Exposed
Pad
Clock Enable. Connect DSP to DVDD to clock in data on the
rising edge of SCLK. Connect DSP to DGND to clock in data
on the falling edge of SCLK.
DACD Output
Feedback for DACD
DACC Output
Exposed Pad. Connect to AGND.
______________________________________________________________________________________
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
AVDD
CS
SCLK
DIN
DSP
DVDD
AGND
DGND
SERIAL
INTERFACE
CONTROL
MAX5580
MAX5582
MAX5584
16-BIT SHIFT
REGISTER
MUX
UPIO1
UPIO2
PU
UPIO1 AND
UPIO2
LOGIC
DOUT
REGISTER
POWER-DOWN
LOGIC AND
REGISTER
DECODE
CONTROL
OUTA
INPUT
REGISTER
A
DAC
REGISTER
A
INPUT
REGISTER
D
DAC
REGISTER
D
DACA
OUTD
DACD
REF
______________________________________________________________________________________
15
MAX5580–MAX5585
Functional Diagrams
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
MAX5580–MAX5585
Functional Diagrams (continued)
AVDD
CS
SCLK
DIN
DSP
DVDD
AGND
DGND
SERIAL
INTERFACE
CONTROL
MAX5581
MAX5583
MAX5585
16-BIT SHIFT
REGISTER
MUX
UPIO1
UPIO2
PU
UPIO1 AND
UPIO2
LOGIC
DOUT
REGISTER
POWER-DOWN
LOGIC AND
REGISTER
FBA
DECODE
CONTROL
OUTA
INPUT
REGISTER
A
DAC
REGISTER
A
DACA
FBD
OUTD
INPUT
REGISTER
D
DAC
REGISTER
D
DACD
REF
16
______________________________________________________________________________________
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
The MAX5580–MAX5585 quad, 12-/10-/8-bit, voltageoutput DACs offer buffered outputs and a 3µs maximum
settling time at the 12-bit level. The DACs operate from a
single 2.7V to 5.25V analog supply and a separate 1.8V
to AVDD digital supply. The MAX5580–MAX5585 include
an input register and DAC register for each channel and
a 16-bit data-in/data-out shift register. The 3-wire serial
interface is compatible with SPI, QSPI, MICROWIRE, and
DSP applications. The MAX5580–MAX5585 provide two
user-programmable digital I/O ports, which are programmed through the serial interface. The externally
selectable power-up states of the DAC outputs are either
zero scale, midscale, or full scale.
Reference Input
The reference input, REF, accepts both AC and DC values with a voltage range extending from analog ground
(AGND) to AVDD. The voltage at REF sets the full-scale
output of the DACs. Determine the output voltage using
the following equations:
Unity-gain versions:
VOUT_ = (VREF x CODE) / 2N
Force-sense versions (FB_ connected to OUT_):
VOUT = 0.5 x (VREF x CODE) / 2N
where CODE is the numeric value of the DAC’s binary
input code and N is the bits of resolution. For the
MAX5580/MAX5581, N = 12 and CODE ranges from 0
to 4095. For the MAX5582/MAX5583, N = 10 and
CODE ranges from 0 to 1023. For the MAX5584/
MAX5585, N = 8 and CODE ranges from 0 to 255. Use
the minature MAX6126 low-dropout, ultra-low-noise reference for optimum performance.
Output Buffers
The DACA–DACD output-buffer amplifiers of the
MAX5580–MAX5585 are unity-gain stable with rail-torail output voltage swings and a typical slew rate
of 3.6V/µs (FAST mode). The MAX5580/MAX5582/
MAX5584 provide unity-gain outputs, while the
MAX5581/MAX5583/MAX5585 provide force-sense outputs. For the MAX5581/MAX5583/MAX5585, access to
the output amplifier’s inverting input provides flexibility
in output gain setting and signal conditioning (see the
Applications Information section).
The MAX5580–MAX5585 offer FAST and SLOW settlingtime modes. In the SLOW mode, the settling time is 6µs
(max), and the supply current is 1.6mA (max). In the
FAST mode, the settling time is 3µs (max), and the supply current is 4mA (max). See the Digital Interface section
for settling-time mode programming details.
Use the serial interface to set the shutdown output
impedance of the amplifiers to 1kΩ or 100kΩ for the
MAX5580/MAX5582/MAX5584 and 1kΩ or high impedance for the MAX5581/MAX5583/MAX5585. The DAC
outputs can drive a 10kΩ (typ) load and are stable with
up to 500pF (typ) of capacitive load.
Power-On Reset
At power-up, all DAC outputs power up to full scale,
midscale, or zero scale, depending on the configuration
of the PU input. Connect PU to DVDD to set OUT_ to full
scale upon power-up. Connect PU to digital ground
(DGND) at power-up to set OUT_ to zero scale. Leave
PU floating to set OUT_ to midscale.
Digital Interface
The MAX5580–MAX5585 use a 3-wire serial interface
that is compatible with SPI, QSPI, MICROWIRE, and DSP
protocol applications (Figures 1 and 2). Connect DSP to
DVDD before power-up to clock data in on the rising
edge of SCLK. Connect DSP to DGND before power-up
to clock data in on the falling edge of SCLK. After powerup, the device enters DSP frame-sync mode on the first
rising edge of DSP. Refer to the MAX5580–MAX5585
Programmer’s Handbook for details.
The MAX5580–MAX5585 include a 16-bit input shift
register. The data is loaded into the input shift register
through the serial interface. The 16 bits can be sent in
two serial 8-bit packets or one 16-bit word (CS must
remain low until all 16 bits are transferred). The data is
loaded MSB first. For the MAX5580/MAX5581, the 16
bits consist of 4 control bits (C3–C0) and 12 data bits
(D11–D0) (see Table 1). For the 10-bit MAX5582/
MAX5583 devices, D11–D2 are the data bits and D1
and D0 are sub-bits. For the 8-bit MAX5584/
MAX5585 devices, D11–D4 are the data bits and
D3–D0 are sub-bits. Set all sub-bits to zero for optimum
performance.
Each DAC channel includes two registers: an input register and the DAC register. At power-up, the DAC output is set according to the state of PU. The DACs are
double-buffered, which allows any of the following for
each channel:
• Loading the input register without updating the DAC
register
• Loading and updating the DAC register without
updating the input register
• Updating the DAC register from the input register
• Updating the input and DAC registers simultaneously
______________________________________________________________________________________
17
MAX5580–MAX5585
Detailed Description
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
Table 1. Serial Write Data Format
MSB
16 BITS OF SERIAL DATA
CONTROL BITS
C3
C2
C1
LSB
DATA BITS
C0
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
tCH
SCLK
tCL
tDS
DIN
C3
tCS0
C2
C1
D0
tCSH
tDH
tCSS
CS
tCSW
tCS1
tDO1
DOUTDC1*
DOUT VALID
tDO2
DOUTDC0
OR
DOUTRB*
DOUT VALID
*UPIO1/UPIO2 CONFIGURED AS DOUTDC_ (DAISY-CHAIN DATA OUTPUT, MODE 0 OR 1) OR DOUTRB (READ-BACK DATA OUTPUT).
SEE THE DATA OUTPUT (DOUTRB, DOUTDC0, DOUTDC1) SECTION FOR DETAILS.
Figure 1. Serial-Interface Timing Diagram (DSP Mode Disabled)
tCL
SCLK
tCH
tDS
DIN
C3
C2
C1
D0
tCS0
tDH
tCSH
tCCS
CS
tCSW
tCS1
tDSS
tDS0
DSP
tDSW
tD02
tDSPWL
DOUTDC0*
DOUT VALID
tD01
DOUTDC1
OR
DOUTRB*
DOUT VALID
*UPIO1/UPIO2 CONFIGURED AS DOUTDC_ (DAISY-CHAIN DATA OUTPUT, MODE 0 OR 1) OR DOUTRB (READ-BACK DATA OUTPUT).
SEE THE DATA OUTPUT (DOUTRB, DOUTDC0, DOUTDC1) SECTION FOR DETAILS.
Figure 2. Serial-Interface Timing Diagram (DSP Mode Enabled)
18
______________________________________________________________________________________
D1
D0
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
Loading Input and DAC Registers
The MAX5580–MAX5585 contain a 16-bit shift register
that is followed by a 12-bit input register and a 12-bit
DAC register for each channel (see the Functional
Diagrams). Tables 3, 4, and 5 highlight a few of the
commands that handle the loading of the input and
DAC registers. See Table 2a for all DAC programming
commands.
VDD
MICROWIRE
VDD
SPI OR QSPI
VDD
DVDD
SK
SO
DSP
SCLK
DIN
I/O
CS
MAX5580–
MAX5585
VDD
DVDD
SCK
MOSI
DSP
SCLK
DIN
COMMAND TAKES EFFECT HERE
ONLY IF SCLK COUNT = N ✕ 16
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION
CS
CS
SS OR I/O
MICROWIRE OR SPI (CPOL = 0, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:
MAX5580–
MAX5585
SCLK
DIN
C3
C2
C1
C0
D11
D10
D9
D8
D7
D6
D5
D4
SPI (CPOL = 1, CPHA = 1) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:
D2
D1
D0
COMMAND TAKES EFFECT HERE
ONLY IF SCLK COUNT = N ✕ 16
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION
CS
D3
SCLK
DIN
C3
C2
C1
C0
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Figure 3. MICROWIRE and SPI Single DAC Writes (CPOL = 0, CPHA = 0 or CPOL = 1, CPHA = 1)
DSP
SPI OR QSPI
MAX5580–
DGND MAX5585
VSS
MAX5580–
DSP
SCLK
DIN
TCLK, SCLK, OR CLKX
DT OR DX
CS
SS OR I/O
DSP OR SPI (CPOL = 0, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:
COMMAND TAKES EFFECT HERE
ONLY IF SCLK COUNT = N ✕ 16
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION
CS
DSP
SCLK
DIN
SCK
MOSI
CS
TFS OR FSX
DGND MAX5585
VSS
SCLK
DIN
C3
C2
C1
C0
D11
D10
D9
D8
D7
D6
D5
D4
DSP OR SPI (CPOL = 1, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:
D2
D1
D0
COMMAND TAKES EFFECT HERE
ONLY IF SCLK COUNT = N ✕ 16
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION
CS
D3
SCLK
DIN
C3
C2
C1
C0
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Figure 4. DSP and SPI Single DAC Writes (CPOL = 0, CPHA = 1 or CPOL = 1, CPHA = 0)
______________________________________________________________________________________
19
MAX5580–MAX5585
Serial-Interface Programming Commands
Tables 2a, 2b, and 2c provide all the serial-interface
programming commands for the MAX5580–MAX5585.
Table 2a shows the basic DAC programming commands, Table 2b gives the advanced-feature programming commands, and Table 2c provides the 24-bit
read commands. Figures 3 and 4 provide serial-interface diagrams for write operations.
20
C3
C2
C1
0
0
0
0
0
0
0
0
1
1
1
DIN
DIN
DIN
DIN
DIN
DIN
DIN
DIN
DIN
DIN
DIN
______________________________________________________________________________________
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
C0
CONTROL BITS
INPUT REGISTERS (A–D)
DATA
D11 D10
D11 D10
D11 D10
D11 D10
D11 D10
D11 D10
D11 D10
D11 D10
D11 D10
D11 D10
D11 D10
D11 D10
D9
D9
D9
D9
D9
D9
D9
D9
D9
D9
D9
D9
D8
D8
D8
D8
D8
D8
D8
D8
D8
D8
D8
D8
D7
D7
D7
D7
D7
D7
D7
D7
D7
D7
D7
D7
Table 2a. DAC Programming Commands
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
D6
D5
D5
D5
D5
D5
D5
D5
D5
D5
D5
D5
D5
DATA BITS
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D2
D1
D0
FUNCTION
Load DACA input register and output register
from shift register; DACA output is updated.*
Load DACB input register and output register
from shift register; DACB output is updated.*
Load DACC input register and output register
from shift register; DACC output is updated.*
Load DACD output register from shift register;
D3/0 D2/0 D1/0 D0/0 input register is unchanged; DACD output is
updated.*
Load DACD input register from shift register;
D3/0 D2/0 D1/0 D0/0 DACD output register is unchanged; DACD
output is unchanged.*
D3/0 D2/0 D1/0 D0/0
Load DACC output register from shift register;
D3/0 D2/0 D1/0 D0/0 input register is unchanged; DACC output is
updated.*
Load DACC input register from shift register;
D3/0 D2/0 D1/0 D0/0 DACC output register is unchanged; DACC
output is unchanged.*
D3/0 D2/0 D1/0 D0/0
Load DACB output register from shift register;
D3/0 D2/0 D1/0 D0/0 input register is unchanged. DACB output is
updated.*
Load DACB input register from shift register;
D3/0 D2/0 D1/0 D0/0 DACB output register is unchanged; DACB
output is unchanged.*
D3/0 D2/0 D1/0 D0/0
Load DACA output register from shift register;
D3/0 D2/0 D1/0 D0/0 input register is unchanged; DACA output is
updated.*
Load DACA input register from shift register;
D3/0 D2/0 D1/0 D0/0 DACA output register is unchanged; DACA
output is unchanged.*
D3
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
C3
C2
C1
1
DIN
1
0
0
1
0
D11 D10
D11 D10
D11 D10
D9
D9
D9
D8
D8
D8
D7
D7
D7
D6
D6
D6
D5
D5
D5
DATA BITS
D4
D4
D4
D2
D1
D0
Load DACD input register and output register
from shift register; DACD output is updated.*
FUNCTION
Load all DAC input registers from the shift
D3/0 D2/0 D1/0 D0/0 register; all DAC output registers are unchanged;
all DAC outputs are unchanged.*
D3/0 D2/0 D1/0 D0/0
D3
______________________________________________________________________________________
1
0
1
D11 D10
D9
D8
D7
D6
D5
D4
C3
1
1
C2
1
1
X
DIN
DOUTR
X
1
1
1
1
X
DIN
DOUTR
X
1
1
DIN
1
1
1
SETTLING-TIME-MODE BITS
X
1
1
DIN
UPIO CONFIGURATION BITS
X
1
1
DIN
1
C1
CONTROL BITS
SHUTDOWN-MODE BITS
DIN
SELECT BITS
DATA
0
X
0
0
X
0
0
0
C0
1
X
1
1
X
0
0
0
D11
1
X
0
0
X
1
1
0
D10
0
X
1
0
X
1
0
X
D9
X
X
X
X
X
X
X
X
D8
X
D6
X
D5
X
MD
D3
MC
D2
MB
D1
MA
D0
X
UP2
X
UP1
X
UP0
X
X
X
X
X
Write UPIO configuration
bits; see Table 18.
X
X
X
X
SPDD SPDC SPDB SPDA
Write DAC_ settling-timemode bits; see Table 11.
X
X
X
X
X
X
X
X
Read UPIO configuration
UP3-2 UP2-2 UP1-2 UP0-2 UP3-1 UP2-1 UP1-1 UP0-1 bits.
UPSL2 UPSL1 UP3
X
Write DAC_ shutdownmode bits; see Table 8.
Load DAC_ output
register from input register
when M_ is one; DAC_
output register is
unchanged if M_ is zero.
Function
Read DAC_ shutdownPDD1 PDD0 PDC1 PDC0 PDB1 PDB0 PDA1 PDA0 mode bits.
X
PDD1 PDD0 PDC1 PDC0 PDB1 PDB0 PDA1 PDA0
X
D7
DATA BITS
D4
D3/0 D2/0 D1/0 D0/0
Table 2b. Advanced-Feature Programming Commands
1
MAX5580–MAX5585
DIN
Load all DAC input and output registers from shift
register; DAC outputs are updated.*
*For the MAX5582/MAX5583 (10-bit version), D11–D2 are the significant bits and D1 and D0 are sub-bits. For the MAX5584/MAX5585 (8-bit version),
D11–D4 are the significant bits and D3–D0 are sub-bits. Set all sub-bits to zero during the write commands.
1
DIN
1
C0
CONTROL BITS
INPUT REGISTERS (A–D)
DATA
Table 2a. DAC Programming Commands (continued)
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
21
22
1
X
X
C2
1
X
DIN
DOUTR
X
1
1
X
1
1
X
1
1
X
0
C0
X
0
0
X
1
D11
X
DOUTRB
X
1
1
1
1
DIN
DIN
DIN
X = Don’t care.
1
DIN
1
1
1
1
OTHER COMMANDS
1
DIN
1
1
1
1
X
1
1
1
1
1
X
1
1
1
1
1
X
0
UPIO_ AS GPI (GENERAL-PURPOSE INPUT)
1
DIN
X
1
C1
CONTROL BITS
1
C3
DAC CPOL/CPHA BITS
DIN
DOUTR
DATA
1
1
1
1
X
0
X
0
0
X
1
D10
1
1
0
0
X
1
X
0
0
X
1
D9
1
0
1
0
X
X
X
1
0
X
X
D8
1
X
X
X
X
X
X
X
X
X
X
D7
1
X
X
X
X
X
X
X
X
X
X
D6
1
X
X
X
RTP2
X
X
X
X
X
X
D5
DATA BITS
1
X
X
X
LF2
X
X
X
X
X
X
D4
1
X
X
X
LR2
X
X
X
X
1
X
X
X
RTP1
X
X
X
X
X
D2
X
D0
Function
1
X
X
X
LF1
X
1
X
X
X
LR1
X
X
Write CPOL, CPHA
control bits.
16-bit no-op command.
all DACs are unaffected.
Command is ignored.
Command is ignored.
Command is ignored.
Read UPIO_ inputs
(valid only when UPIO1
or UPIO2 is configured as
a general-purpose input);
see Table 21.
Read CPOL, CPHA
CPOL CPHA control bits.
X
CPOL CPHA
X
D1
Read DAC_ settling-timeSPDD SPDC SPDB SPDA mode bits.
X
D3
Table 2b. Advanced-Feature Programming Commands (continued)
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
______________________________________________________________________________________
1
X
1
X
1
X
DIN
DOUTRB
DIN
DOUTRB
DIN
DOUTRB
X
1
X
1
X
1
X
1
X
1
X
1
X
1
X
1
X
1
X
1
X
1
X
1
X
1
X
1
X
0
X
0
X
0
X
0
X
1
X
1
X
1
X
0
X
1
X
0
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X
X
1
X
X
1
X
X
(all 24 bits).** †
register D and
DAC register D
X Read input
(all 24 bits).** †
register C and
DAC register C
X Read input
DAC register B
(all 24 bits).** †
X Read input
register B and
DAC register A
(all 24 bits).**†
X Read input
register A and
FUNCTION
be kept low while all 24 bits are clocked out.
MAX5580–MAX5585
†During readback, all ones (0xFF) must be clocked into DIN for all 24 bits. No command can be issued before all 24 bits have been clocked out. CS must
**D23–D12 represent the 12-bit data from the appropriate DAC output register. D11–D0 represent the 12-bit data from the corresponding input register.
For the MAX5582/MAX5583, bits D13, D12, D1, and D0 are don’t-care bits. For the MAX5584/MAX5585, bits D15–D12 and D3–D0 are don’t-care bits.
X = Don’t care.
X
DOUTRB
1
READ INPUT AND DAC REGISTERS A—D
DIN
DATA BITS
C3 C2 C1 C0 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
CONTROL BITS
D23
D23
D23
D23
D22
D22
D22
D22
D21
D21
D20
D20
D21
D21
D20
D20
D19
D19
D19
D19
D18
D18
D15/X
D18
D18
D17
D17
D17
D16
D16
D16
D15/X
D15/X
D14/X
D14/X
D14/X
D13/X
D17
D7
D13/X
D13/X
D16
D6
D12/X
D15/X
D5
D12/X
E12/X
D14/X
D4
D11
D13/X
D3/X
D11
E12/X
D2/X
D10
D11
D11
D9
D9
D9
D9
D1/X
D10
D8
D8
D10
D10
D7
D8
D8
D6
D7
D7
D5
D6
D6
D4
D5
D5
D4
D4
D3/X
D3/X
D3/X
D2/X
D2/X
D2/X
D1/X
D1/X
D1/X
D0/X
D0/X
D0/X
D0/X
DATA
Table 2c. 24-Bit Read Commands
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
______________________________________________________________________________________
23
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
Advanced-Feature
Programming Commands
DAC Programming Examples:
To load input register A from the shift register, leaving
DAC register A unchanged (DAC output unchanged),
use the command in Table 3.
The MAX5580–MAX5585 can load all the input registers
(A–D) simultaneously from the shift register, leaving the
DAC registers unchanged (DAC output unchanged), by
using the command in Table 4.
To load all the input registers (A–D) and all the DAC registers (A–D) simultaneously, use the command in Table 5.
For the 10-bit and 8-bit versions, set sub-bits = 0 for
best performance.
Select Bits (M_)
The select bits allow synchronous updating of any combination of channels. The select bits command the
loading of the DAC register from the input register of
each channel. Set the select bit M_ = 1 to load the DAC
register “_” with data from the input register “_”, where
“_” is replaced with A, B, C, or D, depending on the
selected channel. Setting the select bit M_ = 0 results
in no action for that channel (Table 6).
Select Bits Programming Example:
To load DAC register B from input register B while
keeping other channels (A, C, D) unchanged, set MB =
1 and M_ = 0 (Table 7).
Table 3. Load Input Register A from Shift Register
DATA
DIN
CONTROL BITS
0
0
0
DATA BITS
0
D11
D10
D9
D8
D7
D6
D5
D4
D3/0
D2/0
D1/0
D0/0
D4
D3/0
D2/0
D1/0
D0/0
Table 4. Load Input Registers (A–D) from Shift Register
DATA
DIN
CONTROL BITS
1
1
0
DATA BITS
0
D11
D10
D9
D8
D7
D6
D5
Table 5. Load Input Registers (A–D) and DAC Registers (A–D) from Shift Register
DATA
DIN
CONTROL BITS
1
1
0
DATA BITS
1
D11
D10
D9
D8
D7
D6
D5
0
X
X
X
X
X
X
X
X
X
D4
D3/0
D2/0
D1/0
D0/0
MC
MB
MA
0
1
0
Table 6. Select Bits (M_)
DATA
DIN
CONTROL BITS
1
1
1
0
0
DATA BITS
X
MD
X = Don’t care.
Table 7. Select Bits Programming Example
DATA
DIN
CONTROL BITS
1
1
1
0
0
DATA BITS
0
X
X
0
X = Don’t care.
24
______________________________________________________________________________________
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
1kΩ output impedance, and 3) shutdown with 100kΩ
output impedance. The three possible states for forcesense versions are 1) normal operation, 2) shutdown with
1kΩ output impedance, and 3) shutdown with the output
in a high-impedance state. Table 9 shows the commands for writing to the shutdown-mode bits. Table 10
shows an example of writing the shutdown-control bits.
This command shuts down DACA with 1kΩ to ground
and shuts down DACB–DACD with 100kΩ to ground.
Always write the shutdown-mode-bits command first and
then write the shutdown-control-bits command to properly shut down the selected channels. The shutdowncontrol-bits command can be written at any time after the
shutdown-mode-bits command. It does not have to
immediately follow the shutdown-mode-bits command.
Table 8. Shutdown-Mode Bits
PD_1
PD_0
DESCRIPTION
0
Shutdown with 1kΩ termination to ground
on DAC_ output.
0
1
Shutdown with 100kΩ termination to
ground on DAC_ output for unity-gain
versions. Shutdown with high-impedance
output for force-sense versions.
1
0
Ignored.
1
1
DAC_ is powered up in its normal
operating mode.
0
Settling-Time-Mode Bits (SPD_)
The settling-time-mode bits select the settling time (FAST
mode or SLOW mode) of the MAX5580–MAX5585.
Set SPD_ = 1 to select FAST mode or set SPD_ = 0 to
select SLOW mode, where “_” is replaced by A, B, C, or
D, depending on the selected channel (Table 11). FAST
mode provides a 3µs maximum settling time, and SLOW
mode provides a 6µs maximum settling time.
Table 9. Shutdown-Mode Write Command
DATA
DIN
CONTROL BITS
1
1
1
0
0
DATA BITS
1
0
X
PDD1 PDD0 PDC1 PDC0
PDB1
PDB0
PDA1
PDA0
1
0
0
X = Don’t care.
Table 10. Shutdown-Mode-Bits Write Example
DATA
DIN
CONTROL BITS
1
1
1
0
0
DATA BITS
1
0
X
0
1
0
X
X
X
1
0
X = Don’t care.
Table 11. Settling-Time-Mode Write Command
DATA
DIN
CONTROL BITS
1
1
1
0
1
DATA BITS
1
0
X
X
SPDD SPDC SPDB SPDA
X = Don’t care.
______________________________________________________________________________________
25
MAX5580–MAX5585
Shutdown-Mode Bits (PD_0, PD_1)
Use the shutdown-mode bits and control bits to
shut down each DAC independently. The shutdownmode bits determine the output state of the selected
channels. The shutdown-control bits put the selected
channels into shutdown mode. To select the shutdown
mode for DACA–DACD, set PD_0 and PD_1 according
to Table 8 (where “_” is replaced with one of the selected channels (A–D)). The three possible states for unitygain versions are 1) normal operation, 2) shutdown with
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
ing edge of SCLK. Set the DAC’s CPOL and CPHA bits
to CPOL = 0 and CPHA = 1 or CPOL = 1 and CPHA =
0 for DSP and SPI applications, requiring the clocking
of data in on the falling edge of SCLK (refer to the
Programmer’s Handbook and see Table 14 for details).
At power-up, if DSP = DVDD, the default value of CPHA
is zero and if DSP = DGND, the default value of CPHA
is one. The default value of CPOL is zero at power-up.
To write to the CPOL and CPHA bits, use the command
in Table 15.
Settling-Time-Mode Write Example:
To configure DACA and DACD into FAST mode and
DACB and DACC into SLOW mode, use the command
in Table 12.
To read back the settling-time-mode bits, use the command in Table 13.
CPOL and CPHA Control Bits
The CPOL and CPHA control bits of the
MAX5580–MAX5585 are defined the same as the CPOL
and CPHA bits in the SPI standard. Set the DAC’s
CPOL and CPHA bits to CPOL = 0 and CPHA = 0 or
CPOL = 1 and CPHA = 1 for MICROWIRE and SPI
applications requiring the clocking of data in on the ris-
To read back the device’s CPOL and CPHA bits, use
the command in Table 16.
Table 12. Settling-Time-Mode Write Example
DATA
DIN
CONTROL BITS
1
1
1
0
1
DATA BITS
1
0
X
X
X
X
X
1
0
0
1
X
X
X
X = Don’t care.
Table 13. Settling-Time-Mode Read Command
DATA
CONTROL BITS
DATA BITS
DIN
1
1
1
0
1
1
1
1
X
X
X
X
DOUTRB
X
X
X
X
X
X
X
X
X
X
X
X
X
SPDD SPDC SPDB SPDA
X = Don’t care.
Table 14. CPOL and CPHA Bits
CPOL
CPHA
DESCRIPTION
0
0
Default values at power-up when DSP is connected to DVDD. Data is clocked in on the rising edge
of SCLK.
0
1
Default values at power-up when DSP is connected to DGND. Data is clocked in on the falling edge
of SCLK.
1
0
Data is clocked in on the falling edge of SCLK.
1
1
Data is clocked in on the rising edge of SCLK.
Table 15. CPOL and CPHA Write Command
DATA
DIN
CONTROL BITS
1
1
1
1
0
DATA BITS
0
0
0
X
X
X
X
X
X
CPOL CPHA
X = Don’t care.
Table 16. CPOL and CPHA Read Command
DATA
CONTROL BITS
DATA BITS
DIN
1
1
1
1
0
0
0
1
X
X
X
X
X
X
DOUTRB
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X = Don’t care.
26
______________________________________________________________________________________
X
X
CPOL CPHA
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
UPIO Programming Example:
To set only UPIO1 as LDAC and leave UPIO2
unchanged, use the command in Table 19.
The UPIO selection and configuration bits can be read
back from the MAX5580–MAX5585 when UPIO1 or
UPIO2 is configured as a DOUTRB output. Table 20
shows the read-back data format for the UPIO bits.
Writing the command in Table 20 initiates a read operation of the UPIO bits. The data is clocked out starting on
the 9th clock cycle of the sequence. Bits UP3-2 through
UP0-2 provide the UP3–UP0 configuration bits for
UPIO2 (Table 21), and bits UP3-1 through UP0-1 provide the UP3–UP0 configuration bits for UPIO1.
Table 18 shows how UPIO1 and UPIO2 are selected for
configuration. The UP0–UP3 bits select the desired
functions for UPIO1 and/or UPIO2 (Table 21).
Table 17. UPIO Write Command
DATA
DIN
CONTROL BITS
1
1
1
0
1
DATA BITS
0
0
X
UPSL2 UPSL1
UP3
UP2
UP1
UP0
X
X
0
X
X
X
X
X
X = Don’t care.
Table 18. UPIO Selection Bits (UPSL1 and UPSL2)
UPSL2
UPSL1
UPIO PORT SELECTED
0
0
None selected
0
1
UPIO1 selected
1
0
UPIO2 selected
1
1
Both UPIO1 and UPIO2 selected
Table 19. UPIO Programming Example
DATA
DIN
CONTROL BITS
1
1
1
0
1
DATA BITS
0
0
X
0
1
0
0
0
X = Don’t care.
Table 20. UPIO Read Command
DATA
CONTROL BITS
DATA BITS
DIN
1
1
1
0
1
0
1
X
DOUTRB
X
X
X
X
X
X
X
X
X
X
X
X
X
UP3-2 UP2-2 UP1-2 UP0-2 UP3-1 UP2-1 UP1-1 UP0-1
X = Don’t care.
______________________________________________________________________________________
27
MAX5580–MAX5585
UPIO Bits (UPSL1, UPSL2, UP0–UP3)
The MAX5580–MAX5585 provide two user-programmable input/output (UPIO) ports: UPIO1 and UPIO2. These
ports have 15 possible configurations, as shown in
Table 21. UPIO1 and UPIO2 can be programmed independently or simultaneously by writing to the UPSL1,
UPSL2, and UP0–UP3 bits (Table 17).
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
UPIO Configuration
Table 21 lists the possible configurations for UPIO1 and
UPIO2. UPIO1 and UPIO2 use the selected function
when configured by the UP3–UP0 configuration bits.
LDAC
LDAC controls the loading of the DAC registers. When
LDAC is high, the DAC registers are latched, and any
change in the input registers does not affect the contents of the DAC registers or the DAC outputs. When
LDAC is low, the DAC registers are transparent, and the
values stored in the input registers are fed directly to the
DAC registers, and the DAC outputs are updated.
Drive LDAC low to asynchronously load the DAC registers from their corresponding input registers (DACs that
are in shutdown remain shut down). The LDAC input
does not require any activity on CS, SCLK, or DIN to
take effect. If LDAC is brought low coincident with a rising edge of CS (which executes a serial command
modifying the value of either DAC input register), then
LDAC must remain asserted for at least 120ns following
the CS rising edge. This requirement applies only for
serial commands that modify the value of the DAC input
registers. See Figures 5 and 6 for timing details.
Table 21. UPIO Configuration Register Bits (UP3–UP0)
UPIO CONFIGURATION BITS
FUNCTION
DESCRIPTION
UP3
UP2
UP1
UP0
0
0
0
0
LDAC
0
0
0
1
SET
Active-Low Input. Drive low to set all input and DAC registers to full scale.
0
0
1
0
MID
Active-Low Input. Drive low to set all input and DAC registers to midscale.
0
0
1
1
CLR
Active-Low Input. Drive low to set all input and DAC registers to zero scale.
0
1
0
0
PDL
0
1
0
1
Reserved
This mode is reserved. Do not use.
SHDN1K
Active-Low 1kΩ Shutdown Input. Overrides PD_1 and PD_0 settings. For the
MAX5580/MAX5582/MAX5584, drive SHDN1K low to pull OUTA–OUTD to AGND
with 1kΩ. For the MAX5581/MAX5583/MAX5585, drive SHDN1K low to leave
OUTA–OUTD high impedance.
0
28
1
1
0
Active-Low Load DAC Input. Drive low to asynchronously load all DAC registers
with data from input registers.
Active-Low Power-Down Lockout Input. Drive low to disable software shutdown.
Active-Low 100kΩ Shutdown Input. Overrides PD_1 and PD_0 settings. For the
MAX5580/MAX5582/MAX5584, drive SHDN100K low to pull OUTA–OUTD to
AGND with 100kΩ. For the MAX5581/MAX5583/MAX5585, drive low to leave
OUTA–OUTD high impedance.
0
1
1
1
SHDN100K
1
0
0
0
DOUTRB
1
0
0
1
DOUTDC0
Mode 0 Daisy-Chain Data Output. Data is clocked out on the falling edge of SCLK.
1
0
1
0
DOUTDC1
Mode 1 Daisy-Chain Data Output. Data is clocked out on the rising edge of SCLK.
1
0
1
1
GPI
1
1
0
0
GPOL
General-Purpose Logic-Low Output
1
1
0
1
GPOH
General-Purpose Logic-High Output
1
1
1
0
TOGG
Toggle Input. Toggles DAC outputs between data in input registers and data in
DAC registers. Drive low to set all DAC outputs to values stored in input registers.
Drive high to set all DAC outputs to values stored in DAC registers.
1
1
1
1
FAST
Fast/Slow Settling-Time-Mode Input. Drive low to select FAST (3µs) mode or drive
high to select SLOW (6µs) settling mode. Overrides the SPDA–SPDD settings.
Data Read-Back Output
General-Purpose Logic Input
______________________________________________________________________________________
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
END OF
CYCLE*
TOGG
tGP
GPO_
PDL
LDAC
tCMS
tLDS
CLR,
MID, OR
SET
tS
±0.5 LSB
* END-OF-CYCLE REPRESENTS THE RISING EDGE OF CS OR THE 16TH
ACTIVE CLOCK EDGE, DEPENDING ON THE MODE OF OPERATION.
VOUT_
PDL AFFECTS DAC OUTPUTS (VOUT_) ONLY IF DACS WERE PREVIOUSLY SHUT DOWN.
Figure 5. Asynchronous Signal Timing
Figure 6. GPO_ and LDAC Signal Timing
SET, MID, CLR
The SET, MID, and CLR signals force the DAC outputs
to full scale, midscale, or zero scale (Figure 5). These
signals cannot be active at the same time.
The active-low SET input forces the DAC outputs to full
scale when SET is low. When SET is high, the DAC outputs follow the data in the DAC registers.
SHDN1K low to select shutdown mode with OUTA–
OUTD internally terminated with 1kΩ to ground, or drive
SHDN100K low to select shutdown with an internal
100kΩ termination. For the MAX5581/MAX5583/
MAX5585, drive SHDN1K low for shutdown with 1kΩ
output termination, or drive SHDN100K low for shutdown with high-impedance outputs.
The active-low MID input forces the DAC outputs to
midscale when MID is low. When MID is high, the DAC
outputs follow the data in the DAC registers.
Data Output (DOUTRB, DOUTDC0, DOUTDC1)
UPIO1 and UPIO2 can be configured as serial data outputs, DOUTRB (data out for read back), DOUTDC0
(data out for daisy-chaining, mode 0), and DOUTDC1
(data out for daisy-chaining, mode 1). The differences
between DOUTRB and DOUTDC0 (or DOUTDC1) are
as follows:
The active-low CLR input forces the DAC outputs to
zero scale when CLR is low. When CLR is high, the
DAC outputs follow the data in the DAC registers.
If CLR, MID, or SET signals go low during a write command, reload the data to ensure accurate results.
Power-Down Lockout (PDL)
The PDL active-low, software-shutdown lockout input
overrides (not overwrites) the PD_0 and PD_1 shutdownmode bits. PDL cannot be active at the same time as
SHDN1K or SHDN100K (see the Shutdown Mode
(SHDN1K, SHDN100K) section).
If the PD_0 and PD_1 bits command the DAC to
shut down prior to PDL going low, the DAC returns to
shutdown mode immediately after PDL goes high,
unless the PD_0 and PD_1 bits were modified through
the serial interface in the meantime.
• The source of read-back data on DOUTRB is the
DOUT register. Daisy-chain DOUTDC_ data comes
directly from the shift register.
• Read-back data on DOUTRB is only present after a
DAC read command. Daisy-chain data is present on
DOUTDC_ for any DAC write after the first 16 bits
are written.
• The DOUTRB idle state (CS = high) for read back is
high impedance. Daisy-chain DOUTDC_ idles high
when inactive to avoid floating the data input in the
next device in the daisy-chain.
See Figures 1 and 2 for timing details.
Shutdown Mode (SHDN1K, SHDN100K)
The SHDN1K and SHDN100K are active-low signals
that override (not overwrite) the PD_1 and PD_0 bit settings. For the MAX5580/MAX5582/MAX5584, drive
______________________________________________________________________________________
29
MAX5580–MAX5585
tLDL
LDAC
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
GPI, GPOL, GPOH
UPIO1 and UPIO2 can each be configured as a general-purpose input (GPI), a general-purpose output low
(GPOL), or a general-purpose output high (GPOH).
The GPI can serve to detect interrupts from µPs or microcontrollers. The GPI has three functions:
1) Sample the signal at GPI at the time of the read
(RTP1 and RTP2).
GPOL outputs a constant low, and GPOH outputs a
constant high. See Figure 6.
TOGG
Use the TOGG input to toggle the DAC outputs
between the values in the input registers and DAC registers. A delay of greater than 100ns from the end of the
previous write command is required before the TOGG
signal can be correctly switched between the new
value and the previously stored value. When TOGG =
0, the output follows the information in the input registers. When TOGG = 1, the output follows the information in the DAC register (Figure 5).
2) Detect whether a falling edge has occurred since
the last read or reset (LF1 and LF2).
3) Detect whether a rising edge has occurred since
the last read or reset (LR1 and LR2).
RTP1, LF1, and LR1 represent the data read from
UPIO1; RTP2, LF2, and LR2 represent the data read
from UPIO2.
FAST
The MAX5580–MAX5585 have two settling-time-mode
options: FAST (3µs max) and SLOW (6µs max). To
select the FAST mode, drive FAST low, and to select
SLOW mode, drive FAST high. This overrides (not overwrites) the SPDA–SPDD bit settings.
To issue a read command for the UPIO configured as
GPI, use the command in Table 22.
Once the command is issued, RTP1 and RTP2 provide
the real-time status (0 or 1) of the inputs at UPIO1 or
UPIO2, respectively, at the time of the read. If LF2 or
LF1 is one, then a falling edge has occurred on the
respective UPIO1 or UPIO2 input since the last read or
reset. If LR2 or LR1 is one, then a rising edge has
occurred since the last read or reset.
Table 22. GPI Read Command
DATA
CONTROL BITS
DATA BITS
DIN
1
1
1
1
0
0
1
X
X
X
X
X
X
X
X
X
DOUTRB
X
X
X
X
X
X
X
X
X
X
RTP2
LF2
LR2
RTP1
LF1
LR1
X = Don’t care.
Table 23. Unipolar Code Table (Gain = +1)
DAC CONTENTS
MSB
LSB
ANALOG OUTPUT
MAX6126
REF
DAC_
OUT_
1111
1111
1111
+VREF (4095 / 4096)
1000
0000
0001
+VREF (2049 / 4096)
1000
0000
0000
+VREF (2048 / 4096) = VREF / 2
0111
1111
1111
+VREF (2047 / 4096)
0000
0000
0001
+VREF (1 / 4096)
0000
0000
0000
0
MAX5580
VOUT_ = VREF_ x CODE / 4096
WHERE CODE IS THE DAC INPUT
CODE (0 TO 4095 DECIMAL)
Figure 7. Unipolar Output Circuit
30
______________________________________________________________________________________
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
Unipolar Output
Figure 7 shows the unity-gain MAX5580 in a unipolar
output configuration. Table 23 lists the unipolar output codes.
10kΩ
10kΩ
V+
Bipolar Output
The MAX5580 outputs can be configured for bipolar
operation, as shown in Figure 8. The output voltage is
given by the following equation:
VOUT_ = VREF x (CODE - 2048) / 2048
VOUT_
DAC_
MAX6126
REF
V-
MAX5580
MAX5582
MAX5584
where CODE represents the numeric value of the
DAC’s binary input code (0 to 4095 decimal). Table 24
shows digital codes and the corresponding output voltage for the circuit in Figure 8.
Configurable Output Gain
The MAX5581/MAX5583/MAX5585 have force-sense
outputs, which provide a direct connection to the inverting terminal of the output op amp, yielding the most
flexibility. The force-sense output has the advantage
that specific gains can be set externally for a given
application. The gain error for the MAX5581/MAX5583/
MAX5585 is specified in a unity-gain configuration (opamp output and inverting terminals connected), and
additional gain error results from external resistor
tolerances. The force-sense DACs allow many useful
circuits to be created with only a few simple external
components.
An example of a custom, fixed gain using the
MAX5581’s force-sense output is shown in Figure 9. In
this example, the external reference is set to 1.25V, and
the gain is set to +1.1V/V with external discrete resistors to provide an approximate 0 to 1.375V DAC output
voltage range.
VOUT = [(0.5 x VREF_ x CODE) / 4096] x [1 + (R2 / R1)]
where CODE represents the numeric value of the
DAC’s binary input code (0 to 4095 decimal).
In this example, R2 = 12kΩ and R1 = 10kΩ to set the
gain = 1.1V/V:
VOUT = [(0.5 x 1.25V x CODE) / 4096] x 2.2
Figure 8. Bipolar Output Circuit
MAX6126
DAC_
REF
OUT_
R2 = 12kΩ
0.1%
25ppm
MAX5581
FB_
R1 = 10kΩ
0.1%
25ppm
Figure 9. Configurable Output Gain
Table 24. Bipolar Code Table (Gain = +1)
DAC CONTENTS
MSB
LSB
ANALOG OUTPUT
1111
1111
1111
+VREF (2047 / 2048)
1000
0000
0001
+VREF (1 / 2048)
1000
0000
0000
0
0111
1111
1111
-VREF (1 / 2048)
0000
0000
0001
-VREF (2047 / 2048)
0000
0000
0000
-VREF (2048 / 2048) = -VREF
______________________________________________________________________________________
31
MAX5580–MAX5585
Applications Information
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
Power-Supply and Layout Considerations
Bypass the analog and digital power supplies by using a
10µF capacitor in parallel with a 0.1µF capacitor to AGND
and DGND (Figure 10). Minimize lead lengths to reduce
lead inductance. Use shielding and/or ferrite beads to further increase isolation.
Digital and AC transient signals coupling to AGND can
create noise at the output. Connect AGND to the highest quality ground available. Use proper grounding
techniques, such as a multilayer board with a low-
AVDD
Using separate power supplies for AV DD and DVDD
improves noise immunity. Connect AGND and DGND at
the low-impedance power-supply sources (Figure 11).
DVDD
10µF
0.1µF
AVDD
0.1µF
DVDD
REF
MAX6126
inductance ground plane. Wire-wrapped boards and
sockets are not recommended. For optimum system
performance, use PC boards with separate analog and
digital ground planes. Connect the two ground planes
together at the low-impedance power-supply source.
10µF
OUTA
ANALOG SUPPLY
DIGITAL SUPPLY
AVDD
DVDD
AGND
DGND
FBA*
0.1µF**
OUTB
MAX5580–
MAX5585
1µF**
CS
SCLK
DIN
PU
DSP
FBB*
OUTC
FBC*
10µF
10µF
0.1µF
0.1µF
OUTD
FBD*
UPIO1
UPIO2
AGND***
DGND***
AVDD
AGND
DVDD
DGND
MAX5580–MAX5585
DVDD
DGND
DIGITAL
CIRCUITRY
*MAX5581/MAX5583/MAX5585 ONLY.
**REMOVE BYPASS CAPACITORS ON REF FOR AN AC REFERENCE INPUT.
***CONNECT ANALOG AND DIGITAL GROUND AT THE PLANES AT
THE LOW-IMPEDANCE POWER-SUPPLY SOURCE.
Figure 10. Bypassing Power Supplies AVDD, DVDD, and REF
32
Figure 11. Separate Analog and Digital Power Supplies
______________________________________________________________________________________
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
OUTA 6
16 OUTD
15 DSP
OUTC
16
1
15
N.C. (*FBD)
2
14
OUTD
13
DSP
N.C. (*FBA)
3
OUTA
4
CS 8
13 DVDD
PU
5
SCLK 9
12 UPIO2
MAX5580–
MAX5585
**EP
6
CS
11 UPIO1
17
OUTB
14 DGND
**EP
18
N.C. (*FBB)
PU 7
DIN 10
19
TSSOP
7
8
9
10
UPIO2
N.C. (*FBA) 5
17 N.C. (*FBD)
MAX5580–
MAX5585
20
UPIO1
OUTB 4
N.C. (*FBC)
18 OUTC
REF
N.C. (*FBB) 3
DIN
19 N.C. (*FBC)
AGND
20 REF
AVDD 2
SCLK
AGND 1
AVDD
TOP VIEW
12
DGND
11
DVDD
THIN QFN
*FOR THE MAX5581/MAX5583/MAX5585
**EXPOSED PADDLE CONNECTED TO AGND
Ordering Information (continued)
PART
TEMP RANGE
PIN-PACKAGE
MAX5580BEUP
-40°C to +85°C
20 TSSOP-EP*
MAX5580BETP
-40°C to +85°C
20 Thin QFN-EP*
MAX5581AEUP
-40°C to +85°C
20 TSSOP-EP*
MAX5581AETP
-40°C to +85°C
20 Thin QFN-EP*
MAX5581BEUP
-40°C to +85°C
20 TSSOP-EP*
MAX5581BETP
-40°C to +85°C
20 Thin QFN-EP*
MAX5582EUP
-40°C to +85°C
20 TSSOP-EP*
MAX5582ETP
-40°C to +85°C
20 Thin QFN-EP*
MAX5583EUP
-40°C to +85°C
20 TSSOP-EP*
MAX5583ETP
-40°C to +85°C
20 Thin QFN-EP*
MAX5584EUP
-40°C to +85°C
20 TSSOP-EP*
MAX5584ETP
-40°C to +85°C
20 Thin QFN-EP*
MAX5585EUP
-40°C to +85°C
20 TSSOP-EP*
MAX5585ETP
-40°C to +85°C
20 Thin QFN-EP*
Chip Information
TRANSISTOR COUNT: 24,393
PROCESS: BiCMOS
*EP = Exposed paddle.
______________________________________________________________________________________
33
MAX5580–MAX5585
Pin Configurations
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
QFN THIN.EPS
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
PACKAGE OUTLINE,
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm
21-0140
34
______________________________________________________________________________________
K
1
2
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
PACKAGE OUTLINE,
16, 20, 28, 32, 40L THIN QFN, 5x5x0.8mm
21-0140
K
2
______________________________________________________________________________________
2
35
MAX5580–MAX5585
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
TSSOP 4.4mm BODY.EPS
MAX5580–MAX5585
Buffered, Fast-Settling, Quad,
12-/10-/8-Bit, Voltage-Output DACs
XX XX
PACKAGE OUTLINE, TSSOP, 4.40 MM BODY,
EXPOSED PAD
21-0108
E
1
1
Revision History
Pages changed at Rev 3: 1, 6–9, 34, 35, 36
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
36 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2007 Maxim Integrated Products
is a registered trademark of Maxim Integrated Products, Inc.
Similar pages