HUF76429P3, HUF76429S3S Data Sheet October 1999 File Number 4672.1 44A, 60V, 0.025 Ohm, N-Channel, Logic Level UltraFET Power MOSFET Packaging Features JEDEC TO-220AB JEDEC TO-263AB DRAIN (FLANGE) SOURCE DRAIN GATE GATE SOURCE DRAIN (FLANGE) HUF76429P3 HUF76429S3S • Ultra Low On-Resistance - rDS(ON) = 0.022Ω, VGS = 10V - rDS(ON) = 0.025Ω, VGS = 5V • Simulation Models - Temperature Compensated PSPICE® and SABER© Electrical Models - Spice and SABER Thermal Impedance Models - www.semi.Intersil.com • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol • Switching Time vs RGS Curves D Ordering Information PART NUMBER G S Absolute Maximum Ratings PACKAGE BRAND HUF76429P3 TO-220AB 76429P HUF76429S3S TO-263AB 76429S NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76429S3ST. TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TC= 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES: HUF76429P3, HUF76429S3S 60 60 ±16 UNITS V V V 44 47 31 30 Figure 4 Figures 6, 17, 18 A A A A 110 0.74 -55 to 175 W W/oC oC 300 260 oC oC 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE™ is a trademark of MicroSim Corporation. SABER is a Copyright of Analogy, Inc. 1-888-INTERSIL or 407-727-9207 | Copyright © Intersil Corporation 1999. HUF76429P3, HUF76429S3S TC = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS ID = 250µA, VGS = 0V (Figure 12) 60 - - V ID = 250µA, VGS = 0V , TC = -40oC (Figure 12) 55 - - V VDS = 55V, VGS = 0V - - 1 µA VDS = 50V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 47A, VGS = 10V (Figures 9, 10) - 0.018 0.022 Ω ID = 31A, VGS = 5V (Figure 9) - 0.021 0.025 Ω ID = 30A, VGS = 4.5V (Figure 9) - 0.022 0.027 Ω TO-220 and TO-263 - - 1.36 oC/W - - 62 oC/W - - 325 ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time tON Turn-On Delay Time - 13 - ns tr - 203 - ns td(OFF) - 30 - ns tf - 74 - ns tOFF - - 155 ns - - 160 ns - 7.8 - ns td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 30V, ID = 30A VGS = 4.5V, RGS = 7.5Ω (Figures 15, 21, 22) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 30V, ID = 47A VGS = 10V,RGS = 8.2Ω (Figures 16, 21, 22) tr - 100 - ns td(OFF) - 51 - ns tf - 104 - ns tOFF - - 235 ns - 38 46 nC GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 5V Threshold Gate Charge Qg(TOT) VGS = 0V to 10V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V VDD = 30V, ID = 31A, Ig(REF) = 1.0mA (Figures 14, 19, 20) - 21 25 nC - 1.3 1.6 nC Gate to Source Gate Charge Qgs - 3.8 - nC Gate to Drain "Miller" Charge Qgd - 9.7 - nC - 1480 - pF - 440 - pF - 90 - pF MIN TYP MAX UNITS ISD = 44A - - 1.25 V ISD = 22A - - 1.00 V trr ISD = 31A, dISD/dt = 100A/µs - - 98 ns QRR ISD = 31A, dISD/dt = 100A/µs - - 230 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge 2 TEST CONDITIONS HUF76429P3, HUF76429S3S Typical Performance Curves 50 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 40 VGS = 10V 30 VGS = 4.5V 20 10 0.2 0 0 0 25 50 75 100 150 125 25 175 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) TC , CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 600 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - TC I = I25 150 VGS = 10V 100 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 30 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 3 10-1 100 101 HUF76429P3, HUF76429S3S Typical Performance Curves (Continued) 100 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 300 100 100µs OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10 1ms SINGLE PULSE TJ = MAX RATED TC = 25oC 1 STARTING TJ = 150oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 10ms 10 0.001 1 10 0.01 100 VDS, DRAIN TO SOURCE VOLTAGE (V) 0.1 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 50 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V VGS = 10V ID, DRAIN CURRENT (A) 40 30 20 TJ= 175oC TJ= -55oC 10 VGS = 5V VGS = 4V 40 VGS = 3.5V 30 20 VGS = 3V 10 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC TJ= 25oC 0 0 1.5 2 2.5 3 3.5 VGS, GATE TO SOURCE VOLTAGE (V) 0 4 FIGURE 7. TRANSFER CHARACTERISTICS 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) 2.5 30 ID = 22A 20 10 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC ID = 44A 4 FIGURE 8. SATURATION CHARACTERISTICS 40 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA ID, DRAIN CURRENT (A) STARTING TJ = 25oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 47A 2.0 1.5 1.0 0.5 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 4 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 200 HUF76429P3, HUF76429S3S Typical Performance Curves (Continued) 1.2 1.2 1.0 0.8 0.6 0.4 -80 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.1 1.0 0.9 -40 0 40 80 120 160 200 -80 -40 TJ, JUNCTION TEMPERATURE (oC) 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 10 VGS , GATE TO SOURCE VOLTAGE (V) 3000 C, CAPACITANCE (pF) VGS = 0V, f = 1MHz CISS = CGS + CGD 1000 COSS ≅ CDS + CGD 100 CRSS = CGD VDD = 30V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 44A ID = 22A 2 0 30 0 0.1 1.0 10 60 VDS , DRAIN TO SOURCE VOLTAGE (V) 10 20 30 15 25 Qg, GATE CHARGE (nC) 35 40 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 600 250 VGS = 10V, VDD = 30V, ID = 47A SWITCHING TIME (ns) VGS = 4.5V, VDD = 30V, ID = 30A SWITCHING TIME (ns) 5 450 tr 300 tf 150 td(OFF) 200 tf 150 tr 100 td(OFF) 50 td(ON) td(ON) 0 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE 5 50 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 16. SWITCHING TIME vs GATE RESISTANCE 50 HUF76429P3, HUF76429S3S Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS VDD - 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 6 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUF76429P3, HUF76429S3S PSPICE Electrical Model .SUBCKT HUF76429 2 1 3 ; rev 25 June 1999 CA 12 8 1.95e-9 CB 15 14 1.95e-9 CIN 6 8 1.39e-9 LDRAIN DPLCAP DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD 10 RLDRAIN RSLC1 51 DBREAK + RSLC2 EBREAK 11 7 17 18 68.05 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 5 51 ESLC 11 - RDRAIN 6 8 ESG IT 8 17 1 LGATE GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 5.80e-9 LSOURCE 3 7 4.57e-9 + 17 EBREAK 18 50 EVTHRES + 19 8 + EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD 8 SOURCE 3 7 RSOURCE RLSOURCE S2A S1A RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 7.8e-3 RGATE 9 20 2.80 RLDRAIN 2 5 10 RLGATE 1 9 54.2 RLSOURCE 3 7 41.6 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 6.5e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DRAIN 2 5 12 14 13 13 8 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 - - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*117),3))} .MODEL DBODYMOD D (IS = 1.28e-12 IKF = 11.5 RS = 5.25e-3 TRS1 = 1.78e-3 TRS2 = 1.85e-6 CJO = 1.68e-9 TT = 6.14e-8 M = 0.48 XTI = 4.35) .MODEL DBREAKMOD D (RS = 2.27e-1 TRS1 = 9.10e-4 TRS2 = -1e-6) .MODEL DPLCAPMOD D (CJO = 1.23e-9 IS = 1e-30 N = 10 M = 0.8) .MODEL MMEDMOD NMOS (VTO = 1.98 KP = 3.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.80) .MODEL MSTROMOD NMOS (VTO = 2.30 KP = 67 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.72 KP = 0.08 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 28.0 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.08e-3 TC2 = 1.35e-7) .MODEL RDRAINMOD RES (TC1 = 8.25e-3 TC2 = 1.85e-5) .MODEL RSLCMOD RES (TC1 = 4.97e-3 TC2 = 5.05e-6) .MODEL RSOURCEMOD RES (TC1 = 1.5e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -1.85e-3 TC2 = -9.48e-6) .MODEL RVTEMPMOD RES (TC1 = -1.72e-3 TC2 = 9.50e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.2 VOFF= -2.4) VON = -2.4 VOFF= -6.2) VON = -1.1 VOFF= 0.5) VON = 0.5 VOFF= -1.1) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7 HUF76429P3, HUF76429S3S SABER Electrical Model REV 25 June 1999 template huf76429 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 1.28e-12, cjo = 1.68e-9, tt = 6.14e-8, xti = 4.35, m = 0.48) d..model dbreakmod = () d..model dplcapmod = (cjo = 1.23e-9, is = 1e-30, n = 10, m = 0.8) m..model mmedmod = (type=_n, vto = 1.98, kp = 3.2, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.30, kp = 67, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.72, kp = 0.08, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.2, voff = -2.4) DPLCAP sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.4, voff = -6.2) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.1, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.1) c.ca n12 n8 = 1.95e-9 c.cb n15 n14 = 1.95e-9 c.cin n6 n8 = 1.39e-9 LDRAIN DRAIN 2 5 RSLC1 51 RLDRAIN RDBREAK RSLC2 72 ISCL EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 5.80e-9 l.lsource n3 n7 = 4.57e-9 RDRAIN 6 8 ESG EVTEMP RGATE + 18 22 9 20 16 MWEAK DBODY EBREAK + 17 18 MSTRO CIN 71 11 MMED m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u - 8 LSOURCE 7 RSOURCE RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/117))** 3)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 68.05 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 8 21 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.08e-3, tc2 = 1.35e-7 res.rdbody n71 n5 = 5.25e-3, tc1 = 1.78e-3, tc2 = 1.85e-6 res.rdbreak n72 n5 = 2.27e-1, tc1 = 9.10e-4, tc2 = -1.00e-6 res.rdrain n50 n16 = 7.80e-3, tc1 = 8.25e-3, tc2 = 1.85e-5 res.rgate n9 n20 = 2.80 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 54.2 res.rlsource n3 n7 = 41.6 res.rslc1 n5 n51 = 1e-6, tc1 = 4.97e-3, tc2 = 5.05e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 6.5e-3, tc1 = 1.5e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.72e-3, tc2 = 9.50e-7 res.rvthres n22 n8 = 1, tc1 = -1.85e-3, tc2 = -9.48e-6 DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod RDBODY VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF76429P3, HUF76429S3S SPICE Thermal Model th JUNCTION REV 2 August 1999 HUF76429 RTHERM1 CTHERM1 th 6 2.45e-3 CTHERM2 6 5 8.15e-3 CTHERM3 5 4 7.40e-3 CTHERM4 4 3 7.45e-3 CTHERM5 3 2 1.01e-2 CTHERM6 2 tl 7.49e-2 CTHERM1 6 RTHERM2 RTHERM1 th 6 9.00e-3 RTHERM2 6 5 1.80e-2 RTHERM3 5 4 9.15e-2 RTHERM4 4 3 2.43e-1 RTHERM5 3 2 3.50e-1 RTHERM6 2 tl 3.62e-1 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model 4 SABER thermal model HUF76429 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 2.45e-3 ctherm.ctherm2 6 5 = 8.15e-3 ctherm.ctherm3 5 4 = 7.40e-3 ctherm.ctherm4 4 3 = 7.45e-3 ctherm.ctherm5 3 2 = 1.01e-2 ctherm.ctherm6 2 tl = 7.49e-2 RTHERM4 CTHERM4 3 RTHERM5 rtherm.rtherm1 th 6 = 9.00e-3 rtherm.rtherm2 6 5 = 1.80e-2 rtherm.rtherm3 5 4 = 9.15e-2 rtherm.rtherm4 4 3 = 2.43e-1 rtherm.rtherm5 3 2 = 3.50e-1 rtherm.rtherm6 2 tl = 3.62e-1 } CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 9 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029