Fairchild FAN7530 Critical conduction mode pfc controller Datasheet

FAN7530
Critical Conduction Mode PFC Controller
Features
Description
„ Low Total Harmonic Distortion (THD)
The FAN7530 is an active power factor correction (PFC)
controller for the boost PFC applications that operates in
critical conduction mode (CRM). It uses the voltage
mode PWM that compares an internal ramp signal with
the error amplifier output to generate MOSFET turn-off
signal. Because the voltage mode CRM PFC controller
does not need the rectified AC line voltage information, it
can save the power loss of the input voltage sensing network necessary for the current mode CRM PFC controller.
„ Precise Adjustable Output Over-Voltage Protection
„ Open-Feedback Protection and Disable Function
„ Zero Current Detector
„ 150µs Internal Start-up Timer
„ MOSFET Over-Current Protection
„ Under-Voltage Lockout with 3.5V Hysteresis
„ Low Start-up (40µA) and Operating Current (1.5mA)
„ Totem Pole Output with High State Clamp
„ +500/-800mA Peak Gate Drive Current
FAN7530 provides many protection functions such as
over voltage protection, open-feedback protection, overcurrent protection, and under-voltage lockout protection.
The FAN7530 can be disabled if the INV pin voltage is
lower than 0.45V and the operating current decreases to
65µA. Using a new variable on-time control method,
THD is lower than the conventional CRM boost PFC ICs.
„ 8-pin DIP or 8-pin SOP
Applications
„ Adapter
„ Ballast
„ LCD TV, CRT TV
„ SMPS
Related Application Notes
„ AN-6027 - Design of Power Factor Correction Circuit
Using FAN7530
Ordering Information
Part Number
Operating Temp.
Range
Pb-Free
Package
Packing Method
Marking
Code
FAN7530N
-40°C to +125°C
Yes
8-DIP
Rail
FAN7530
FAN7530M
-40°C to +125°C
Yes
8-SOP
Rail
FAN7530
FAN7530MX
-40°C to +125°C
Yes
8-SOP
Tape & Reel
FAN7530
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
FAN7530 Critical Conduction Mode PFC Controller
April 2007
FAN7530 Critical Conduction Mode PFC Controller
Typical Application Diagrams
L
D
VO
AC
IN
VAUX
I2
NAUX
RZCD
R2 ZCD
CO
VCC
FAN7530
INV
MOT
CS
I1
COMP
R1
GND
FAN7530 Rev. 00
Figure 1. Typical Boost PFC Application
Internal Block Diagram
2.5V
Ref
VCC 8
UVLO
Vref1
VCC
Internal
Bias
12V
8.5V
Drive
Output
Disable
150ms
Timer
ZCD 5
S
6.7V
Q
1.4V 1.5V
R
Zero Current
Detector
CS
OVP
4
Disable
40k
8pF
0.8V
MOT 2
7 OUT
13V
Ramp
Signal
Saw Tooth
Generator
2.675V
2.5V
0.45V 0.35V
Current Protection
Comparator
Vref1
1V Offset
Error
Amplifier
Gm
1V~5V
Range
1 INV
3
6
GND
COMP
FAN7530 Rev. 00
Figure 2. Functional Block Diagram of FAN7530
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
2
VCC
OUT
GND
ZCD
8
7
6
5
YWW
FAN7530
1
2
3
4
INV
MOT
COMP
CS
FAN7530 Rev. 00
Figure 3. Pin Configuration (Top View)
Pin Definitions
Pin #
Name
Description
1
INV
This pin is the inverting input of the error amplifier. The output voltage of the boost PFC
converter should be resistively divided to 2.5V.
2
MOT
This pin is used to set the slope of the internal ramp. The voltage of this pin is maintained at 3V. If a resistor is connected between this pin and GND, current flows out of
the pin and the slope of the internal ramp is proportional to this current.
3
COMP
This pin is the output of the transconductance error amplifier. Components for the output voltage compensation should be connected between this pin and GND.
4
CS
This pin is the input of the over-current protection comparator. The MOSFET current is
sensed using a sensing resistor and the resulting voltage is applied to this pin. An
internal RC filter is included to filter switching noise.
5
ZCD
This pin is the input of the zero current detection block. If the voltage of this pin goes
higher than 1.5V, then goes lower than 1.4V, the MOSFET is turned on.
6
GND
This pin is used for the ground potential of all the pins. For proper operation, the signal
ground and the power ground should be separated.
7
OUT
This pin is the gate drive output. The peak sourcing and sinking current levels are
+500mA and -800mA respectively. For proper operation, the stray inductance in the
gate driving path must be minimized.
8
VCC
This pin is the IC supply pin. IC current and MOSFET drive current are supplied using
this pin.
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
3
FAN7530 Critical Conduction Mode PFC Controller
Pin Assignments
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The
absolute maximum ratings are stress ratings only. TA = 25°C unless otherwise specified.
Symbol
VCC
IOH, IOL
Iclamp
Parameter
Supply Voltage
Peak Drive Output Current
Driver Output Clamping Diodes VO>VCC or VO<-0.3V
Idet
Detector Clamping Diodes
VIN
Error Amplifier, MOT, CS Input Voltages
Value
Unit
VZ
V
+500/-800
mA
±10
mA
±10
mA
-0.3 to 6
V
150
°C
°C
Tj
Operating Junction Temperature
TA
Operating Temperature Range
-40 to 125
Tstg
Storage Temperature Range
-65 to 150
°C
VESD_HBM
ESD Capability, Human Body Model
2.0
kV
VESD_MM
ESD Capability, Machine Model
300
V
VESD_CDM
ESD Capability, Charged Device Model
500
V
Value
Unit
8-DIP
110
°C/W
8-SOP
150
°C/W
Thermal Impedance(1)
Symbol
Rθja
Parameter
Thermal Resistance, Junction-to-Ambient
Note:
1. Regarding the test environment and PCB type, please refer to JESD51-2 and JESD51-10.
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
4
FAN7530 Critical Conduction Mode PFC Controller
Absolute Maximum Ratings
VCC = 14V, TA = -40°C~125°C, unless otherwise specified.
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
11
12
13
V
UNDER-VOLTAGE LOCKOUT SECTION
Vth(start)
Start Threshold Voltage
VCC increasing
Vth(stop)
Stop Threshold Voltage
VCC decreasing
HY(uvlo)
UVLO Hysteresis
VZ
Zener Voltage
ICC = 20mA
7.5
8.5
9.5
V
3.0
3.5
4.0
V
20
22
24
V
SUPPLY CURRENT SECTION
Ist
Start-up Supply Current
VCC = Vth(start) - 0.2V
40
70
µA
ICC
Operating Supply Current
Output no switching
1.5
3.0
mA
Idcc
Dynamic Operating Supply Current
50kHz, Cl=1nF
2.5
4.0
mA
Operating Current at Disable
Vinv = 0V
20
65
95
µA
Voltage Feedback Input Threshold1
TA = 25°C
2.465
2.500
2.535
V
Line Regulation
VCC = 14V ~ 20V
0.1
10.0
mV
ICC(dis)
ERROR AMPLIFIER SECTION
Vref1
ΔVref1
ΔVref2
Temperature Stability of
Ib(ea)
Input Bias Current
Vinv = 1V ~ 4V
Isource
Output Source Current
Vinv = Vref1 - 0.1V
-12
µA
Output Sink Current
Vinv = Vref1 + 0.1V
12
µA
Veao(H)
Output Upper Clamp Voltage
Vinv = Vref1 - 0.1V
Veao(Z)
Zero Duty Cycle Output Voltage
0.9
1.0
1.1
V
Transconductance(2)
90
115
140
µmho
2.784
2.900
3.016
V
19
24
29
µs
0.7
0.8
0.9
V
-1.0
-0.1
1.0
µA
350
500
ns
Isink
gm
Vref1(2)
20
-0.5
5.4
mV
0.5
6.0
6.6
µA
V
MAXIMUM ON-TIME SECTION
Vmot
Ton(max)
Maximum On-time Voltage
Rmot = 40.5kΩ
Maximum On-time Programming
Rmot = 40.5kΩ, TA = 25°C
CURRENT SENSE SECTION
VCS(limit)
Ib(cs)
td(cs)
Current Sense Input Threshold
Voltage Limit
Input Bias Current
Current Sense Delay to
VCS = 0V ~ 1V
Output(2)
dV/dt = 1V/100ns,
From 0V to 5V
Note:
2. These parameters, although guaranteed by design, are not tested in mass production.
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
5
FAN7530 Critical Conduction Mode PFC Controller
Electrical Characteristics
VCC = 14V, TA = -40°C~125°C, unless otherwise specified.
Symbol
Parameter
Condition
Min.
Typ.
Max.
Unit
1.35
1.50
1.65
V
ZERO CURRENT DETECT SECTION
Vth(ZCD)
Input Voltage Threshold(3)
(3)
HY(ZCD)
Detect Hysteresis
0.05
0.10
0.15
V
Vclamp(H)
Input High Clamp Voltage
Idet = 3mA
6.0
6.7
7.4
V
Vclamp(L)
Input Low Clamp Voltage
Idet = -3mA
0
0.65
1.00
V
-1.0
-0.1
1.0
µA
Ib(ZCD)
Input Bias Current
VZCD = 1V ~ 5V
(3)
Isource(zcd)
Source Current Capability
TA = 25°C
-10
mA
Isink(zcd)
Sink Current Capability(3)
TA = 25°C
10
mA
200
ns
11.0
12.8
V
tdead
Maximum Delay from ZCD to Output dV/dt = -1V/100ns,
Turn-on(3)
From 5V to 0V
100
OUTPUT SECTION
VOH
Output Voltage High
IO = -100mA, TA = 25°C
VOL
Output Voltage Low
IO = 200mA, TA = 25°C
1.0
2.5
V
tr
Rising
Time(3)
Cl = 1nF
50
100
ns
Falling
Time(3)
Cl = 1nF
50
100
ns
13.0
14.5
V
1
V
tf
VO(max)
VO(UVLO)
Maximum Output Voltage
VCC = 20V, IO = 100μA
Output Voltage with UVLO Activated
VCC = 5V, IO = 100μA
9.2
11.5
RESTART TIMER SECTION
td(rst)
Restart Timer Delay
50
150
300
µs
OVER-VOLTAGE PROTECTION SECTION
Vovp
HY(ovp)
OVP Threshold Voltage
TA = 25°C
2.620
2.675
2.730
V
OVP Hysteresis
TA = 25°C
0.120
0.175
0.230
V
ENABLE SECTION
Vth(en)
Enable Threshold Voltage
0.40
0.45
0.50
V
HY(en)
Enable Hysteresis
0.05
0.10
0.15
V
Note:
3. These parameters, although guaranteed by design, are not tested in mass production.
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
6
FAN7530 Critical Conduction Mode PFC Controller
Electrical Characteristics (Continued)
9.5
12.5
9.0
Vth(stop) [V]
Vth(start) [V]
13.0
12.0
8.5
8.0
11.5
7.5
11.0
-60 -40 -20
0
20
40
60
80
-60 -40 -20
100 120 140
0
40
60
80
100 120 140
Figure 5. Stop Threshold Voltage vs. Temp.
4.00
23.0
3.75
22.5
VZ [V]
HY(UVLO) [V]
Figure 4. Start Threshold Voltage vs. Temp.
3.50
22.0
21.5
3.25
21.0
3.00
-60 -40 -20
0
20
40
60
80
-60 -40 -20
100 120 140
0
20
40
60
80
100 120 140
Temperature [°C]
Temperature [°C]
Figure 6. UVLO Hysteresis vs. Temp.
Figure 7. Zener Voltage vs. Temp.
60
2.4
ICC [mA]
45
Ist [μA]
20
Temperature [°C]
Temperature [°C]
30
1.6
0.8
15
0.0
-60 -40 -20
0
20
40
60
80
-60 -40 -20
100 120 140
Figure 8. Start-up Supply Current vs. Temp.
20
40
60
80
100 120 140
Figure 9. Operating Supply Current vs. Temp.
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
0
Temperature [°C]
Temperature [°C]
www.fairchildsemi.com
7
FAN7530 Critical Conduction Mode PFC Controller
Typical Characteristics
90
3
72
ICC(dis) [μA]
Idcc [mA]
4
2
1
54
36
0
-60 -40 -20
0
20
40
60
80
100 120 140
-60 -40 -20
0
Temperature [°C]
20
40
60
80
100 120 140
Temperature [°C]
Figure 10. Dynamic Operating Supply Current vs.
Temp.
Figure 11. Operating Current at Disable vs. Temp.
10.0
7.5
ΔVref1 [mV]
Vref1 [V]
2.52
2.50
5.0
2.5
2.48
0.0
-60 -40 -20
0
20
40
60
80
-60 -40 -20
100 120 140
0
20
40
60
80
100 120 140
Temperature [°C]
Temperature [°C]
Figure 13. ΔVref1 vs. Temp.
Figure 12. Vref1 vs. Temp.
0.50
-9
Isource [μA]
Ib(ea) [μA]
0.25
0.00
-12
-15
-0.25
-0.50
-18
-60 -40 -20
0
20
40
60
80
100 120 140
-60 -40 -20
Temperature [°C]
20
40
60
80
100 120 140
Temperature [°C]
Figure 14. Input Bias Current vs. Temp.
Figure 15. Output Source Current vs. Temp.
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
0
www.fairchildsemi.com
8
FAN7530 Critical Conduction Mode PFC Controller
Typical Characteristics (Continued)
6.6
15
6.3
Veao(H) [V]
Isink [μA]
18
12
9
6.0
5.7
6
5.4
-60 -40 -20
0
20
40
60
80
100 120 140
-60 -40 -20
0
Temperature [°C]
20
40
60
80
100 120 140
Temperature [°C]
Figure 16. Output Sink Current vs. Temp.
Figure 17. Output Upper Clamp Voltage vs. Temp.
1.10
3.00
2.95
Vmot [V]
Veao(Z) [V]
1.05
1.00
2.90
2.85
0.95
2.80
0.90
-60 -40 -20
0
20
40
60
80
100 120 140
-60 -40 -20
0
Temperature [°C]
20
40
60
80
100 120 140
Temperature [°C]
Figure 18. Zero Duty Cycle Output Voltage vs. Temp.
Figure 19. Maximum On-Time Voltage vs. Temp.
0.90
0.85
Vcs(limit) [V]
Ton(max) [μs]
27
24
0.80
0.75
21
0.70
-60 -40 -20
0
20
40
60
80
100 120 140
-60 -40 -20
Temperature [°C]
20
40
60
80
100 120 140
Temperature [°C]
Figure 20. Maximum On-Time vs. Temp.
Figure 21. Current Sense Input Threshold Voltage vs.
Temp.
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
0
www.fairchildsemi.com
9
FAN7530 Critical Conduction Mode PFC Controller
Typical Characteristics (Continued)
1.0
7.2
6.8
Vclamp(H) [V]
Ib(cs) [μA]
0.5
0.0
6.4
-0.5
6.0
-1.0
-60 -40 -20
0
20
40
60
80
100 120 140
-60 -40 -20
0
Temperature [°C]
Figure 22. Input Bias Current vs. Temp.
40
60
80
100 120 140
Figure 23. Input High Clamp Voltage vs. Temp.
1.00
1.0
0.75
0.5
Ib(zcd) [μA]
Vclamp(L) [V]
20
Temperature [°C]
0.50
0.25
0.0
-0.5
0.00
-1.0
-60 -40 -20
0
20
40
60
80
100 120 140
-60 -40 -20
0
Temperature [°C]
20
40
60
80
100 120 140
Temperature [°C]
Figure 24. Input Low Clamp Voltage vs. Temp.
Figure 25. Input Bias Current vs. Temp.
0.9
14
VO(uvlo) [V]
VO(max) [V]
0.6
13
12
0.3
0.0
-0.3
-60 -40 -20
0
20
40
60
80
100 120 140
-60 -40 -20
Temperature [°C]
20
40
60
80
100 120 140
Temperature [°C]
Figure 26. Maximum Output Voltage vs. Temp.
Figure 27. Output Voltage with UVLO Activated vs.
Temp.
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
0
www.fairchildsemi.com
10
FAN7530 Critical Conduction Mode PFC Controller
Typical Characteristics (Continued)
2.73
300
250
200
Vovp [V]
td(rst) [μs]
2.70
150
100
2.67
2.64
50
-60 -40 -20
0
20
40
60
80
-60 -40 -20
100 120 140
0
20
40
60
80
100 120 140
Temperature [°C]
Temperature [°C]
Figure 28. Restart Delay Time vs. Temp.
Figure 29. OVP Threshold Voltage vs. Temp.
0.500
0.21
Vth(en) [V]
HY(OVP) [V]
0.475
0.18
0.450
0.15
0.425
0.400
0.12
-60 -40 -20
0
20
40
60
80
-60 -40 -20
100 120 140
0
20
40
60
80
100 120 140
Temperature [°C]
Temperature [°C]
Figure 30. OVP Hysteresis vs. Temp.
Figure 31. Enable Threshold voltage vs. Temp.
0.150
HY(en) [V]
0.125
0.100
0.075
0.050
-60 -40 -20
0
20
40
60
80
100 120 140
Temperature [°C]
Figure 32. Enable Hysteresis vs. Temp.
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
11
FAN7530 Critical Conduction Mode PFC Controller
Typical Characteristics (Continued)
1. Error Amplifier Block
rent detector turns on the MOSFET. The ZCD pin is protected internally by two clamps, 6.7V-high clamp and
0.65V-low clamp. The 150µs timer generates a MOSFET
turn-on signal if the drive output has been low for more
than 150µs from the falling edge of the drive output.
The error amplifier block consists of a transconductance
amplifier, output OVP comparator, and disable comparator. For the output voltage control, a transconductance
amplifier is used instead of the conventional voltage
amplifier. The transconductance amplifier (voltage controlled current source) aids the implementation of OVP
and disable function. The output current of the amplifier
changes according to the voltage difference of the inverting and non-inverting input of the amplifier. The output
voltage of the amplifier is compared with the internal
ramp signal to generate the switch turn-off signal. The
OVP comparator shuts down the output drive block when
the voltage of the INV pin is higher than 2.675V and
there is 0.175V hysteresis. The disable comparator disables the operation of the FAN7530 when the voltage of
the inverting input is lower than 0.45V and there is
100mV hysteresis. An external small signal MOSFET
can be used to disable the IC, as shown in Figure 33.
The IC operating current decreases below 65µA to
reduce power consumption if the IC is disabled.
150μs
Timer
Vin
Turn-on
Signal
ZCD
5
S
RZCD
6.7V
Q
1.4V
1.5V
Zero Current
Detector
R
FAN7529 Rev. 00
Figure 34. Zero Current Detector Block
3. Sawtooth Generator Block
2.675V
The output of the error amplifier and the output of the
sawtooth generator are compared to determine the
MOSFET turn-off instance. The slope of the sawtooth is
determined by an external resistor connected to the
MOT pin. The voltage of the MOT pin is 2.9V and the
slope is proportional to the current flowing out of the
MOT pin. The internal ramp signal has a 1V offset; therefore, the drive output is shut down if the voltage of the
COMP pin is lower than 1V. The MOSFET on-time is
maximum when the COMP pin voltage is 5V. According
to the slope of the internal ramp, the maximum on-time
can be programmed. The necessary maximum on-time
depends on the boost inductor, lowest AC line voltage,
and maximum output power. The resistor value should
be designed properly.
2.5V
OVP
Disable
0.45V
0.35V
Vout
Vref1 (2.5V)
Error Amp
Gm
INV
1
Disable
Signal
3
COMP
Off Signal
FAN7530 Rev. 00
1V Offset
MOT
Sawtooth
Generator
3
Figure 33. Error Amplifier Block
2.9V
2. Zero Current Detection Block
Error Amp
Output
The zero current detector (ZCD) generates the turn-on
signal of the MOSFET when the boost inductor current
reaches zero using an auxiliary winding coupled with the
inductor. If the voltage of the ZCD pin goes higher than
1.5V, the ZCD comparator waits until the voltage goes
below 1.4V. If the voltage goes below 1.4V, the zero cur-
FAN7529 Rev. 00
Figure 35. Sawtooth Generator Block
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
12
FAN7530 Critical Conduction Mode PFC Controller
Applications Information
5. Switch Drive Block
The MOSFET current is sensed using an external sensing resistor for the over-current protection. If the CS pin
voltage is higher than 0.8V, the over-current protection
comparator generates a protection signal. An internal RC
filter is included to filter switching noise.
The FAN7530 contains a single totem-pole output stage
designed for a direct drive of the power MOSFET. The
drive output is capable of up to +500/-800mA peak current with a typical rise and fall time of 50ns with 1nF load.
The output voltage is clamped to 13V to protect the
MOSFET gate even if the VCC voltage is higher than
13V.
OCP
Signal
40k
CS
4
6. Under-Voltage Lockout Block
8pF
0.8V
If the VCC voltage reaches 12V, the IC’s internal blocks
are enabled and start operation. If the VCC voltage drops
below 8.5V, most of the internal blocks are disabled to
reduce the operating current. VCC voltage should be
higher than 8.5V under normal conditions.
Over-Current Protection
Comparator
FAN7529 Rev. 00
Figure 36. Over-Current Protection Block
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
13
FAN7530 Critical Conduction Mode PFC Controller
4. Over-Current Protection Block
Application
Output Power
Input Voltage
Output Voltage
Ballast
100W
Universal input
(85~265Vac)
400V
Features
„ High efficiency (>90% at 85Vac input)
„ Low THD (total harmonic distortion) (<10% at 265Vac input, 25W load)
Key Design Notes
„ R1, R2, R5, C11 should be optimized for best THD characteristic.
1. Schematic
T1
PFC OUTPUT
VAUX
BD
D2
C5
R4
R3
R5
R10
D3
C10
Q1
NTC
ZD1
R6
C11
D1
C3
C9
C4
8
7
VCC
6
5
OUT GND
ZCD
C2
R9
LF1
FAN7530
R2
C1
V1
INV
MOT COMP CS
1
2
R1
F1
3
R11
4
R8
R7
C7
C6
C8
FAN7530 Rev. 00
AC INPUT
Figure 37. Schematic
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
14
FAN7530 Critical Conduction Mode PFC Controller
Typical application circuit
FAN7530 Critical Conduction Mode PFC Controller
2. Inductor Schematic Diagram
4
NVcc
2
3
Np
5
FAN7529 Rev. 00
Figure 38. Inductor Schematic Diagram
3. Winding Specification
No
Pin (s→f)
5→3
Np
Wire
0.1φ
× 30
Turns
Winding Method
58
Solenoid Winding
8
Solenoid Winding
Insulation: Polyester Tape t = 0.050mm, 4 Layers
2→4
NVcc
0.2φ × 10
Outer Insulation: Polyester Tape t = 0.050mm, 4 Layers
Air Gap: 0.6mm for each leg
4. Electrical Characteristics
Inductance
Pin
Specification
Remarks
3-5
600µH ± 10%
100kHz, 1V
5. Core & Bobbin
„ Core: EI 3026
„ Bobbin: EI3026
„ Ae(mm2): 111
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
15
Part
Value
Note
Part
Value
Fuse
F1
3A/250V
NTC
10D-9
Note
Inductor
T1
600µH
EI3026
NTC
MOSFET
Resistor
Q1
FQPF13N50C
Fairchild
R1
56kΩ
1/4W
R2
820kΩ
1/4W
R3
330kΩ
1/2W
D1
1N4148
Fairchild
R4
150Ω
1/2W
D2
BYV26C
600V, 1A
R5
20kΩ
1/4W
D3
SB140
Fairchild
R6
10Ω
1/4W
ZD1
1N4746
18V
R7
0.2Ω
1/2W
R8
10kΩ
1/4W
R9
10kΩ
1/4W
R10
2MΩ
1/4W
R11
12.9kΩ
1/4W
Diode
Bridge Diode
BD
KBL06
600V/4A
Line Filter
Capacitor
LF1
C1
150nF/275VAC
Box Capacitor
C2
470nF/275VAC
Box Capacitor
C3
2.2nF/3kV
Ceramic Capacitor
C4
2.2nF/3kV
Ceramic Capacitor
C6
47µF/25V
Electrolytic Capacitor
C7
47nF/50V
Ceramic Capacitor
220nF/50V
Multilayer Ceramic
Capacitor
C9
100µF/450V
Electrolytic Capacitor
C10
12nF/100V
Film Capacitor
C11
56pF/50V
Ceramic Capacitor
40mH
IC
IC1
FAN7530
V1
471
C5
C8
Fairchild
TNR
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
Wire 0.4mm
470V
www.fairchildsemi.com
16
FAN7530 Critical Conduction Mode PFC Controller
6. Demo Circuit Part List
FAN7530 Critical Conduction Mode PFC Controller
7. Layout
Power Ground
Signal Ground
Separate the power ground
and the signal ground
Place the output voltage
sensing resistors close to IC
Figure 39. PCB Layout Considerations for FAN7530
8. Performance Data
POUT
100W
75W
50W
25W
85Vac
115Vac
230Vac
265Vac
PF
0.998
0.998
0.991
0.984
THD
5.1%
3.6%
5.2%
6.2%
Efficiency
90.9%
93.7%
95.6%
96%
PF
0.999
0.998
0.986
0.975
THD
4.1%
3.6%
5.0%
5.7%
Efficiency
91.6%
93.3%
94.6%
95.3%
PF
0.998
0.997
0.974
0.956
THD
4.4%
5.0%
5.7%
6.2%
Efficiency
91.3%
91.9%
92.7%
93.4%
PF
0.995
0.991
0.923
0.876
THD
7.9%
8.6%
8.3%
8.7%
Efficiency
86.4%
87.1%
87.3%
88.1%
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
17
8-DIP
#5
1.524 ±0.10
0.060 ±0.004
#4
0.018 ±0.004
#8
2.54
0.100
9.60
MAX
0.378
#1
9.20 ±0.20
0.362 ±0.008
(
6.40 ±0.20
0.252 ±0.008
0.46 ±0.10
0.79
)
0.031
Dimensions are in millimeters (inches) unless otherwise noted..
7.62
0.300
3.30 ±0.30
0.130 ±0.012
5.08
MAX
0.200
3.40 ±0.20
0.134 ±0.008
0.33
MIN
0.013
+0.10
0.25 –0.05
+0.004
0~15°
0.010 –0.002
September 1999, Rev B
8dip_dim.pdf
Figure 40. 8-Lead Dual In-Line Package (DIP)
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
18
FAN7530 Critical Conduction Mode PFC Controller
Mechanical Dimensions
8-SOP
Dimensions are in millimeters (inches) unless otherwise noted.
MIN
#5
6.00 ±0.30
0.236 ±0.012
0.41 ±0.10
0.016 ±0.004
#4
1.27
0.050
#8
5.13
MAX
0.202
#1
4.92 ±0.20
0.194 ±0.008
(
0.56
)
0.022
1.55 ±0.20
0.061 ±0.008
0.1~0.25
0.004~0.001
MAX0.10
MAX0.004
+0.10
0.15 -0.05
+0.004
0.006 -0.002
1.80
MAX
0.071
3.95 ±0.20
0.156 ±0.008
0~
8°
5.72
0.225
0.50 ±0.20
0.020 ±0.008
September 2001, Rev B1
sop8_dim.pdf
Figure 41. 8-Lead Small Outline Package (SOP)
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
19
FAN7530 Critical Conduction Mode PFC Controller
Mechanical Dimensions (Continued)
®
ACEx
Across the board. Around the world.¥
ActiveArray¥
Bottomless¥
Build it Now¥
CoolFET¥
CROSSVOLT¥
CTL™
Current Transfer Logic™
DOME¥
2
E CMOS¥
®
EcoSPARK
EnSigna¥
FACT Quiet Series™
®
FACT
®
FAST
FASTr¥
FPS¥
®
FRFET
GlobalOptoisolator¥
GTO¥
HiSeC¥
i-Lo¥
ImpliedDisconnect¥
IntelliMAX¥
ISOPLANAR¥
MICROCOUPLER¥
MicroPak¥
MICROWIRE¥
Motion-SPM™
MSX¥
MSXPro¥
OCX¥
OCXPro¥
®
OPTOLOGIC
®
OPTOPLANAR
PACMAN¥
PDP-SPM™
POP¥
®
Power220
®
Power247
PowerEdge¥
PowerSaver¥
Power-SPM¥
®
PowerTrench
Programmable Active Droop¥
®
QFET
QS¥
QT Optoelectronics¥
Quiet Series¥
RapidConfigure¥
RapidConnect¥
ScalarPump¥
SMART START¥
®
SPM
STEALTH™
SuperFET¥
SuperSOT¥-3
SuperSOT¥-6
SuperSOT¥-8
SyncFET™
TCM¥
®
The Power Franchise
TinyBoost¥
TinyBuck¥
®
TinyLogic
TINYOPTO¥
TinyPower¥
TinyWire¥
TruTranslation¥
PSerDes¥
®
UHC
UniFET¥
VCX¥
Wire¥
™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE
APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER
ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S
WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body or
(b) support or sustain life, and (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in a significant injury of the user.
2. A critical component in any component of a life support,
device, or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or In Design
This datasheet contains the design specifications for product
development. Specifications may change in any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data; supplementary data will be
published at a later date. Fairchild Semiconductor reserves the right to
make changes at any time without notice to improve design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild Semiconductor
reserves the right to make changes at any time without notice to improve
design.
Obsolete
Not In Production
This datasheet contains specifications on a product that has been
discontinued by Fairchild Semiconductor. The datasheet is printed for
reference information only.
Rev. I26
© 2006 Fairchild Semiconductor Corporation
FAN7530 Rev. 1.0.2
www.fairchildsemi.com
20
FAN7530 Critical Conduction Mode PFC Controller
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an
exhaustive list of all such trademarks.
Similar pages