[ /Title (CD74 HC192 , CD74 HC193 , CD74 HCT19 3) /Subject (High Speed CMOS Logic Preset- CD54/74HC192, CD54/74HC193, CD54/74HCT193 Data sheet acquired from Harris Semiconductor SCHS163F September 1997 - Revised October 2003 High-Speed CMOS Logic Presettable Synchronous 4-Bit Up/Down Counters Features Presetting the counter to the number on the preset data inputs (P0-P3) is accomplished by a LOW asynchronous parallel load input (PL). The counter is incremented on the low-to-high transition of the Clock-Up input (and a high level on the ClockDown input) and decremented on the low to high transition of the Clock-Down input (and a high level on the Clock-up input). A high level on the MR input overrides any other input to clear the counter to its zero state. The Terminal Count up (carry) goes low half a clock period before the zero count is reached and returns to a high level at the zero count. The Terminal Count Down (borrow) in the count down mode likewise goes low half a clock period before the maximum count (9 in the 192 and 15 in the 193) and returns to high at the maximum count. Cascading is effected by connecting the carry and borrow outputs of a less significant counter to the Clock-Up and Clock-Down inputs, respectively, of the next most significant counter. • Synchronous Counting and Asynchronous Loading • Two Outputs for N-Bit Cascading • Look-Ahead Carry for High-Speed Counting • Fanout (Over Temperature Range) - Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads - Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads • Wide Operating Temperature Range . . . -55oC to 125oC • Balanced Propagation Delay and Transition Times • Significant Power Reduction Compared to LSTTL Logic ICs • HC Types - 2V to 6V Operation - High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V If a decade counter is preset to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram. • HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, VIL= 0.8V (Max), VIH = 2V (Min) - CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH Ordering Information PART NUMBER Description The ’HC192, ’HC193 and ’HCT193 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively. Pinout CD54HC192, CD54HC193, CD54HCT193 (CERDIP) CD74HC192 (PDIP, SOP, TSSOP) CD74HC193 (PDIP, SOIC) CD74HCT193 (PDIP) TOP VIEW P1 1 16 VCC Q1 2 15 P0 Q0 3 14 MR CPD 4 13 TCD CPU 5 12 TCU Q2 6 11 PL Q3 7 10 P2 GND 8 9 P3 © 2003, Texas Instruments Incorporated PACKAGE CD54HC192F3A -55 to 125 16 Ld CERDIP CD54HC193F3A -55 to 125 16 Ld CERDIP CD54HCT193F3A -55 to 125 16 Ld CERDIP CD74HC192E -55 to 125 16 Ld PDIP CD74HC192NSR -55 to 125 16 Ld SOP CD74HC192PW -55 to 125 16 Ld TSSOP CD74HC192PWR -55 to 125 16 Ld TSSOP CD74HC192PWT -55 to 125 16 Ld TSSOP CD74HC193E -55 to 125 16 Ld PDIP CD74HC193M -55 to 125 16 Ld SOIC CD74HC193MT -55 to 125 16 Ld SOIC CD74HC193M96 -55 to 125 16 Ld SOIC CD74HCT193E -55 to 125 16 Ld PDIP NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250. CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright TEMP. RANGE (oC) 1 CD54/74HC192, CD54/74HC193, CD54/74HCT193 Functional Diagram BCD/BINARY PRESET P0 15 ASYN. PARALLEL LOAD ENABLE PL P1 1 P2 10 P3 9 3 11 Q0 2 MASTER 14 RESET CLOCK UP CLOCK DOWN Q1 6 Q2 7 5 BCD (192) BINARY (193) OUTPUTS Q3 12 TERMINAL COUNT UP 13 TERMINAL COUNT DOWN 4 TRUTH TABLE CLOCK UP CLOCK DOWN RESET PARALLEL LOAD ↑ H L H Count Up H ↑ L H Count Down X X H X Reset X X L L Load Preset Inputs FUNCTION H = High Voltage Level, L = Low Voltage Level, X = Don’t Care, ↑ = Transition from Low to High Level 2 CD54/74HC192, CD54/74HC193, CD54/74HCT193 Absolute Maximum Ratings Thermal Information DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V DC Input Diode Current, IIK For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA DC Output Diode Current, IOK For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA DC Output Source or Sink Current per Output Pin, IO For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA DC VCC or Ground Current, ICC or IGND . . . . . . . . . . . . . . . . . .±50mA Package Thermal Impedance, θJA (see Note 1): E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67oC/W M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73oC/W NS (SOP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64oC/W PW (TSSOP) Package . . . . . . . . . . . . . . . . . . . . . . . . . 108oC/W Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range (TA) . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC Supply Voltage Range, VCC HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC Input Rise and Fall Time 2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max) 4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max) 6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max) CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. The package thermal impedance is calculated in accordance with JESD 51-7. DC Electrical Specifications TEST CONDITIONS PARAMETER SYMBOL VI (V) VIH - 25oC IO (mA) VCC (V) -40oC TO 85oC -55oC TO 125oC MIN TYP MAX MIN MAX MIN MAX UNITS 2 1.5 - - 1.5 - 1.5 - V 4.5 3.15 - - 3.15 - 3.15 - V 6 4.2 - - 4.2 - 4.2 - V HC TYPES High Level Input Voltage Low Level Input Voltage High Level Output Voltage CMOS Loads VIL VOH - VIH or VIL High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads VOL VIH or VIL Low Level Output Voltage TTL Loads Input Leakage Current Quiescent Device Current - - 2 - - 0.5 - 0.5 - 0.5 V 4.5 - - 1.35 - 1.35 - 1.35 V 6 - - 1.8 - 1.8 - 1.8 V -0.02 2 1.9 - - 1.9 - 1.9 - V -0.02 4.5 4.4 - - 4.4 - 4.4 - V -0.02 6 5.9 - - 5.9 - 5.9 - V -4 4.5 3.98 - - 3.84 - 3.7 - V -5.2 6 5.48 - - 5.34 - 5.2 - V 0.02 2 - - 0.1 - 0.1 - 0.1 V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 0.02 6 - - 0.1 - 0.1 - 0.1 V 4 4.5 - - 0.26 - 0.33 - 0.4 V 5.2 6 - - 0.26 - 0.33 - 0.4 V II VCC or GND - 6 - - ±0.1 - ±1 - ±1 µA ICC VCC or GND 0 6 - - 8 - 80 - 160 µA 3 CD54/74HC192, CD54/74HC193, CD54/74HCT193 DC Electrical Specifications (Continued) TEST CONDITIONS SYMBOL VI (V) High Level Input Voltage VIH - - Low Level Input Voltage VIL - High Level Output Voltage CMOS Loads VOH VIH or VIL PARAMETER 25oC IO (mA) VCC (V) -40oC TO 85oC -55oC TO 125oC MIN TYP MAX MIN MAX MIN MAX UNITS 4.5 to 5.5 2 - - 2 - 2 - V - 4.5 to 5.5 - - 0.8 - 0.8 - 0.8 V -0.02 4.5 4.4 - - 4.4 - 4.4 - V -4 4.5 3.98 - - 3.84 - 3.7 - V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 4 4.5 - - 0.26 - 0.33 - 0.4 V HCT TYPES High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads VOL VIH or VIL Low Level Output Voltage TTL Loads Input Leakage Current Quiescent Device Current Additional Quiescent Device Current Per Input Pin: 1 Unit Load II VCC to GND - 5.5 - - ±0.1 - ±1 - ±1 µA ICC VCC or GND - 5.5 - - 8 - 80 - 160 µA ∆ICC (Note 2) VCC - 2.1 - 4.5 to 5.5 - 100 360 - 450 - 490 µA NOTE: 2. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA. HCT Input Loading Table INPUT UNIT LOADS P0-P3 0.4 MR 1.45 PL 0.85 CPU, CPD 1.45 NOTE: Unit Load is ∆ICC limit specified in DC Electrical Specifications table, e.g. 360µA max at 25oC. 4 CD54/74HC192, CD54/74HC193, CD54/74HCT193 Prerequisite For Switching Specifications PARAMETER SYMBOL HC TYPES Pulse Width tW CPU, CPD 192 tW CPU, CPD 193 PL tW MR tW Set-up Time tSU Pn to PL Hold Time tH Pn to PL Hold Time tH CPD to CPU or CPU to CPD Recovery Time tREC PL to CPU, CPD MR to CPU, CPD tREC Maximum Frequency fMAX CPU, CPD 192 fMAX CPU, CPD 193 HCT TYPES Pulse Width tW CPU, CPD 192 CPU, CPD tW 193 25oC -40oC TO 85oC -55oC TO 125oC VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS 2 115 - - 145 - 175 - ns 4.5 23 - - 29 - 35 - ns 6 20 - - 25 - 30 - ns 2 100 - - 125 - 150 - ns 4.5 20 - - 25 - 30 - ns 6 17 - - 21 - 26 - ns 2 80 - - 100 - 120 - ns 4.5 16 - - 20 - 24 - ns 6 14 - - 17 - 20 - ns 2 100 - - 125 - 150 - ns 4.5 20 - - 25 - 30 - ns 6 17 - - 21 - 26 - ns 2 80 - - 100 - 120 - ns 4.5 16 - - 20 - 24 - ns 6 14 - - 17 - 20 - ns 2 0 - - 0 - 0 - ns 4.5 0 - - 0 - 0 - ns 6 0 - - 0 - 0 - ns 2 80 - - 100 - 120 - ns 4.5 16 - - 20 - 24 - ns 6 14 - - 17 - 20 - ns 2 80 - - 100 - 120 - ns 4.5 16 - - 20 - 24 - ns 6 14 - - 17 - 20 - ns 2 5 - - 5 - 5 - ns 4.5 5 - - 5 - 5 - ns 6 5 - - 5 - 5 - ns 2 5 - - 4 - 3 - MHz 4.5 22 - - 18 - 15 - MHz 6 24 - - 21 - 18 - MHz 2 5 - - 4 - 3 - MHz 4.5 25 - - 20 - 17 - MHz 6 29 - - 24 - 20 - MHz 2 - - - - - - - ns 4.5 23 - - 29 - 35 - ns 6 - - - - - - - ns 2 - - - - - - - ns 4.5 23 - - 29 - 35 - ns 6 - - - - - - - ns 5 CD54/74HC192, CD54/74HC193, CD54/74HCT193 Prerequisite For Switching Specifications PARAMETER SYMBOL PL VCC (V) tW MR Hold Time Hold Time MR to CPU, CPD - - - - ns - 24 - ns 6 - - - - - - - ns 2 - - - - - - - ns 4.5 20 - - 25 - 30 - ns 6 - - - - - - - ns 2 - - - - - - - ns 4.5 15 - - 19 - 22 - ns 6 - - - - - - - ns 2 - - - - - - - ns 4.5 0 - - 0 - 0 - ns 6 - - - - - - - ns 2 - - - - - - - ns 4.5 16 - - 20 - 24 - ns 6 - - - - - - - ns 2 - - - - - - - ns 4.5 15 - - 19 - 22 - ns 6 - - - - - - - ns 2 - - - - - - - ns 4.5 5 - - 5 - 5 - ns 6 - - - - - - - ns 2 - - - - - - - MHz 4.5 22 - - 18 - 15 - MHz 6 - - - - - - - MHz fMAX 193 Switching Specifications PARAMETER HC TYPES Propagation Delay CPU to Qn 2 - - - - - - - MHz 4.5 22 - - 18 - 15 - MHz 6 - - - - - - - MHz Input tr, tf = 6ns SYMBOL tPLH, tPHL CPU to TCU CPD to TCD UNITS 20 192 CPU, CPD MAX - fMAX CPU, CPD MIN - tREC Maximum Frequency MAX - tREC PL to CPU, CPD MIN - CPU to CPD Recovery Time MAX - tH CPD to CPU or TYP -55oC TO 125oC 16 tH Pn to PL MIN -40oC TO 85oC 2 tSU Pn to PL 25oC 4.5 tW Set-up Time (Continued) tPLH, tPHL tPLH, tPHL TEST CONDITIONS 25oC -40oC TO 85oC -55oC TO 125oC VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS CL = 50pF 2 - - 125 - 155 - 190 ns CL = 50pF 4.5 - - 25 - 31 - 38 ns CL = 15pF 5 - 10 - - - - - ns CL = 50pF 6 - 21 - 26 - 32 ns CL = 50pF 2 - - 125 - 155 - 190 ns CL = 50pF 4.5 - - 25 - 31 - 38 ns CL = 15pF 5 - 10 - - - - - ns CL = 50pF 6 - - 21 - 26 - 32 ns CL = 50pF 2 - - 220 - 270 - 325 ns CL = 50pF 4.5 - - 43 - 54 - 65 ns CL = 15pF 5 - 18 - - - - - ns CL = 50pF 6 - - 37 - 46 - 55 ns 6 CD54/74HC192, CD54/74HC193, CD54/74HCT193 Switching Specifications PARAMETER CPD to Qn PL to Qn MR to Qn Transition Time Input tr, tf = 6ns (Continued) SYMBOL tPLH, tPHL CL = 50pF 2 CL = 50pF 4.5 CL = 15pF 5 - CL = 50pF 6 - CL = 50pF 2 - CL = 50pF 4.5 CL = 15pF 5 CL = 50pF 6 tPLH, tPHL tPHL tTLH, tTHL VCC (V) 25oC TEST CONDITIONS MIN -40oC TO 85oC -55oC TO 125oC TYP MAX MIN MAX MIN MAX UNITS - - 220 - 270 - 325 ns - - 43 - 54 - 65 ns 18 - - - - - 37 - 46 - 55 ns - 220 - 275 - 330 ns - - 44 - 55 - 66 ns - 18 - - - - - ns - - 37 - 47 - 56 ns ns CL = 50pF 2 - - 200 - 250 - 300 ns CL = 50pF 4.5 - - 40 - 50 - 60 ns CL = 15pF 5 - 17 - - - - - ns CL = 50pF 6 - - 34 - 43 - 51 ns CL = 50pF 2 - - 75 - 95 - 110 ns 4.5 - - 15 - 19 - 22 ns 6 - - 13 - 16 - 19 ns Q, TCU, TCD Input Capacitance CIN CL = 50pF - - - 10 - 10 - 10 pF Power Dissipation Capacitance (Notes 3, 4) CPD CL = 15pF 5 - 40 - - - - - pF CL = 50pF 4.5 - - 27 - 34 - 41 ns CL = 15pF 5 - 11 - - - - - ns CL = 50pF 4.5 - - 27 - 34 - 41 ns HCT TYPES Propagation Delay tPLH, tPHL CPU to TCU CPU to TCD tPLH, tPHL CPU to Qn tPLH, tPHL CPD to Qn tPLH, tPHL PL to Qn MR to Qn Transition Time tPLH, tPHL tPHL tTLH, tTHL CL = 15pF 5 - 11 - - - - - ns CL = 50pF 4.5 - - 40 - 50 - 60 ns CL = 15pF 5 - 17 - - - - - ns CL = 50pF 4.5 - - 40 - 50 - 60 ns CL = 15pF 5 - 17 - - - - - ns CL = 50pF 4.5 - - 46 - 58 - 69 ns CL = 15pF 5 - 21 - - - - - ns CL = 50pF 4.5 - - 43 - 54 - 65 ns CL = 15pF 5 - 18 - - - - - ns CL = 50pF 4.5 - - 15 - 19 - 22 ns Input Capacitance Q, TCU, TCD CIN CL = 50pF - - - 10 - 10 - 10 pF Power Dissipation Capacitance (Notes 3, 4) CPD CL = 15pF 5 - 50 - - - - - pF NOTES: 3. CPD is used to determine the dynamic power consumption, per gate. 4. PD = VCC2 fi + ∑ (CL VCC2) where fi = Input Frequency, CL = Output Load Capacitance, VCC = Supply Voltage. 7 CD54/74HC192, CD54/74HC193, CD54/74HCT193 Test Circuits and Waveforms MASTER RESET ASYNCHRONOUS PARALLEL LOAD P0 PRESET DATA P1 P2 P3 SEQUENCES: 1. RESET OUTPUTS TO ZERO. CLOCK UP 2. LOAD (PRESET) TO BCD SEVEN. 3. COUNT UP TO EIGHT, NINE, CLOCK DOWN TERMINAL COUNT UP, ZERO, ONE AND TWO. Q0 4. COUNT DOWN TO ONE, ZERO, TERMINAL COUNT DOWN, NINE, Q1 EIGHT AND SEVEN. OUTPUTS Q2 Q3 TERMINAL COUNT UP TERMINAL COUNT DOWN 0 8 7 RESET PRESET 9 0 1 COUNT UP 2 1 0 9 8 7 COUNT DOWN FIGURE 1. ’HC192 SYNCHRONOUS DECADE COUNTERS, TYPICAL RESET, PRESET AND COUNT SEQUENCES 8 CD54/74HC192, CD54/74HC193, CD54/74HCT193 Test Circuits and Waveforms (Continued) MASTER RESET ASYNCHRONOUS PARALLEL LOAD P0 P1 PRESET DATA P2 P3 SEQUENCES: 1. RESET OUTPUTS TO ZERO. 2. LOAD (PRESET) TO BINARY THIRTEEN. CLOCK UP 3. COUNT UP TO FOURTEEN, CLOCK DOWN FIFTEEN, TERMINAL COUNT UP, ZERO, ONE AND TWO. 4. COUNT DOWN TO ONE, ZERO, Q0 TERMINAL COUNT DOWN, FIFTEEN, FOURTEEN AND Q1 THIRTEEN. OUTPUTS Q2 Q3 TERMINAL COUNT UP TERMINAL COUNT DOWN 0 NOTES: 1. Master reset overrides load data and clock inputs. 14 13 RESET PRESET 15 0 1 2 1 COUNT UP 0 15 14 13 COUNT DOWN 2. When counting up, clock-down input must be high. When counting down, clock-up input must be high. FIGURE 2. ’HC193 SYNCHRONOUS BINARY COUNTERS, TYPICAL RESET, PRESET AND COUNT SEQUENCES l/fMAX CPU OR CPD VS VS VS INPUT LEVEL INPUT LEVEL CPU OR CPD VS VS tW tPHL VS Qn VS FIGURE 4. CLOCK TO TERMINAL COUNT DELAYS INPUT LEVEL Pn tW VS tW VS VS VS tREC CPU OR CPD Qn VS TCU OR TCD VS FIGURE 3. CLOCK TO OUTPUT DELAYS AND CLOCK PULSE WIDTH PL tPLH tPHL tPLH MR INPUT LEVEL VS VS VS CPU OR CPD INPUT LEVEL VS tPHL Qn VS FIGURE 5. PARALLEL LOAD PULSE WIDTH, PARALLEL LOAD TO OUTPUT DELAYS, AND PARALLEL LOAD TO CLOCK RECOVERY TIME INPUT LEVEL tREC tW tPHL tPLH VS VS INPUT LEVEL FIGURE 6. MASTER RESET PULSE WIDTH, MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME 9 Test Circuits and Waveforms (Continued) VS Pn tSU(H) PL Qn tH tSU(L) VS INPUT LEVEL tH VS INPUT LEVEL Q=p Q=p FIGURE 7. SET-UP AND HOLD TIMES DATA TO PARALLEL LOAD (PL) DATA INPUT UP CLOCK DOWN CLOCK ASYNCHRONOUS, PARALLEL LOAD P0 P1 P2 P3 TCU CPU TCD CPD PL MR Q0 Q1 Q2 Q3 P0 P1 P2 P3 TCU CPU TCD CPD PL MR Q0 Q1 Q2 Q3 BORROW CARRY RESET OUTPUT FIGURE 8. CASCADED UP/DOWN COUNTER WITH PARALLEL LOAD 0 4 0 15 5 15 5 14 6 14 6 13 7 13 7 8 12 12 1 11 2 10 3 9 1 11 2 10 3 9 4 8 COUNT DOWN COUNT UP NOTE: Illegal states in BCD counters corrected in one count. NOTE: Illegal states in BCD counters corrected in one or two counts. FIGURE 9. ’HC192, ’HCT193 STATE DIAGRAMS 10 PACKAGE OPTION ADDENDUM www.ti.com 9-Oct-2007 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty Lead/Ball Finish MSL Peak Temp (3) 5962-8780801EA ACTIVE CDIP J 16 1 TBD A42 SNPB N / A for Pkg Type 5962-9084801MEA ACTIVE CDIP J 16 1 TBD A42 SNPB N / A for Pkg Type 9084801MEAS2035 OBSOLETE CDIP J 16 TBD Call TI CD54HC192F3A ACTIVE CDIP J 16 1 TBD A42 SNPB N / A for Pkg Type CD54HC193F3A ACTIVE CDIP J 16 1 TBD A42 SNPB N / A for Pkg Type CD54HCT193F3A ACTIVE CDIP J 16 1 TBD A42 SNPB N / A for Pkg Type CD74HC192E ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HC192EE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HC192NSR ACTIVE SO NS 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192NSRE4 ACTIVE SO NS 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192NSRG4 ACTIVE SO NS 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192PW ACTIVE TSSOP PW 16 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192PWE4 ACTIVE TSSOP PW 16 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192PWG4 ACTIVE TSSOP PW 16 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192PWR ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192PWRE4 ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192PWRG4 ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192PWT ACTIVE TSSOP PW 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192PWTE4 ACTIVE TSSOP PW 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC192PWTG4 ACTIVE TSSOP PW 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC193E ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HC193EE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HC193M ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC193M96 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC193M96E4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC193M96G4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC193ME4 ACTIVE SOIC D 16 CU NIPDAU Level-1-260C-UNLIM 40 Addendum-Page 1 Green (RoHS & no Sb/Br) Call TI PACKAGE OPTION ADDENDUM www.ti.com 9-Oct-2007 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty CD74HC193MG4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC193MT ACTIVE SOIC D 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC193MTE4 ACTIVE SOIC D 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HC193MTG4 ACTIVE SOIC D 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM CD74HCT193E ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HCT193EE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated