DOMINANT Opto Technologies Innovating Illumination Power DomiLED TM DATA SHEET: Power DomiLEDTM AlInGaP : DWx-PKG TM With its significant power in terms brightness, viewing angle and variety of application possibilities, Power DomiLED™ truly is a standout performer! Ideal for automotive interior lighting as well as home, office and industrial applications, it is also a proven performer in electronic signs and signals. Features: > > > > > > > High brightness surface mount LED using thin film technology. 120° viewing angle. Small package outline (LxWxH) of 3.2 x 2.8 x 1.8mm. Qualified according to JEDEC moisture sensitivity Level 2. Compatible to IR reflow soldering. Environmental friendly; RoHS compliance. Superior corrosion resistance Applications: > Automotive: Interior applications, eg: switches, telematics, climate control system, dashboard, etc. Exterior applications, eg: signal lighting, Center High Mounted Stop Light (CHMSL) > Signage: full colour display video notice board, signage, special effect lighting. > Lighting: architecture lighting, general lighting, garden light, channel light. © 2005 DomiLED is a trademark of DOMINANT Opto Technologies. All rights reserved. Product specifications are subject to change without notice. 1 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Optical Characteristics at Tj=25˚C Viewing Luminous Intensity @ IF = 50mA Appx. 1.1 Flux @IF=50mA,mlm Angle˚ Min. Typ. Max. Typ. Part Ordering Number Color DWS-PKG-W2X-1 Super Red, 632nm 120 1400.0 2125.0 2850.0 5750.0 DWR-PKG-X2Y1-1 Red, 620nm 120 2240.0 2850.0 3550.0 7700.0 DWA-PKG-X2Y-1 Amber, 617nm 120 2240.0 3550.0 4500.0 9600.0 DWY-PKG-X2Y-1 Yellow, 589nm 120 2240.0 3550.0 4500.0 9600.0 Electrical Characteristics at Tj=25˚C Vf @ If = 50mA Appx. 3.1 Part Number Min. (V) Typ. (V) Max. (V) Vr @ Ir = 10uA Min. (V) DWx-PKG 2.05 2.20 2.50 12 Absolute Maximum Ratings Maximum Value Unit DC forward current 70 mA Peak pulse current; (tp ≤ 10µs, Duty cycle = 0.1) 100 mA Reverse voltage 12 V ESD threshold (HBM) 2 kV 125 ˚C Operating temperature -40 … +115 ˚C Storage temperature -40 … +125 ˚C 200 mW 300 K/W 130 K/W 240 K/W 100 K/W LED junction temperature Power dissipation (at room temperature) Thermal resistance - Real Thermal Resistance Junction / ambient, Rth JA real Junction / solder point, Rth JS real - Electrical Thermal Resistance Junction / ambient, Rth JA el Junction / solder point, Rth JS el (Mounting on FR4 PCB, pad size >= 16 mm2 per pad) 2 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Wavelength Grouping at Tj= 25˚C Color Group Wavelength distribution (nm) Appx. 2.2 DWS, Super Red Full 625 - 640 DWR; Red Full 620 - 630 DWA; Amber Full 610 - 621 W 610 - 615 X 615 - 621 Full 585 - 594 X 585 - 588 Y 588 - 591 Z 591 - 594 DWY; Yellow Luminous Intensity Group at Tj=25˚C Luminous Intensity IV (mcd) Appx. 1.1 Brightness Group W2 1400.0...1800.0 X1 1800.0...2240.0 X2 2240.0...2850.0 Y1 2850.0...3550.0 Y2 3550.0...4500.0 Vf Binning (Optional) Vf @ If = 50mA Forward Voltage (V) V51 2.05 ... 2.20 V52 2.20 ... 2.35 V53 2.35 ... 2.50 Appx. 3.1 Please consult sales and marketing for special part number to incorporate Vf binning. 3 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Relative Luminous Intensity Vs Forward Current Relative Luminous Intensity Vs Forward Current Relative Luminous IV/IV(50mA) = =f(I =Intensity 25°CVs Forward Current IV/IV(50mA) f(IFF); ); TTj j = 25°C 0.8 1.0 0.6 0.6 0.8 0.4 0.4 0.6 0.2 0 0 0.0 80 0 80 70 0.6 0.4 60 50 50 40 40 30 40 50 30 0.6 30 20 30 40 20 0.4 20 10 20 30 10 0.2 0.0 0 20 10 30 20 40 30 50 40 60 50 70 60 10 0.0 Forward Current (mA) Forward Current IF (mA) Forward Current I I (mA) 10 0 2010 3020 4030F F 5040 6050 7060 Maximum Current Vs Temperature Maximum Current Vs Temperature Forward I (mA) Forward IF (mA) ICurrent IF = Current f (T) F = f (T) F Maximum Vs 10 80 20 Current 30 40 Temperature 50 60 70 Maximum Current Vs Temperature Maximum Current Vs Temperature II F==f(T) I = f (T) f (T) F F Current Forward IF (mA) 80 70 Maximum Current Vs Temperature IF = f (T) 70 60 10 0 2.0 1.9 0 2.01.9 10 20 0 70 1.9 10 0 70 Forward Current Vs Forward Voltage IF = f(VF); Tj = 25°C 1.9 0 1.01.9 2.0 1.0 0.9 1.0 0.9 1.0 2.1 2.0 2.2 2.1 2.32.2 2.42.3 2.52.4 2.62.5 Forward Voltage (V) Forward VoltageV VF (V) Forward Voltage V F (V) 2.12.0 2.22.1 2.32.2 2.42.3 2.52.4 2.62.5 Relative Spectral Emission Relative Spectral Emission Forward Voltage VF (V) Forward Voltage (V) =F25°C; IF = 50mA Irel= f(Ȝ); Tj = I25°C; IF T=j V50mA rel= f(Ȝ); Relative Spectral Emission 2.1 2.2 Relative 2.3 Spectral 2.4 Emission 2.5 2.6 Relative Spectral Emission I = f(λ); T = 25°C; IIF ==50mA 50mA rel j I = f(Ȝ); T = 25°C; Irel=Forward f(Ȝ); Tj =rel 25°C; IF = j F50mA F Voltage V (V) 2.6 2.6 100 10 10 10 1.0 100 10 10 0.1 40° 100 0.1 0.1 Relative Luminous Intensity Irel IrelI Intensity Luminous Relative Relative Luminous Intensity Relative Luminous Irel Relative Luminous Intensity Irel Relative Luminous Intensity Irel Intensity Forward Current IF (mA) Allowable Forward Current IF( mA ) Forward Current IF (mA) 100 Allowable Forward Current IF( mA ) 100 rel Relative Spectral Emission 0.8 0.8 Irel= f(Ȝ); Tj = 25°C; IF = 50mA 0.9 0.9 1.0 0.7 0.7 0.8 TS 0.8 Super TS Super 50 60 0.9 60 50 Yellow 70 Red Yellow 0.6 Red 0.6 0.7 0.7 TS TA TTS A Super 0.8 Super 0.5 50 40 50 40 0.5 Yellow Yellow 60 Red 0.6 Red 0.6 0.7 TA TA 0.4 0.4 T S Super 40 30 0.5 40 0.5 30 50 Yellow Red 0.6 0.3 0.3 0.4 TA 0.4 Red 20 30 Red 30 20 40 0.5 0.2 0.2 0.3 TA = Ambient Temperature 0.3 TA = Ambient Temperature AmberRed AmberRed 0.4 20 10 TS = Solder Point Temperature 20 10 T = Solder 0.1 30 Point Temperature S 0.1 0.2 0.2 T = Ambient Temperature 0.3 TA = Ambient 0A Temperature 0.0 Amber Amber 10 T 0.0 100 T = Solder = Solder Point Temperature 20 Point Temperature S0 0.1 350 400 450 500 550 600 Red S 0.1 650 700 750 800 850 20 40 60 80 100 120 350 400 450 500 550 600 650 700 750 800 850 0 20 40 60 80 100 120 0.2 Temperature T(°C) Wavelength Ȝ (nm) Temperature Temperature T(°C) 0 0.0 Wavelength Ȝ (nm)Amber 0 TA = Ambient 0.0 10 TS = Solder Point Temperature 400 450 500 550 0 20 40 60 80 100 1200.1350 400 350 450 500 550 600 650 600 700 650 750 700 800 750 850 800 850 0 20 40 Allowable 60 Forward 80 100 120 Current Vs Duty Ratio Allowable Forward Current Vs Duty Ratio Temperature T(°C) ( T = 25°C; t 10ȝs ) T(°C) Wavelength (nm) j p Wavelength Ȝ (nm) ( TTemperature ) 0 0.0 Temperature T(°C) Wavelength λȜ(nm) j = 25°C; tp 10ȝs 1000 350 400 450 500 550 600 650 700 750 800 850 20 40 60 80 100 120 1000 0 Allowable Forward Vs Duty Ratio Allowable Forward Current VsCurrent Duty Ratio T(°C) ( Tj =10ȝs 25°C; Wavelength Ȝ (nm) ( TTemperature ) tp 10ȝs ) j = 25°C; tp Allowable Forward Current Vs Duty Ratio Radiation Pattern 1000 1000 Allowable Current Duty Ratio ( TForward = 25°C; tp ≤ Vs 10μs) j ( Tj = 25°C; tp 10ȝs ) 30° 20° 10° 0° 1000 70 60 80 IFI (mA) Forward Forward Current IF Current (mA) Forward Current IF (mA) Forward Current F (mA) 0.8 70 60 50 60 40 0.8 0.2 0.2 0.4 0.0 0.0 0.2 ) IF(Current Current Forward Allowable Allowable Forward Current IF( mA )ImA Allowable Forward Current Allowable Forward F( mA )IF( mA ) 1.0 70 IF (mA) Current Forward Forward Current IF (mA) Forward Current IF (mA) 1.0 1.2 0.8 Forward Current IF (mA) Current IF (mA) ForwardForward Current IF (mA) 1.2 1.4 1.0 IV/IV(50mA) = f(IF); Tj = 25°C Relative Luminous Intensity Forward Current 70 Relative Luminous Intensity Vs ForwardVs Current 1.4 I /I = f(IF); Tj = 25°C IV/IV(50mA) = V f(I V(50mA) F); Tj = 25°C 70 1.4 60 Relative Luminous Intensity Vs Forward Current 1.2 IV/IV(50mA) = f(IF); Tj = 25°C 1.2 60 70 50 1.0 Relative Luminous Intensity Irel 1.4 1.2 Relative Luminous Intensity Irel RelativeRelative Luminous Intensity Irel Intensity Intensity Luminous Relative Luminous Intensity Irel Relative Luminous Irel Irel 1.4 Forward Current Vs Forward Voltage Forward Current Vs Forward Voltage Forward Current Vs Forward ); T = 25°CVoltage IF = f(VIFF);=Tj f(V =I 25°C F j F = f(VF); Tj = 25°C Forward Forward Voltage Forward Current Vs Current ForwardVs Voltage f(VF); Tj = 25°C IF = f(VF); Tj I= 25°C F = 0.1 0.1 1 1 1 Duty Ratio, % 1 10 Duty Ratio, % 10 Duty Ratio,Duty % Ratio, % 1 10 10 10 100 100 100 100 0.8 50° 0.6 60° 0.4 70° 0.2 80° 90° 0 100 Duty Duty Ratio, Ratio, %% 4 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Relative Forward Voltage Vs Junction Temperature Relative RelativeForward ForwardVoltage VoltageVs VsJunction JunctionTemperature Temperature = VV-F F-V VVF(25°C) ==f(T IFIF==); 50mA ∆VF ¨V =¨VFV (25°C) = f(T I =50mA (25°C) f(T 50mA j);j); F= F F F j F 2.0 2.0 ∆VF (V) 0.4 0.4 1.8 1.8 0.2 0.2 Relative Luminous Intensity Irel 0.5 0.5 RelativeForward Forward Voltage ¨VF(V) (V) Voltage Forward Relative Relative Voltage ¨V F RelativeRelative Luminous Intensity Vs Junction Temperature Luminious Intensity VsVs Junction Temperature Relative Luminious Intensity Junction Temperature /IIVV/I(25°C) = f(T ); I = 50mA IV/IVIV(25°C) = f(T ); I = 50mA (25°C) = f(T ); I = 50mA j F V j j F F Relative Luminous Intensity Irel Relative Luminous Intensity Irel 0.3 0.3 0.1 0.1 0.0 0.0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 1.4 1.4 10 10 30 30 50 50 70 70 90 90 110 110 130 130 150 150 (°C) Junction Temperature T j Junction Temperature T (°C) Junction Temperature T (°C) 1.2 1.2 1.0 1.0 0.8 0.8 0.4 0.4 j j 12.0 0.04 10.0 0.03 8.0 0.02 0.01 Amber Red ¨Cx, ¨Cy Relative Wavelength ¨Ȝdom (nm) Wavelength ∆λdom(nm) Relative j Chromaticity Coordinate Shift Vs Junction Temperature ¨Cx, ¨Cy = f(Tj); IF = 50mA 0.05 Super Red 2.0 0.0 Redundant 0.00 -0.01 -0.02 -2.0 -0.03 Yellow -4.0 -6.0 Yellow Yellow 0.2 0.2 14.0 4.0 Super Super Red Red Red Red 0.6 0.6 Relative Wavelength Vs Junction Temperature Relative Wavelength Vs Junction Temperature = Ȝdom --Ȝdom (25°C) = f(Tj); IF== f(Tj); 50mA IF =50mA ∆λdom¨Ȝ=domλdom λdom (25°C) 6.0 Amber Amber 0.0 0.0 -50 -50 -30 -30 -10 -10 1010 3030 5050 7070 9090 110 110 130 130 150 150 Junction Temperature T j(°C) Junction Temperature T (°C) Junction Temperature T (°C) -0.5 -0.5 -50 -50 -30 -30 -10 -10 j 1.6 1.6 -50 -30 -10 10 30 -0.04 50 70 90 110 130 -0.05 150 Junction Temperature (°C) Junction Temperature TT j j(°C) -40 -20 0 20 40 60 80 100 120 Junction Temperature T j(°C) 5 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination DomiLED • AllnGaP : DWx-PKG Package Outlines TM Material Material Lead-frame Cu Alloy With Au Plating Package High Temperature Resistant Plastic, PPA Encapsulant Silicone resin Soldering Leads Au Plating 6 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Recommended Solder Pad 7 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Taping and orientation • Reels come in quantity of 2000 units. • Reel diameter is 180 mm. 8 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Packaging Specification 9 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Packaging Specification Existing BPL Moisture sensitivity level size - 87mm x 45mm. As part of improvement and also in response to customers’ request; BPL f Barcode label changed to the following. DOMINANT Opto Technologies (L) Lot No : lotno ML TEMP 2 260˚C RoHS Compliant (P) Part No : partno (C) Cust No : partno (Q) Quantity : quantity (G) Grouping : group (D) D/C : date code Made in Malaysia (S) S/N : serial no New BPL size - 110mm x 55mm. Additional information are now included in the label. 2D and 3D barc Reel implemented now for every data field. Label Moisture absorbent material + Moisture indicator Issue No : 1 The reel, moisture absorbent material and moisture indicator are sealed inside the moisture proof foil bag Weight Weight(gram) (gram) Average 1pc Power DomiLED 1 completed bag (2000pcs) 0.034 0.034 240 ± 10 190 10 Cardboard Box DOMINANT TM For Power DomiLED Cardboard Box Size TM Dimensions (mm) Empty Box Weight (kg) Reel / Box Super Small 325 x 225 x 190 0.38 9 reels MAX Small 325 x 225 x 280 0.54 15 reels MAX Medium 570 x 440 x 230 1.46 60 reels MAX Large 570 x 440 x 460 1.92 120 reels MAX 10 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Recommended Pb-free Soldering Profile Classification Reflow Profile (JEDEC J-STD-020C) 300 255-260˚C 10-30s 275 250 225 Temperature (˚C) Ramp-up 3˚C/sec max. 217˚C 200 60-150s 175 150 125 Rampdown 6˚C/sec max. 100 75 Preheat 60-180s 50 25 480s max 0 50 100 150 200 Time (sec) 11 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Appendix 1) Brightness: 1.1 Luminous intensity is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 % (according to GUM with a coverage factor of k=3). 1.2 Luminous flux is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 % (according to GUM with a coverage factor of k=3). 2) Color: 2.1 Chromaticity coordinate groups are measured with an internal reproducibility of ± 0.005 and an expanded uncertainty of ± 0.01 (accordingly to GUM with a coverage factor of k=3). 2.2 Dominant wavelength is measured with an accuracy of ±1nm. 3) Voltage: 3.1 Forward Voltage, Vf is measured with an internal reproducibility of ± 0.05V and an expanded uncertainty of ± 0.1V (accordingly to GUM with a coverage factor of k=3). 12 14/07/2016 V12.0 DOMINANT TM AlInGaP : DWx-PKG Opto Technologies Innovating Illumination Revision History Page Subjects Date of Modification 1, 2, 4 Add features Update Vf Binning 13 Dec 2011 5 Update graph: Relative Intensity Vs Forward Current 06 Nov 2012 1 Update Product Photo 19 Apr 2012 6 Update Package Outline 05 Sep 2014 1 Update Product Photo 09 Sep 2014 3 Update Vf Binning Naming 14 Oct 2014 2, 4, 5, 10, 12 Add Electrical Thermal Resistance Update Graph Format Update Packaging Specification Add Appendix 14 Jul 2016 NOTE All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT Opto Technologies does not assume any liability arising out of the application or use of any product described herein. DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function or design. DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the Managing Director of DOMINANT Opto Technologies. 13 14/07/2016 V12.0 DOMINANT TM Opto Technologies AlInGaP : DWx-PKG Innovating Illumination About Us DOMINANT Opto Technologies is a dynamic Malaysian Corporation that is among the world’s leading SMT LED Manufacturers. An excellence – driven organization, it offers a comprehensive product range for diverse industries and applications. Featuring an internationally certified quality assurance acclaim, DOMINANT’s extra bright LEDs are perfectly suited for various lighting applications in the automotive, consumer and communications as well as industrial sectors. With extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art manufacturing, research and testing capabilities have become a trusted and reliable brand across the globe. More information about DOMINANT Opto Technologies can be found on the Internet at http://www.dominant-semi.com. Please contact us for more information: DOMINANT Opto Technologies Sdn. Bhd Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia. Tel: +606 283 3566 Fax: +606 283 0566 E-mail: [email protected] DOMINANT Opto Technologies Innovating Illumination TM