DOMINANT DWX-PKG Power domiled Datasheet

DOMINANT
Opto Technologies
Innovating Illumination
Power DomiLED
TM
DATA SHEET:
Power DomiLEDTM
AlInGaP : DWx-PKG
TM
With its significant power in terms brightness, viewing angle and variety of
application possibilities, Power DomiLED™ truly is a standout performer!
Ideal for automotive interior lighting as well as home, office and industrial
applications, it is also a proven performer in electronic signs and signals.
Features:
>
>
>
>
>
>
>
High brightness surface mount LED using thin film technology.
120° viewing angle.
Small package outline (LxWxH) of 3.2 x 2.8 x 1.8mm.
Qualified according to JEDEC moisture sensitivity Level 2.
Compatible to IR reflow soldering.
Environmental friendly; RoHS compliance.
Superior corrosion resistance
Applications:
> Automotive:
Interior applications, eg: switches, telematics, climate control system,
dashboard, etc.
Exterior applications, eg: signal lighting, Center High Mounted Stop Light
(CHMSL)
> Signage: full colour display video notice board, signage, special effect
lighting.
> Lighting: architecture lighting, general lighting, garden light, channel light.
© 2005 DomiLED is a trademark of DOMINANT Opto Technologies.
All rights reserved. Product specifications are subject to change without notice.
1
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Optical Characteristics at Tj=25˚C
Viewing Luminous Intensity @ IF = 50mA Appx. 1.1 Flux @IF=50mA,mlm
Angle˚
Min.
Typ.
Max.
Typ.
Part Ordering
Number
Color
DWS-PKG-W2X-1
Super Red, 632nm
120
1400.0
2125.0
2850.0
5750.0
DWR-PKG-X2Y1-1
Red, 620nm
120
2240.0
2850.0
3550.0
7700.0
DWA-PKG-X2Y-1
Amber, 617nm
120
2240.0
3550.0
4500.0
9600.0
DWY-PKG-X2Y-1
Yellow, 589nm
120
2240.0
3550.0
4500.0
9600.0
Electrical Characteristics at Tj=25˚C
Vf @ If = 50mA Appx. 3.1
Part Number
Min. (V)
Typ. (V)
Max. (V)
Vr @ Ir = 10uA
Min. (V)
DWx-PKG
2.05
2.20
2.50
12
Absolute Maximum Ratings
Maximum Value
Unit
DC forward current
70
mA
Peak pulse current; (tp ≤ 10µs, Duty cycle = 0.1)
100
mA
Reverse voltage
12
V
ESD threshold (HBM)
2
kV
125
˚C
Operating temperature
-40 … +115
˚C
Storage temperature
-40 … +125
˚C
200
mW
300
K/W
130
K/W
240
K/W
100
K/W
LED junction temperature
Power dissipation (at room temperature)
Thermal resistance
- Real Thermal Resistance
Junction / ambient, Rth JA real
Junction / solder point, Rth JS real
- Electrical Thermal Resistance
Junction / ambient, Rth JA el
Junction / solder point, Rth JS el
(Mounting on FR4 PCB, pad size >= 16 mm2 per pad)
2
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Wavelength Grouping at Tj= 25˚C
Color
Group
Wavelength distribution (nm) Appx. 2.2
DWS, Super Red
Full
625 - 640
DWR; Red
Full
620 - 630
DWA; Amber
Full
610 - 621
W
610 - 615
X
615 - 621
Full
585 - 594
X
585 - 588
Y
588 - 591
Z
591 - 594
DWY; Yellow
Luminous Intensity Group at Tj=25˚C
Luminous Intensity
IV (mcd) Appx. 1.1
Brightness Group
W2
1400.0...1800.0
X1
1800.0...2240.0
X2
2240.0...2850.0
Y1
2850.0...3550.0
Y2
3550.0...4500.0
Vf Binning (Optional)
Vf @ If = 50mA
Forward Voltage (V)
V51
2.05 ... 2.20
V52
2.20 ... 2.35
V53
2.35 ... 2.50
Appx. 3.1
Please consult sales and marketing for special part number to incorporate Vf binning.
3
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Relative Luminous Intensity Vs Forward Current
Relative Luminous
Intensity
Vs Forward
Current
Relative
Luminous
IV/IV(50mA)
= =f(I
=Intensity
25°CVs Forward Current
IV/IV(50mA)
f(IFF);
); TTj
j = 25°C
0.8
1.0
0.6
0.6
0.8
0.4
0.4
0.6
0.2
0
0
0.0
80 0
80
70
0.6
0.4
60
50
50
40
40
30
40
50
30
0.6
30
20
30
40
20
0.4
20
10
20
30
10
0.2
0.0
0 20
10 30 20 40 30 50 40 60 50 70 60
10
0.0
Forward
Current
(mA)
Forward
Current IF (mA)
Forward
Current
I I (mA)
10 0
2010
3020
4030F F 5040
6050
7060
Maximum
Current
Vs Temperature
Maximum Current Vs Temperature
Forward
I (mA)
Forward
IF (mA)
ICurrent
IF = Current
f (T)
F = f (T) F
Maximum
Vs
10 80 20 Current
30
40 Temperature
50
60
70
Maximum
Current
Vs
Temperature
Maximum Current Vs Temperature
II F==f(T)
I
=
f
(T)
f (T)
F
F Current
Forward
IF (mA)
80 70
Maximum Current Vs Temperature
IF = f (T)
70 60
10
0
2.0 1.9
0
2.01.9
10
20
0
70
1.9
10
0
70
Forward Current Vs Forward Voltage
IF = f(VF); Tj = 25°C
1.9
0
1.01.9
2.0
1.0
0.9
1.0
0.9
1.0
2.1 2.0
2.2 2.1
2.32.2
2.42.3
2.52.4
2.62.5
Forward
Voltage
(V)
Forward
VoltageV
VF (V)
Forward
Voltage
V
F (V)
2.12.0
2.22.1
2.32.2
2.42.3
2.52.4
2.62.5
Relative
Spectral Emission
Relative Spectral
Emission
Forward
Voltage VF (V)
Forward
Voltage
(V)
=F25°C;
IF = 50mA
Irel= f(Ȝ);
Tj = I25°C;
IF T=j V50mA
rel= f(Ȝ);
Relative
Spectral
Emission
2.1
2.2 Relative
2.3 Spectral
2.4 Emission
2.5
2.6
Relative
Spectral
Emission
I
=
f(λ);
T
=
25°C;
IIF ==50mA
50mA
rel
j
I
=
f(Ȝ);
T
=
25°C;
Irel=Forward
f(Ȝ); Tj =rel
25°C; IF =
j F50mA
F
Voltage
V
(V)
2.6
2.6
100
10
10
10
1.0
100
10
10
0.1
40°
100
0.1
0.1
Relative
Luminous
Intensity
Irel IrelI
Intensity
Luminous
Relative
Relative
Luminous
Intensity
Relative
Luminous
Irel
Relative
Luminous
Intensity
Irel
Relative
Luminous
Intensity
Irel Intensity
Forward Current IF (mA)
Allowable Forward Current IF( mA )
Forward Current IF (mA)
100
Allowable Forward Current IF( mA )
100
rel
Relative Spectral Emission
0.8
0.8
Irel= f(Ȝ); Tj = 25°C; IF = 50mA
0.9
0.9
1.0
0.7
0.7
0.8
TS 0.8
Super
TS
Super
50
60
0.9
60
50
Yellow
70
Red
Yellow
0.6
Red
0.6
0.7
0.7
TS
TA
TTS A
Super
0.8
Super
0.5
50 40
50
40
0.5
Yellow
Yellow
60
Red
0.6
Red
0.6
0.7
TA
TA
0.4
0.4
T
S
Super
40 30
0.5
40
0.5
30
50
Yellow
Red
0.6
0.3
0.3
0.4
TA
0.4
Red
20
30
Red
30
20
40
0.5
0.2
0.2
0.3
TA = Ambient Temperature
0.3
TA = Ambient
Temperature
AmberRed AmberRed
0.4
20 10 TS = Solder Point Temperature
20
10 T = Solder
0.1
30
Point Temperature
S
0.1
0.2
0.2
T
= Ambient Temperature
0.3
TA = Ambient
0A Temperature
0.0
Amber
Amber
10 T
0.0
100 T = Solder
= Solder
Point Temperature
20
Point
Temperature
S0
0.1 350 400 450 500 550 600 Red
S
0.1
650 700 750 800 850
20
40
60
80
100
120
350
400
450 500 550 600 650 700 750 800 850
0
20
40
60
80
100
120
0.2
Temperature T(°C)
Wavelength Ȝ (nm)
Temperature
Temperature T(°C)
0
0.0
Wavelength Ȝ (nm)Amber
0 TA = Ambient
0.0
10
TS = Solder
Point Temperature
400
450
500
550
0
20
40
60
80
100
1200.1350 400 350
450
500
550
600
650 600
700 650
750 700
800 750
850 800 850
0
20
40 Allowable
60 Forward
80
100
120
Current Vs Duty Ratio
Allowable Forward Current
Vs Duty Ratio
Temperature
T(°C)
(
T
=
25°C;
t
”
10ȝs
)
T(°C)
Wavelength
(nm)
j
p
Wavelength
Ȝ (nm)
( TTemperature
)
0
0.0
Temperature
T(°C)
Wavelength
λȜ(nm)
j = 25°C; tp ” 10ȝs
1000
350 400 450 500 550 600 650 700 750 800 850
20
40
60
80
100
120
1000 0
Allowable
Forward
Vs Duty Ratio
Allowable Forward
Current
VsCurrent
Duty Ratio
T(°C)
( Tj =10ȝs
25°C;
Wavelength Ȝ (nm)
( TTemperature
) tp ” 10ȝs )
j = 25°C; tp ”
Allowable
Forward
Current
Vs
Duty
Ratio
Radiation Pattern
1000
1000
Allowable
Current
Duty Ratio
( TForward
= 25°C;
tp ≤ Vs
10μs)
j
( Tj = 25°C; tp ” 10ȝs )
30°
20°
10°
0°
1000
70
60
80
IFI (mA)
Forward
Forward
Current
IF Current
(mA)
Forward
Current
IF (mA)
Forward
Current
F (mA)
0.8
70
60
50
60
40
0.8
0.2
0.2
0.4
0.0
0.0
0.2
)
IF(Current
Current
Forward
Allowable
Allowable
Forward
Current
IF( mA
)ImA
Allowable
Forward
Current
Allowable
Forward
F( mA )IF( mA )
1.0
70
IF (mA)
Current
Forward
Forward
Current
IF (mA)
Forward
Current
IF (mA)
1.0
1.2
0.8
Forward
Current
IF (mA)
Current
IF (mA)
ForwardForward
Current
IF (mA)
1.2
1.4
1.0
IV/IV(50mA) = f(IF); Tj = 25°C
Relative Luminous
Intensity
Forward Current 70
Relative
Luminous
Intensity Vs
ForwardVs
Current
1.4
I
/I
= f(IF); Tj = 25°C
IV/IV(50mA) =
V f(I
V(50mA)
F); Tj = 25°C
70
1.4
60
Relative
Luminous Intensity Vs Forward Current
1.2
IV/IV(50mA) = f(IF); Tj = 25°C
1.2
60
70
50
1.0
Relative Luminous Intensity Irel
1.4
1.2
Relative Luminous Intensity Irel
RelativeRelative
Luminous
Intensity
Irel Intensity
Intensity
Luminous
Relative
Luminous
Intensity
Irel
Relative
Luminous
Irel
Irel
1.4
Forward Current Vs Forward Voltage
Forward Current
Vs Forward
Voltage
Forward
Current
Vs
Forward
); T
=
25°CVoltage
IF = f(VIFF);=Tj f(V
=I 25°C
F
j
F = f(VF); Tj = 25°C
Forward
Forward Voltage
Forward Current
Vs Current
ForwardVs
Voltage
f(VF); Tj = 25°C
IF = f(VF); Tj I=
25°C
F =
0.1
0.1
1
1
1
Duty Ratio, %
1
10
Duty Ratio, %
10
Duty Ratio,Duty
% Ratio, %
1
10
10
10
100
100
100
100
0.8
50°
0.6
60°
0.4
70°
0.2
80°
90°
0
100
Duty
Duty Ratio,
Ratio, %%
4
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Relative
Forward
Voltage
Vs
Junction
Temperature
Relative
RelativeForward
ForwardVoltage
VoltageVs
VsJunction
JunctionTemperature
Temperature
= VV-F F-V
VVF(25°C)
==f(T
IFIF==);
50mA
∆VF ¨V
=¨VFV
(25°C)
=
f(T
I
=50mA
(25°C)
f(T
50mA
j);j);
F=
F
F
F
j
F
2.0
2.0
∆VF (V)
0.4
0.4
1.8
1.8
0.2
0.2
Relative Luminous Intensity Irel
0.5
0.5
RelativeForward
Forward
Voltage
¨VF(V)
(V)
Voltage
Forward
Relative
Relative
Voltage
¨V
F
RelativeRelative
Luminous
Intensity
Vs
Junction
Temperature
Luminious
Intensity
VsVs
Junction
Temperature
Relative
Luminious
Intensity
Junction
Temperature
/IIVV/I(25°C)
=
f(T
);
I
=
50mA
IV/IVIV(25°C)
=
f(T
);
I
=
50mA
(25°C)
=
f(T
);
I
=
50mA
j
F
V
j j F F
Relative Luminous Intensity Irel
Relative Luminous Intensity Irel
0.3
0.3
0.1
0.1
0.0
0.0
-0.1
-0.1
-0.2
-0.2
-0.3
-0.3
-0.4
-0.4
1.4
1.4
10
10 30
30 50
50 70
70 90
90 110
110 130
130 150
150
(°C)
Junction
Temperature
T
j
Junction
Temperature
T
(°C)
Junction Temperature T (°C)
1.2
1.2
1.0
1.0
0.8
0.8
0.4
0.4
j
j
12.0
0.04
10.0
0.03
8.0
0.02
0.01
Amber
Red
¨Cx, ¨Cy
Relative Wavelength ¨Ȝdom (nm)
Wavelength ∆λdom(nm)
Relative
j
Chromaticity Coordinate Shift Vs Junction Temperature
¨Cx, ¨Cy = f(Tj); IF = 50mA
0.05
Super
Red
2.0
0.0
Redundant
0.00
-0.01
-0.02
-2.0
-0.03
Yellow
-4.0
-6.0
Yellow
Yellow
0.2
0.2
14.0
4.0
Super
Super
Red
Red
Red
Red
0.6
0.6
Relative
Wavelength Vs Junction Temperature
Relative Wavelength Vs Junction Temperature
= Ȝdom --Ȝdom
(25°C)
= f(Tj); IF== f(Tj);
50mA IF =50mA
∆λdom¨Ȝ=domλdom
λdom
(25°C)
6.0
Amber
Amber
0.0
0.0
-50
-50 -30
-30 -10
-10 1010 3030 5050 7070 9090 110
110 130
130 150
150
Junction
Temperature
T j(°C)
Junction
Temperature
T (°C)
Junction
Temperature
T (°C)
-0.5
-0.5
-50
-50 -30
-30 -10
-10
j
1.6
1.6
-50
-30
-10
10
30
-0.04
50
70
90
110
130
-0.05
150
Junction
Temperature
(°C)
Junction
Temperature TT
j
j(°C)
-40
-20
0
20
40
60
80
100
120
Junction Temperature T j(°C)
5
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
DomiLED • AllnGaP : DWx-PKG Package Outlines
TM
Material
Material
Lead-frame
Cu Alloy With Au Plating
Package
High Temperature Resistant Plastic, PPA
Encapsulant
Silicone resin
Soldering Leads
Au Plating
6
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Recommended Solder Pad
7
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Taping and orientation
• Reels come in quantity of 2000 units.
• Reel diameter is 180 mm.
8
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Packaging Specification
9
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Packaging Specification
Existing BPL
Moisture sensitivity
level size - 87mm x 45mm.
As part of improvement and also in response to customers’ request; BPL f
Barcode label
changed to the following.
DOMINANT Opto Technologies
(L) Lot No : lotno
ML TEMP
2 260˚C
RoHS Compliant
(P) Part No : partno
(C) Cust No : partno
(Q) Quantity : quantity
(G) Grouping : group
(D) D/C : date code
Made in Malaysia
(S) S/N : serial no
New BPL size - 110mm x 55mm.
Additional information are now included in the label. 2D and 3D barc
Reel
implemented now
for every data field.
Label
Moisture absorbent material +
Moisture indicator
Issue No : 1
The reel, moisture absorbent material and moisture indicator are
sealed inside the moisture proof foil bag
Weight
Weight(gram)
(gram)
Average 1pc Power DomiLED
1 completed bag (2000pcs)
0.034
0.034
240 ± 10
190
10
Cardboard
Box
DOMINANT TM
For Power DomiLED
Cardboard Box
Size
TM
Dimensions (mm)
Empty Box
Weight (kg)
Reel / Box
Super Small
325 x 225 x 190
0.38
9 reels MAX
Small
325 x 225 x 280
0.54
15 reels MAX
Medium
570 x 440 x 230
1.46
60 reels MAX
Large
570 x 440 x 460
1.92
120 reels MAX
10
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Recommended Pb-free Soldering Profile
Classification Reflow Profile (JEDEC J-STD-020C)
300
255-260˚C
10-30s
275
250
225
Temperature (˚C)
Ramp-up
3˚C/sec max.
217˚C
200
60-150s
175
150
125
Rampdown
6˚C/sec
max.
100
75
Preheat 60-180s
50
25
480s max
0
50
100
150
200
Time (sec)
11
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Appendix
1)
Brightness:
1.1
Luminous intensity is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of
± 11 % (according to GUM with a coverage factor of k=3).
1.2
Luminous flux is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 %
(according to GUM with a coverage factor of k=3).
2)
Color:
2.1
Chromaticity coordinate groups are measured with an internal reproducibility of ± 0.005 and an expanded
uncertainty of ± 0.01 (accordingly to GUM with a coverage factor of k=3).
2.2
Dominant wavelength is measured with an accuracy of ±1nm.
3)
Voltage:
3.1
Forward Voltage, Vf is measured with an internal reproducibility of ± 0.05V and an expanded uncertainty of
± 0.1V (accordingly to GUM with a coverage factor of k=3).
12
14/07/2016 V12.0
DOMINANT
TM
AlInGaP : DWx-PKG
Opto Technologies
Innovating Illumination
Revision History
Page
Subjects
Date of Modification
1, 2, 4
Add features
Update Vf Binning
13 Dec 2011
5
Update graph: Relative Intensity Vs Forward Current
06 Nov 2012
1
Update Product Photo
19 Apr 2012
6
Update Package Outline
05 Sep 2014
1
Update Product Photo
09 Sep 2014
3
Update Vf Binning Naming
14 Oct 2014
2, 4, 5, 10, 12
Add Electrical Thermal Resistance
Update Graph Format
Update Packaging Specification
Add Appendix
14 Jul 2016
NOTE
All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT
Opto Technologies does not assume any liability arising out of the application or use of any product described herein.
DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function
or design.
DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems
without the express written approval from the Managing Director of DOMINANT Opto Technologies.
13
14/07/2016 V12.0
DOMINANT
TM
Opto Technologies
AlInGaP : DWx-PKG
Innovating Illumination
About Us
DOMINANT Opto Technologies is a dynamic Malaysian Corporation that is among the world’s leading SMT LED
Manufacturers. An excellence – driven organization, it offers a comprehensive product range for diverse industries
and applications. Featuring an internationally certified quality assurance acclaim, DOMINANT’s extra bright LEDs
are perfectly suited for various lighting applications in the automotive, consumer and communications as well as industrial sectors. With extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art
manufacturing, research and testing capabilities have become a trusted and reliable brand across the globe. More
information about DOMINANT Opto Technologies can be found on the Internet at http://www.dominant-semi.com.
Please contact us for more information:
DOMINANT Opto Technologies Sdn. Bhd
Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia.
Tel: +606 283 3566 Fax: +606 283 0566
E-mail: [email protected]
DOMINANT
Opto Technologies
Innovating Illumination
TM
Similar pages