IRFR420A, IRFU420A, SiHFR420A, Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 500 RDS(on) (Ω) VGS = 10 V 3.0 Qg (Max.) (nC) 17 Qgs (nC) 4.3 Qgd (nC) 8.5 Configuration • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness COMPLIANT • Fully Characterized Capacitance and Avalanche Voltage and Current Single • Effective Coss Specified D DPAK (TO-252) Available RoHS* • Lead (Pb)-free Available IPAK (TO-251) APPLICATIONS • Switch Mode Power Supply (SMPS) G • Uninterruptible Power Supply • High Speed Power Switching S N-Channel MOSFET ORDERING INFORMATION Package Lead (Pb)-free SnPb DPAK (TO-252) DPAK (TO-252) DPAK (TO-252) IRFR420APbF IRFR420ATRPbFa IPAK (TO-251) IRFR420ATRLPbF IRFU420APbF SiHFR420A-E3 SiHFR420AT-E3a SiHFR420ATL-E3 SiHFU420A-E3 IRFR420A - - IRFU420A SiHFR420A - - SiHFU420A Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID IDM Linear Derating Factor UNIT V 3.3 2.1 A 10 0.67 W/°C Single Pulse Avalanche Energyb EAS 140 mJ Repetitive Avalanche Currenta IAR 2.5 A EAR 5.0 mJ PD 83 W dV/dt 3.4 V/ns TJ, Tstg - 55 to + 150 Repetitive Avalanche Energya Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) for 10 s 300d °C Notes a. b. c. d. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). Starting TJ = 25 °C, L = 45 mH, RG = 25 Ω, IAS = 2.5 A (see fig. 12). ISD ≤ 2.5 A, dI/dt ≤ 270 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. 1.6 mm from case. www.kersemi.com 1 IRFR420A, IRFU420A, SiHFR420A, THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 1.5 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.60 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.5 V nA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance IGSS IDSS RDS(on) gfs VGS = ± 30 V - - ± 100 VDS = 500 V, VGS = 0 V - - 25 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 - - 3.0 Ω VDS = 50 V, ID = 1.5 A 1.4 - - S VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - 340 - - 53 - - 2.7 - VDS = 1.0 V, f = 1.0 MHz - 490 - VDS = 400 V, f = 1.0 MHz - 15 - - 28 - - - 17 ID = 1.5 Ab VGS = 10 V µA Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Coss Effective Output Capacitance VGS = 0 V Coss eff. VDS = 0 V to 400 Vc Total Gate Charge Qg Gate-Source Charge Qgs - - 4.3 Gate-Drain Charge Qgd - - 8.5 Turn-On Delay Time td(on) - 8.1 - tr - 12 - - 16 - - 13 - - - 3.3 - - 10 Rise Time Turn-Off Delay Time Fall Time td(off) VGS = 10 V ID = 2.5 A, VDS = 400 V, see fig. 6 and 13b VDD = 250 V, ID = 2.5 A, RG = 21 Ω, RD = 97 Ω, see fig. 10b tf pF pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 2.5 A, VGS = 0 S Vb TJ = 25 °C, IF = 2.5 A, dI/dt = 100 A/µsb - - 1.6 V - 330 500 ns - 760 1140 µC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.kersemi.com 2 IRFR420A, IRFU420A, SiHFR420A, TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 10 10 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 1 0.1 4.5V 20μs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 100 TJ = 150 ° C 1 TJ = 25 ° C 0.1 0.01 4.0 Fig. 1 - Typical Output Characteristics I D , Drain-to-Source Current (A) 1 4.5V 20μs PULSE WIDTH TJ = 150 ° C 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1 6.0 7.0 8.0 9.0 Fig. 3 - Typical Transfer Characteristics TOP 0.1 5.0 VGS , Gate-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 10 V DS = 50V 20μs PULSE WIDTH ID = 2.5A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFR420A, IRFU420A, SiHFR420A, 10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) ISD , Reverse Drain Current (A) Coss = Cds + Cgd 1000 10 Ciss 100 Coss 10 Crss TJ = 150 ° C 1 TJ = 25 ° C 1 1 10 100 1000 0.1 0.4 VDS, Drain-to-Source Voltage (V) V GS = 0 V 0.6 0.8 1.0 1.2 VSD ,Source-to-Drain Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Source-Drain Diode Forward Voltage ID = 2.5A 100 VDS = 400V VDS = 250V VDS = 100V OPERATION IN THIS AREA LIMITED BY RDS(on) 15 I D , Drain Current (A) VGS , Gate-to-Source Voltage (V) 20 10 5 0 10 100us 1 FOR TEST CIRCUIT SEE FIGURE 13 0 4 8 12 16 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage 10us 0.1 1ms TC = 25 ° C TJ = 150 ° C Single Pulse 10 10ms 100 1000 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area www.kersemi.com 4 10000 IRFR420A, IRFU420A, SiHFR420A, RD VDS 5.0 VGS D.U.T. RG + - VDD 4.0 ID , Drain Current (A) 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 3.0 Fig. 10a - Switching Time Test Circuit 2.0 VDS 1.0 90 % 0.0 25 50 75 100 125 150 ( ° C) TC , Case Temperature 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 P DM 0.1 0.05 t1 SINGLE PULSE (THERMAL RESPONSE) 0.02 0.01 t2 Notes: 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 0.01 t1/ t 2 J = P DM x Z thJC +T C 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms www.kersemi.com 5 300 TOP 250 BOTTOM ID 1.1A 1.6A 2.5A 200 150 100 700 V DSav , Avalanche Voltage ( V ) EAS , Single Pulse Avalanche Energy (mJ) IRFR420A, IRFU420A, SiHFR420A, 650 600 50 550 0.0 0.5 0 25 50 75 100 125 Starting TJ , Junction Temperature ( °C) 150 Fig. 12c - Maximum Avalanche Energy vs. Drain Current 1.0 1.5 2.0 Fig. 12d - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. QG 50 kΩ 12 V 10 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.kersemi.com 6 2.5 IAV , Avalanche Current ( A) Fig. 13b - Gate Charge Test Circuit IRFR420A, IRFU420A, SiHFR420A, Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel www.kersemi.com 7