19-3050; Rev 0; 10/03 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers Applications Features ♦ 2.7V to 5.5V Single-Supply Operation ♦ Very High -93dB PSRR at 217Hz ♦ 1.4W into 4Ω at 1% THD+N (per Channel) ♦ Differential Input ♦ Internal Fixed Gain to Reduce Component Count ♦ Adjustable Gain Option (MAX9718A/MAX9719A) ♦ 100nA Low-Power Shutdown Mode ♦ No Audible Clicks or Pops at Power-Up/Down ♦ Improved Performance Pin-Compatible Upgrade to LM4895 (MAX9718D) Ordering Information PART TEMP RANGE PINPACKAGE GAIN (dB) MAX9718AEBL-T* -40°C to +85°C 3 x 3 UCSP Adj MAX9718AETB* -40°C to +85°C 10 TDFN-EP** Adj MAX9718AEUB -40°C to +85°C 10 µMAX-EP** Adj *Future product—contact factory for availability. **EP = Exposed paddle. Ordering Information continued at end of data sheet. Pin Configurations appear at end of data sheet. Mobile Phones UCSP is a trademark of Maxim Integrated Products, Inc. PDAs Portable Devices Simplified Block Diagram SINGLE SUPPLY 2.7V TO 5.5V SINGLE SUPPLY 2.7V TO 5.5V OUTL+ INL+ OUT+ IN+ INL- IN- OUT- OUTLOUTR+ INR+ SHDN INRSHDM OUTR- MAX9718 SHDN MAX9719 ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX9718/MAX9719 General Description The MAX9718/MAX9719 differential input audio power amplifiers are ideal for portable audio devices with internal speakers. The differential input structure improves noise rejection and provides common-mode rejection. A bridge-tied load (BTL) architecture minimizes external component count, while providing highquality, power audio amplification. The MAX9718 is a single-channel amplifier while the MAX9719 is a dualchannel amplifier for stereo systems. Both devices deliver 1.4W continuous average power per channel to a 4Ω load with less than 1% THD+N while operating from a single +5V supply. The devices are available as adjustable gain amplifiers or with internally fixed gains of 0dB, 3dB, and 6dB to reduce component count. A shutdown input disables the bias generator and amplifiers and reduces quiescent current consumption to less than 100nA. The MAX9718 shutdown input can be set as active high or active low. These devices feature Maxim’s comprehensive click-and-pop suppression circuitry that reduces audible clicks and pops during startup and shutdown. The MAX9718 is pin compatible with the LM4895, and is available in 9-bump UCSP™, 10-pin TDFN, and 10-pin µMAX packages. The MAX9719 is available in 16-pin TQFN, 16-pin TSSOP, and 16-bump UCSP packages. Both devices operate over the -40°C to +85°C extended temperature range. MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to GND) ..................................-0.3V to +6V Any Other Pin to GND ...............................-0.3V to (VCC + 0.3V) IN_, BIAS, SHDM, SHDN, SHDN Continuous Current ........20mA OUT_ Short-Circuit Duration to GND or VCC .............Continuous Continuous Power Dissipation (TA = +70°C) 9-Bump UCSP (derate 5.2mW/°C above +70°C)..........412mW 10-Pin TDFN (derate 24.4mW/°C above +70°C) ........1951mW 10-Pin µMAX (derate 10.3mW/°C above +70°C) ..........825mW 16-Bump UCSP (derate 8.2mW/°C above +70°C) .......659mW 16-Pin TQFN (derate 16.9mW/°C above +70°C) ........1349mW 16-Pin TSSOP (derate 21.3mW/°C above +70°C) ......1702mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature .....................................................+150°C Storage Temperature Range .............................-65°C to +150°C Bump Temperature (soldering) Reflow............................+235°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—5V Supply (VCC = 5V, GND = 0, SHDN/SHDN = VCC (MAX9718/MAX9719), SHDM = GND (MAX9718), RIN = RF = 10kΩ (MAX971_A), TA = +25°C. CBIAS = 0.1µF, no load. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER Supply Voltage Supply Current Shutdown Supply Current SHDN, SHDN, SHDM Threshold Common-Mode Bias Voltage Output Offset Voltage SYMBOL VCC ICC ISHDN VBIAS VOS Input Impedance RIN Common-Mode Rejection Ratio CMRR Power-Supply Rejection Ratio PSRR 2 TYP MAX UNITS 5.5 V 5.0 7.5 mA 0.1 1 µA 2.7 SHDN = SHDM = SHDN = GND, per amplifier 0.7 x VCC 0.3 x VCC VIL VIC Total Harmonic Distortion Plus Noise MIN VIN- = VIN+ = VBIAS, TA = -40°C to +85°C, per amplifier (Note 2) VIH Common-Mode Input Voltage Output Power CONDITIONS POUT THD+N VCC/2 - 5% VCC/2 VCC/2 + 5% AV = 0dB, MAX971_A, MAX971_B ±1 ±10 AV = 3dB, MAX971_C ±1 ±15 AV = 6dB, MAX971_D ±1 ±20 (Note 3) VIN- = VIN+ = VBIAS Inferred from CMRR test AV = 0dB, MAX971_B 0.5 VCC - 0.5 AV = 3dB, MAX971_C 0.5 VCC - 0.6 AV = 6dB, MAX971_D 0.5 VCC - 0.8 External gain, MAX971_A 0.5 MAX971_B, MAX971_C, MAX971_D 10 15 -50 -60 fn = 1kHz VIN- = VIN+ = VBIAS, VRIPPLE = 200mVP-P, RL = 8Ω, CBIAS = 1µF THD+N = 1%, fIN = 1kHz (Note 4) V V mV V VCC - 1.2 -60 f = 217Hz -93 f = 1kHz -90 20 kΩ dB dB RL = 8Ω RL = 4Ω RL = 8Ω, fIN = 1kHz, POUT = 0.75W, VCC = 5V, AV = 6dB (Note 5) 0.8 1.1 1.4 0.002 _______________________________________________________________________________________ W % Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers (VCC = 5V, GND = 0, SHDN/SHDN = VCC (MAX9718/MAX9719), SHDM = GND (MAX9718), RIN = RF = 10kΩ (MAX971_A), TA = +25°C. CBIAS = 0.1µF, no load. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Gain Accuracy MAX971_B/MAX971_C/MAX971_D ±1 % Channel-to-Channel Gain Matching MAX9719B/MAX9719C/MAX9719D ±1 % Signal-to-Noise Ratio -104 dB Thermal-Shutdown Threshold +160 °C Thermal-Shutdown Hysteresis 15 °C 500 pF 10 ms Maximum Capacitive Drive Power-Up/Enable from Shutdown Time SNR CLOAD POUT = 1W, RL = 8Ω Bridge-tied capacitance tPU Shutdown Time tSHDN Turn-Off Transient VPOP Crosstalk 3.5 µs (Note 6) 50 mV MAX9719, fIN = 1kHz -85 dB ELECTRICAL CHARACTERISTICS—3V Supply (VCC = 3V, GND = 0, SHDN/SHDN = VCC (MAX9718/MAX9719), SHDM = GND (MAX9718), RIN = RF = 10kΩ (MAX971_A), TA = +25°C. CBIAS = 0.1µF, no load. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER Supply Current SYMBOL ICC Shutdown Supply Current SHDN, SHDN, SHDM Threshold Common-Mode Bias Voltage Output Offset Voltage ISHDN CONDITIONS TYP MAX UNITS VIN- = VIN+ = VBIAS, TA = -40°C to +85°C, per amplifier (Note 2) 3.8 6.0 mA SHDN = SHDM = SHDN = GND, per amplifier 0.1 1 µA VIH MIN 0.7 x VCC 0.3 x VCC VIL VBIAS VOS VCC/2 - 5% VCC/2 VCC/2 + 5% AV = 0dB, MAX971_A/ MAX971_B ±1 ±10 AV = 3dB, MAX971_C ±1 ±15 (Note 3) VIN- = VIN+ = VBIAS AV = 6dB, MAX971_D Common-Mode Input Voltage VIC Inferred from CMRR test RIN 0.5 VCC - 0.7 AV = 3dB, MAX971_C 0.5 VCC - 0.8 AV = 6dB, MAX971_D 0.5 VCC - 1.0 0.5 VCC - 1.2 Common-Mode Rejection Ratio Power-Supply Rejection Ratio CMRR PSRR MAX971_B/MAX971_C/MAX971_D fN = 1kHz VIN- = VIN+ = VBIAS, VRIPPLE = 200mVP-P, RL = 8Ω, CBIAS = 1µF 10 15 -50 -60 -70 f = 217Hz V mV ±20 AV = 0dB, MAX971_B External gain, MAX971_A Input Impedance ±1 V 20 V kΩ dB -93 dB f = 1kHz -90 _______________________________________________________________________________________ 3 MAX9718/MAX9719 ELECTRICAL CHARACTERISTICS—5V Supply (continued) ELECTRICAL CHARACTERISTICS—3V Supply (continued) (VCC = 3V, GND = 0, SHDN/SHDN = VCC (MAX9718/MAX9719), SHDM = GND (MAX9718), RIN = RF = 10kΩ (MAX971_A), TA = +25°C. CBIAS = 0.1µF, no load. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL Output Power POUT CONDITIONS MIN TYP RL = 8Ω, THD+N = 1%, fIN = 1kHz (Note 4) MAX UNITS 475 mW 0.003 % Thermal-Shutdown Threshold +160 °C Thermal-Shutdown Hysteresis 15 °C 500 pF tPU 10 ms Shutdown Time tSHDN 3 µs Turn-Off Transient VPOP (Note 6) 40 mV MAX9719, fN = 1kHz -85 dB Total Harmonic Distortion Plus Noise THD+N Maximum Capacitive Drive CLOAD Power-Up/Enable from Shutdown Time Crosstalk RL = 8Ω, fIN = 1kHz, POUT = 0.25W, AV = 6dB Bridge-tied capacitance Note 1: All specifications are 100% tested at TA = +25°C. Specifications over temperature (TA = TMIN to TMAX) are guaranteed by design, not production tested. Note 2: Quiescent power-supply current is specified and tested with no load. Quiescent power-supply current depends on the offset voltage when a practical load is connected to the amplifier. Guaranteed by design. Note 3: Common-mode bias voltage is the voltage on BIAS and is nominally VCC/2. Note 4: Output power is specified by a combination of a functional output current test and characterization analysis. Note 5: Measurement bandwidth for THD+N is 22Hz to 22kHz. Note 6: Peak voltage measured at power-on, power-off, into or out of SHDN. Bandwidth defined by A-weighted filters, inputs at AC GND. VCC rise and fall times greater than or equal to 1ms. Typical Operating Characteristics (VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.) TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY 0.1 OUTPUT POWER = 1W 0.01 OUTPUT POWER = 1W 0.1 0.01 0.001 0.001 1k FREQUENCY (Hz) 4 MAX9718 toc03 1 0.1 OUTPUT POWER = 750mW 0.01 0.001 0.0001 0.0001 100 VCC = 5V RL = 8Ω AV = 2 OUTPUT POWER = 200mW OUTPUT POWER = 50mW 10 10 MAX9718 toc02 VCC = 5V RL = 4Ω AV = 4 1 THD+N (%) VCC = 5V RL = 4Ω AV = 2 1 10 MAX9718 toc01 10 TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY THD+N (%) TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY THD+N (%) MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers 10k 100k OUTPUT POWER = 250mW 0.0001 10 100 1k FREQUENCY (Hz) 10k 100k 10 100 1k FREQUENCY (Hz) _______________________________________________________________________________________ 10k 100k Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers OUTPUT POWER = 800mW 0.01 0.1 OUTPUT POWER = 50mW 0.01 MAX9718 toc06 MAX9718 toc05 10 VCC = 3V RL = 4Ω AV = 4 1 THD+N (%) THD+N (%) 0.1 VCC = 3V RL = 4Ω AV = 2 1 THD+N (%) VCC = 5V RL = 8Ω AV = 4 1 10 MAX9718 toc04 10 TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY OUTPUT POWER = 175mW 0.1 0.01 OUTPUT POWER = 70mW OUTPUT POWER = 200mW 0.001 0.001 0.001 0.0001 0.0001 0.0001 10 100 1k 10k 10 100k 100 1k 10k 10 100k 100 1k 100k FREQUENCY (Hz) FREQUENCY (Hz) TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY TOTAL HARMONIC DISTORTION + NOISE vs. FREQUENCY TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER OUTPUT POWER = 100mW 0.01 0.1 OUTPUT POWER = 50mW 0.01 OUTPUT POWER = 200mW 0.001 0.001 MAX9718 toc09 VCC = 5V RL = 4Ω AV = 2 10 THD+N (%) THD+N (%) 0.1 VCC = 3V RL = 8Ω AV = 4 1 100 MAX9718 toc08 10 MAX9718 toc07 VCC = 3V RL = 8Ω AV = 2 1 1 fIN = 10kHz fIN = 100Hz 0.1 0.01 fIN = 1kHz OUTPUT POWER = 250mW 0.0001 0.0001 10 100 1k 10k 0.001 10 100k 100 1k 100k 10k 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 FREQUENCY (Hz) FREQUENCY (Hz) OUTPUT POWER (W) TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER fIN = 100Hz fIN = 10kHz 0.1 fIN = 1kHz 0.1 0.001 0.5 1.0 OUTPUT POWER (W) 1.5 2.0 10 1 fIN = 100Hz fIN = 1kHz 0.1 fIN = 10kHz 0.01 0.001 0.001 0 VCC = 5V RL = 8Ω AV = 4 fIN = 10kHz 0.01 fIN = 1kHz MAX9718 toc12 MAX9718 toc11 1 fIN = 100Hz 0.01 100 THD+N (%) 1 VCC = 5V RL = 8Ω AV = 2 10 THD+N (%) VCC = 5V RL = 4Ω AV = 4 10 100 MAX9718 toc10 100 THD+N (%) 10k FREQUENCY (Hz) 10 THD+N (%) OUTPUT POWER = 250mW 0 0.2 0.4 0.6 0.8 1.0 OUTPUT POWER (W) 1.2 1.4 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 OUTPUT POWER (W) _______________________________________________________________________________________ 5 MAX9718/MAX9719 Typical Operating Characteristics (continued) (VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.) 0.1 fIN = 1kHz 100 1 fIN = 10kHz 0.1 VCC = 3V RL = 8Ω AV = 2 10 THD+N (%) THD+N (%) THD+N (%) fIN = 10kHz 1 VCC = 3V RL = 4Ω AV = 4 10 TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER MAX9718 toc14 VCC = 3V RL = 4Ω AV = 2 10 100 MAX9718 toc13 100 TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER 1 0.1 fIN = 1kHz fIN = 100Hz 0.01 MAX9718 toc15 TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER fIN = 10kHz fIN = 1kHz 0.01 0.01 fIN = 100Hz fIN = 100Hz 0.001 0.001 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 OUTPUT POWER (mW) OUTPUT POWER (mW) TOTAL HARMONIC DISTORTION + NOISE vs. OUTPUT POWER TOTAL HARMONIC DISTORTION + NOISE vs. COMMON-MODE VOLTAGE TOTAL HARMONIC DISTORTION + NOISE vs. COMMON-MODE VOLTAGE fIN = 10kHz 0.001 MAX9718 toc18 VCC = 3V PO = 200mW AV = 2 THD+N (%) fIN = 1kHz 0.1 VCC = 5V PO = 200mW AV = 2 THD+N (%) 1 0.01 MAX9718 toc17 0.01 MAX9718 toc16 VCC = 3V RL = 8Ω AV = 4 10 THD+N (%) 0.001 OUTPUT POWER (mW) 100 0.001 0.01 fIN = 100Hz 200 300 400 2 3 4 0 5 1.5 2.0 2.5 OUTPUT POWER vs. SUPPLY VOLTAGE OUTPUT POWER vs. SUPPLY VOLTAGE OUTPUT POWER vs. LOAD RESISTANCE THD+N = 1% 0.5 0 1.2 THD+N = 10% 1.0 0.8 THD+N = 1% 0.6 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 1.6 1.4 THD+N = 10% 1.2 1.0 0.8 THD+N = 1% 0.6 0.4 0.4 0.2 0.2 0 0 3.5 VCC = 5V f = 1kHz AV = 2 1.8 3.0 MAX9718 toc21 RL = 8Ω f = 1kHz AV = 2 1.6 2.0 MAX9718 toc20 1.8 1.4 1.0 3.0 1.0 COMMON-MODE VOLTAGE (VRMS) THD+N = 10% 2.5 0.5 COMMON-MODE VOLTAGE (VRMS) OUTPUT POWER (W) 1.5 1 OUTPUT POWER (mW) RL = 4Ω f = 1kHz AV = 2 2.0 0 500 OUTPUT POWER (W) 2.5 100 MAX9718 toc19 0 6 0.0001 0.0001 0.001 OUTPUT POWER MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 1 10 LOAD RESISTANCE (Ω) _______________________________________________________________________________________ 100 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers 400 300 THD+N = 1% 200 1.4 POWER DISSIPATION (W) THD+N = 10% VCC = 5V RL = 4Ω f = 1kHz AV = 2 1.6 1.0 MAX9718 toc23 VCC = 3V f = 1kHz AV = 2 POWER DISSIPATION (W) OUTPUT POWER (mW) 1.8 MAX9718 toc22 600 500 POWER DISSIPATION vs. OUTPUT POWER POWER DISSIPATION vs. OUTPUT POWER 1.2 1.0 0.8 0.6 0.4 100 MAX9718 toc24 OUTPUT POWER vs. LOAD RESISTANCE VCC = 5V RL = 8Ω f = 1kHz AV = 2 0.8 0.6 0.4 0.2 0.2 0 10 100 0.6 0.9 1.2 1.5 0 1.8 0.2 0.4 0.6 0.8 1.0 OUTPUT POWER (W) POWER DISSIPATION vs. OUTPUT POWER POWER DISSIPATION vs. OUTPUT POWER OUTPUT NOISE vs. FREQUENCY 300 200 250 200 150 AV = 2 120 90 OUTPUT NOISE (dB) 400 VCC = 3V RL = 8Ω f = 1kHz AV = 2 300 150 MAX9718 toc26 350 1.4 1.2 MAX9718 toc27 OUTPUT POWER (W) POWER DISSIPATION (mW) 500 0.3 LOAD RESISTANCE (Ω) VCC = 3V RL = 4Ω f = 1kHz AV = 2 600 0 MAX9718 toc25 700 POWER DISSIPATION (mW) 0 0 1 100 60 30 0 -30 -60 -90 100 50 0 -150 0 200 300 400 500 700 0 200 300 400 10 500 100 1k 10k FREQUENCY (Hz) GAIN AND PHASE vs. FREQUENCY POWER-SUPPLY REJECTION RATIO vs. FREQUENCY COMMON-MODE REJECTION RATIO vs. FREQUENCY 0 -20 30 -40 -30 -60 -70 -90 -80 -120 -90 -150 -100 100 1k FREQUENCY (Hz) 10k 100k VRIPPLE = 200mVP-P RL = 8Ω CBIAS = 1µF -20 -30 -50 -60 0 -10 CMRR (dB) -30 PSRR (dB) 60 0 VRIPPLE = 200mVP-P RL = 8Ω CBIAS = 1µF -10 100k MAX9718 toc30 OUTPUT POWER (mW) 90 10 100 OUTPUT POWER (mW) AV = 60dB 120 600 MAX9718 toc29 150 100 MAX9718 toc28 0 GAIN/PHASE (°/dB) -120 -40 -50 VCC = 5V -60 -70 VCC = 5V VCC = 3V -80 -90 VCC = 3V 10 100 1k FREQUENCY (Hz) 10k -100 100k 10 100 1k 10k 100k FREQUENCY (Hz) _______________________________________________________________________________________ 7 MAX9718/MAX9719 Typical Operating Characteristics (continued) (VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.) CROSSTALK vs. FREQUENCY CROSSTALK vs. FREQUENCY -60 -70 CHANNEL 2 -80 -90 -100 -110 -120 CHANNEL 1 10 100 1k 10k -20 -30 -40 -50 -60 -70 CHANNEL 2 -80 -90 -100 -110 -120 CHANNEL 1 10 100k MAX9718 toc32 VCC = 3V VRIPPLE = 200mVP-P RL = 8Ω CBIAS = 1µF -10 CROSSTALK (dB) VCC = 5V VRIPPLE = 200mVP-P RL = 8Ω, CBIAS = 1µF -20 -30 -40 -50 0 MAX9718 toc31 0 -10 CROSSTALK (dB) MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) ENTERING SHUTDOWN EXITING SHUTDOWN MAX9718 toc33 CBIAS = 0.1µF VCC = 3V RL = 8Ω MAX9718 toc34 CBIAS = 0.1µF VCC = 3V RL = 8Ω SHDN 2V/div OUT+ 1V/div OUT+ 1V/div OUT1V/div OUT1V/div OUT+ - OUT200mV/div OUT+ - OUT200mV/div 100µs/div 4ms/div EXITING POWER-DOWN ENTERING POWER-DOWN MAX9718 toc36 MAX9718 toc35 CBIAS = 0.1µF VCC = 3V RL = 8Ω SHDN 2V/div OUT+ 1V/div SHDN 1V/div OUT+ 1V/div OUT1V/div OUT1V/div OUT+ - OUT200mV/div 100µs/div 8 SHDN 2V/div OUT+ - OUT200mV/div CBIAS = 0.1µF VCC = 3V RL = 8Ω 4ms/div _______________________________________________________________________________________ Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers 4 VCC = 3V 2 0.01 0 -0.03 35 60 TO -3dB OF FINAL VALUE 70 VCC = 5V 60 50 40 VCC = 3V 30 20 0 10 VCC = 3V -0.01 -0.02 -15 MAX9718 toc38 VCC = 5V 1 -40 80 TURN-ON TIME (ms) SUPPLY CURRENT (mA) 0.02 SHUTDOWN CURRENT (µA) VCC = 5V 3 0.03 MAX9718 toc37 6 5 TURN-ON TIME vs. DC BIAS BYPASS CAPACITOR SHUTDOWN CURRENT vs. TEMPERATURE MAX9718 toc39 SUPPLY CURRENT vs. TEMPERATURE 85 10 0 -40 TEMPERATURE (°C) -15 10 35 60 85 0 0.20 TEMPERATURE (°C) 0.40 0.60 0.80 1.00 CBIAS (µF) Pin Description PIN MAX9718 MAX9719 NAME FUNCTION — SHDN Shutdown Input. The polarity of SHDN is dependent on the state of SHDM. TDFN/ µMAX UCSP TQFN UCSP TSSOP 1 C2 — — — — 9 B3 11 SHDN 2 C1 — — — IN- 3 B2 — — — SHDM 4 A1 — — — IN+ Noninverting Input 5 A2 5 B2 7 BIAS DC Bias Bypass 6 A3 — — — OUT- Bridge Amplifier Negative Output 7 B3 1, 6, 11 A2, C2, C4 3, 8,13 GND Ground 8 — 13 — 15 N.C. No Connection. Not internally connected. Shutdown Input. Active-low shutdown input. Inverting Input Shutdown-Mode Polarity Input. SHDM controls the polarity of SHDN. Connect SHDM high for an active-high SHDN input. Connect SHDM low for an active-low SHDN input (see Table 1). 9 B1 8, 14 A4, D3 16, 10 C3 — — — VCC OUT+ Power Supply 10 — — 2 C1 4 INR+ Right-Channel Noninverting Input — — 3 B1 5 INL- Left-Channel Inverting Input — — 4 A1 6 INL+ Left-Channel Noninverting Input — — 7 A3 9 OUTL+ Left-Channel Bridge Amplifier Positive Output — — 10 B4 12 OUTL- Left-Channel Bridge Amplifier Negative Output Bridge Amplifier Positive Output _______________________________________________________________________________________ 9 MAX9718/MAX9719 Typical Operating Characteristics (continued) (VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.) MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers Pin Description (continued) PIN MAX9718 MAX9719 NAME FUNCTION TDFN/ µMAX UCSP TQFN UCSP TSSOP — — 12 D4 14 OUTR+ Right-Channel Bridge Amplifier Positive Output — — 15 D2 1 OUTR- Right-Channel Bridge Amplifier Negative Output — — 16 D1 2 INR- EP — EP — EP EP Detailed Description The MAX9718/MAX9719 are 1.4W BTL speaker amplifiers. The MAX9718 is a mono speaker amplifier, while the MAX9719 is a stereo speaker amplifier. Both devices feature a low-power shutdown mode, and industry-leading click-and-pop suppression. The MAX9718 features a two-input shutdown scheme to configure shutdown for active high or active low. These devices consist of high output-current audio amps configured as BTL amplifiers (see the Functional Diagrams). Both adjustable and fixed gain (0dB, 3dB, 6dB) versions are available. BIAS These devices operate from a single 2.7V to 5.5V supply and feature an internally generated, common-mode bias voltage of VCC / 2 referenced to ground. BIAS provides both click-and-pop suppression and sets the DC bias level for the audio outputs. Choose the value of the bypass capacitor as described in the BIAS Capacitor section. Do not connect external loads to BIAS as this can affect the overall performance. Shutdown Mode The MAX9718/MAX9719 feature a 100nA low-power shutdown mode that reduces quiescent current consumption. Entering shutdown disables the device’s bias circuitry, the amplifier outputs go high impedance, and BIAS is driven to GND. The MAX9718 SHDM input controls the polarity of SHDN. Drive SHDM high for an active-high SHDN input. Drive SHDM low for an activelow SHDN input (see Table 1). The MAX9719 features an active-low shutdown input, SHDN. Click-and-Pop Suppression The MAX9718/MAX9719 feature Maxim’s industry-leading click-and-pop suppression circuitry. During startup, the amplifier common-mode bias voltage ramps to the DC bias point. When entering shutdown, the amplifier outputs are high impedance to 100kΩ between both outputs. This scheme minimizes the energy present in the audio band. 10 Right-Channel Noninverting Input Exposed Pad. Connect EP to GND. Table 1. Shutdown Mode Selection (MAX9718 Only) SHDM SHDN 0 0 OPERATIONAL MODE Shutdown 0 1 Normal operation 1 0 Normal operation 1 1 Shutdown Applications Information BTL Amplifier The MAX9718/MAX9719 are designed to drive a load differentially, a configuration referred to as bridge-tied load or BTL. The BTL configuration (Figure 1) offers advantages over the single-ended configuration, where one side of the load is connected to ground. Driving the load differentially doubles the output voltage compared to a single-ended amplifier under similar conditions. Thus, the differential gain of the device is twice the closed-loop gain of the input amplifier. The effective gain is given by: R A VD = 2 × F RIN Substituting 2 x VOUT(P-P) for VOUT(P-P) into the following equations yields four times the output power due to doubling of the output voltage: VRMS = VOUT(P−P) 2 2 2 V POUT = RMS RL Since the differential outputs are biased at midsupply, there is no net DC voltage across the load. This eliminates the need for DC-blocking capacitors required for ______________________________________________________________________________________ Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers MAX9718/MAX9719 RF RF VOUT(P-P) +1 2 x VOUT(P-P) VOUT(P-P) -1 INVERTING DIFFERENTIAL INPUT RIN MAX9718A MAX9719A IN- (OPTIONAL) OUT+ BIAS GENERATOR Figure 1. Bridge-Tied Load Configuration single-ended amplifiers. These capacitors can be large, expensive, consume board space, and degrade low-frequency performance. RIN NONINVERTING DIFFERENTIAL INPUT (OPTIONAL) OUT- IN+ Power Dissipation and Heat Sinking Under normal operating conditions, the MAX9718/ MAX9719 dissipate a significant amount of power. The maximum power dissipation for each package is given in the Absolute Maximum Ratings section under Continuous Power Dissipation or can be calculated by the following equation: TJ(MAX) − TA PDISSPKG(MAX) = θJA where TJ(MAX) is +150°C, TA is the ambient temperature, and θJA is the reciprocal of the derating factor in °C/W as specified in the Absolute Maximum Ratings section. For example, θJA of the TQFN package is +59.2°C/W. The increase in power delivered by the BTL configuration directly results in an increase in internal power dissipation over the single-ended configuration. The maximum internal power dissipation for a given VCC and load is given by the following equation: PDISSPKG(MAX) = 2VCC2 π 2RL If the internal power dissipation for a given application exceeds the maximum allowed for a given package, reduce power dissipation by increasing the ground plane heat-sinking capability and the size of the traces to the device (see the Layout and Grounding section). Other methods for reducing power dissipation are to reduce VCC, increase load impedance, decrease ambient temperature, reduce gain, or reduce input signal. Thermal-overload protection limits total power dissipation in the MAX9718/MAX9719. When the junction temperature exceeds +160°C, the thermal protection Figure 2. Setting the MAX9718A/MAX9719A Gain circuitry disables the amplifier output stage. The amplifiers are enabled once the junction temperature cools by 15°C. A pulsing output under continuous thermal overload results as the device heats and cools. For optimum power dissipation and heat sinking, connect the exposed pad found on the µMAX, TDFN, TQFN, and TSSOP packages to a large ground plane. Fixed Differential Gain The MAX9718B, MAX9718C, MAX9718D, MAX9719B, MAX9719C, and MAX9719D feature internally fixed gains (see the Selector Guide). This simplifies design, decreases required footprint size, and eliminates external gain-setting resistors. Resistors R1 and R2 shown in the Typical Operating Circuit are used to achieve each fixed gain. Adjustable Differential Gain Gain-Setting Resistors External feedback resistors set the gain of the MAX9718A and MAX9719A. Resistors R F and R IN (Figure 2) set the gain of the amplifier as follows: R AV = F RIN where AV is the desired voltage gain. Hence, an RIN of 10kΩ and an RF of 20kΩ yields a gain of 2V/V, or 6dB. RF can be either fixed or variable, allowing the use of a digitally controlled potentiometer to alter the gain under software control. ______________________________________________________________________________________ 11 MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers Input Filter The fully differential amplifier inputs can be biased at voltages other than midsupply. The common-mode feedback circuit adjusts for input bias, ensuring the outputs are still biased at midsupply. Input capacitors are not required as long as the common-mode input voltage is within the specified range listed in the Electrical Characteristics table. If input capacitors are used, input capacitor CIN, in conjunction with R IN , forms a highpass filter that removes the DC bias from an incoming signal. The ACcoupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming zero-source impedance, the -3dB point of the highpass filter is given by: 1 f −3dB = 2πRINCIN Setting f -3dB too high affects the low-frequency response of the amplifier. Use capacitors with dielectrics that have low-voltage coefficients, such as tantalum or aluminum electrolytic. Capacitors with highvoltage coefficients, such as ceramics, can increase distortion at low frequencies. BIAS Capacitor BIAS is the output of the internally generated VCC / 2 bias voltage. The BIAS bypass capacitor, C BIAS , improves PSRR and THD+N by reducing power supply and other noise sources at the common-mode bias node, and also generates the clickless/popless startup DC bias waveform for the speaker amplifiers. Bypass BIAS with a 0.1µF capacitor to GND. Larger values of C BIAS (up to 1µF) improve PSRR, but slow down tON/tOFF times. A 1µF CBIAS capacitor slows turn-on and turn-off times by 10 and improves PSRR by 20dB (at 1kHz). Do not connect external loads to BIAS. Supply Bypassing Proper power-supply bypassing ensures low-noise, low-distortion performance. Connect a 1µF ceramic capacitor from V CC to GND. Add additional bulk capacitance as required by the application. Locate the bypass capacitor as close to the device as possible. 12 Layout and Grounding Good PC board layout is essential for optimizing performance. Use large traces for the power-supply inputs and amplifier outputs to minimize losses due to parasitic trace resistance and route heat away from the device. Good grounding improves audio performance, minimizes crosstalk between channels, and prevents any digital switching noise from coupling into the audio signal. The MAX9718/MAX9719 TDFN, TQFN, TSSOP, and µMAX packages feature exposed thermal pads on their undersides. This pad lowers the thermal resistance of the package by providing a direct-heat conduction path from the die to the PC board. Connect the exposed pad to the ground plane using multiple vias, if required. UCSP Applications Information For the latest application details on UCSP construction, dimensions, tape carrier information, PC board techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note: UCSP—A Wafer-Level Chip-Scale Package available on Maxim’s website at www.maxim-ic.com/ucsp. Selector Guide PART MONO STEREO GAIN (dB) SELECTABLE SHUTDOWN POLARITY MAX9718A √ — Adjustable √ MAX9718B √ — 0 √ MAX9718C √ — 3 √ MAX9718D √ — 6 √ MAX9719A — √ Adjustable — MAX9719B — √ 0 — MAX9719C — √ 3 — MAX9719D — √ 6 — ______________________________________________________________________________________ Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers PART TEMP RANGE PINPACKAGE MAX9718BEBL-T* -40°C to +85°C 3 x 3 UCSP UCSP Marking Information: GAIN (dB) AAA XXX 0 MAX9718BETB -40°C to +85°C 10 TDFN-EP** 0 MAX9718BEUB -40°C to +85°C 10 µMAX-EP** 0 ■: A1 Bump indicator 3 AAA: Product code XXX: Lot code MAX9718CEBL-T* -40°C to +85°C 3 x 3 UCSP MAX9718CETB -40°C to +85°C 10 TDFN-EP** 3 MAX9718CEUB -40°C to +85°C 10 µMAX-EP** 3 MAX9718DEBL-T* -40°C to +85°C 3 x 3 UCSP 6 MAX9718DETB -40°C to +85°C 10 TDFN-EP** 6 MAX9718DEUB -40°C to +85°C 10 µMAX-EP** 6 MAX9719AEBE-T* -40°C to +85°C 4 x 4 UCSP Adj MAX9719AETE -40°C to +85°C 16 TQFN-EP** Adj MAX9719AEAE* -40°C to +85°C 16 TSSOP-EP** Adj MAX9719BEBE-T* -40°C to +85°C 4 x 4 UCSP 0 MAX9719BETE -40°C to +85°C 16 TQFN-EP** 0 MAX9719BEAE* -40°C to +85°C 16 TSSOP-EP** 0 MAX9719CEBE-T* -40°C to +85°C 4 x 4 UCSP 3 MAX9719CETE -40°C to +85°C 16 TQFN-EP** 3 MAX9719CEAE* -40°C to +85°C 16 TSSOP-EP** 3 MAX9719DEBE-T* -40°C to +85°C 4 x 4 UCSP 6 MAX9719DETE -40°C to +85°C 16 TQFN-EP** 6 MAX9719DEAE* -40°C to +85°C 16 TSSOP-EP** 6 Chip Information MAX9718 TRANSISTOR COUNT: 2359 MAX9719 TRANSISTOR COUNT: 4447 PROCESS: BiCMOS *Future product—contact factory for availability. **EP = Exposed paddle. ______________________________________________________________________________________ 13 MAX9718/MAX9719 Ordering Information (continued) MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers System Diagram 2.7V TO 5.5V 10µF 1µF VCC MAX9719 IN1+ INL+ OUTL+ IN1- INL- OUTL- IN2+ INR+ IN2- INR- OUTR+ OUTRGND BIAS SHDN 0.1µF 2.7V TO 5.5V Q MAX961 Q 220kΩ VCC IN+ IN- 0.1µF 0.1µF SHDN MAX9722B 1µF INL OUTL 1µF OUTR INR 2.7V TO 5.5V PVDD PVSS SVSS SVDD 1µF 0.1µF C1P CIN 1µF 1µF AUTOMATIC HEADPHONE DETECTION AND SPEAKER DISABLE CIRCUIT 14 ______________________________________________________________________________________ Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers 2.7V TO 5.5V SUPPLY VCC 1.0µF INVERTING DIFFERENTIAL INPUT NONINVERTING DIFFERENTIAL INPUT R2 CIN R1 IN- OUT+ (OPTIONAL) CIN R1 IN+ OUTR2 (OPTIONAL) BIAS CBIAS 0.1µF BIAS GENERATOR SHDN SHDM MAX9718B MAX9718C MAX9718D SHUTDOWN CONTROL GND RF RF 2.7V TO 5.5V SUPPLY VCC 1.0µF INVERTING DIFFERENTIAL INPUT NONINVERTING DIFFERENTIAL INPUT CIN RIN INOUT+ (OPTIONAL) CIN RIN IN+ (OPTIONAL) BIAS CBIAS 0.1µF MAX9718A AV = 2 fC = 1Hz CIN = 10µF RIN = 10kΩ RF = 20kΩ OUTBIAS GENERATOR MAX9718A SHDN SHDM SHUTDOWN CONTROL GND ______________________________________________________________________________________ 15 MAX9718/MAX9719 Functional Diagrams MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers Functional Diagrams (continued) 2.7V TO 5.5V SUPPLY VCC 1.0µF INVERTING DIFFERENTIAL INPUT NONINVERTING DIFFERENTIAL INPUT CIN OUTL+ (OPTIONAL) CIN R1 INL+ OUTLR2 (OPTIONAL) CBIAS 0.1µF NONINVERTING DIFFERENTIAL INPUT R2 R1 INL- BIAS INVERTING DIFFERENTIAL INPUT MAX9719B MAX9719C MAX9719D BIAS GENERATOR SHDN CIN SHUTDOWN CONTROL R2 R1 INR- OUTR+ (OPTIONAL) CIN R1 INR+ (OPTIONAL) OUTRR2 GND RF RF 2.7V TO 5.5V SUPPLY VCC MAX9719A 1.0µF INVERTING DIFFERENTIAL INPUT NONINVERTING DIFFERENTIAL INPUT CIN RIN INLOUTL+ (OPTIONAL) CIN RIN INL+ (OPTIONAL) BIAS CBIAS 0.1µF INVERTING DIFFERENTIAL INPUT MAX9719A AV = 2 fC = 1Hz CIN = 10µF RIN = 10kΩ RF = 20kΩ 16 NONINVERTING DIFFERENTIAL INPUT OUTL- CIN RIN BIAS GENERATOR SHDN SHUTDOWN CONTROL INROUTR+ (OPTIONAL) CIN (OPTIONAL) RIN INR+ OUTR- GND RF RF ______________________________________________________________________________________ Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers TOP VIEW TOP VIEW (BUMPS ON BOTTOM) SHDN 1 IN- 2 SHDM 3 IN+ 4 BIAS 5 10 OUT+ MAX9718 9 VCC 8 N.C. 7 GND 6 OUT- MAX9718 3 1 2 A IN+ BIAS OUT- B VCC SHDM GND C IN- SHDN OUT+ µMAX 3 × 3 UCSP TOP VIEW TOP VIEW (BUMPS ON BOTTOM) SHDN 1 10 OUT+ IN- 2 SHDM 3 IN+ 4 7 GND BIAS 5 6 OUT- MAX9719 4 1 2 3 A INL+ GND OUTL+ VCC B INL- BIAS SHDN OUTL- C INR+ GND D INR- OUTR- 9 VCC 8 N.C. MAX9718 3mm × 3mm × 0.8mm TDFN GND VCC OUTR+ 4 × 4 UCSP GND INR+ OUTR- VCC N.C. TOP VIEW INR- TOP VIEW 16 15 14 13 12 OUTR+ 1 2 INL+ 6 11 SHDN BIAS 7 10 VCC GND 8 9 OUTL+ VCC 9 OUTL+ 4 GND INL+ BIAS 14 OUTR+ 12 OUTL- 10 OUTL- 8 15 N.C. INL- 5 3 7 INR- 2 GND 3 INR+ 4 INL- 6 16 VCC 11 GND MAX9719 5 OUTR- 1 SHDN MAX9719 13 GND TSSOP-EP 4mm × 4mm × 0.8mm TQFN ______________________________________________________________________________________ 17 MAX9718/MAX9719 Pin Configurations MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) 18 ______________________________________________________________________________________ Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers 6, 8, &10L, DFN THIN.EPS L A D D2 A2 PIN 1 ID 1 N 1 C0.35 b E PIN 1 INDEX AREA [(N/2)-1] x e REF. E2 DETAIL A e k A1 CL CL L L e e A DALLAS SEMICONDUCTOR PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE, 6, 8 & 10L, TDFN, EXPOSED PAD, 3x3x0.80 mm NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY APPROVAL DOCUMENT CONTROL NO. 21-0137 REV. 1 D 2 COMMON DIMENSIONS SYMBOL A MIN. MAX. 0.70 0.80 D 2.90 3.10 E 2.90 3.10 A1 0.00 0.05 L k 0.20 0.40 0.25 MIN. A2 0.20 REF. PACKAGE VARIATIONS PKG. CODE N D2 E2 e JEDEC SPEC b T633-1 6 1.50–0.10 2.30–0.10 0.95 BSC MO229 / WEEA 0.40–0.05 1.90 REF T833-1 8 1.50–0.10 2.30–0.10 0.65 BSC MO229 / WEEC 0.30–0.05 1.95 REF T1033-1 10 1.50–0.10 2.30–0.10 0.50 BSC MO229 / WEED-3 0.25–0.05 2.00 REF [(N/2)-1] x e DALLAS SEMICONDUCTOR PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE, 6, 8 & 10L, TDFN, EXPOSED PAD, 3x3x0.80 mm APPROVAL DOCUMENT CONTROL NO. 21-0137 REV. D 2 2 ______________________________________________________________________________________ 19 MAX9718/MAX9719 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) 10L UMAX, EXPPADS.EPS MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers 20 ______________________________________________________________________________________ Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers 16L,UCSP.EPS PACKAGE OUTLINE, 4x4 UCSP 21-0101 G 1 1 ______________________________________________________________________________________ 21 MAX9718/MAX9719 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) 24L QFN THIN.EPS MAX9718/MAX9719 Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers PACKAGE OUTLINE 12,16,20,24L QFN THIN, 4x4x0.8 mm 21-0139 A PACKAGE OUTLINE 12,16,20,24L QFN THIN, 4x4x0.8 mm 21-0139 22 A ______________________________________________________________________________________ Low-Cost, Mono/Stereo, 1.4W Differential Audio Power Amplifiers TSSOP 4.4mm BODY.EPS PACKAGE OUTLINE, TSSOP, 4.40 MM BODY EXPOSED PAD 21-0108 C 1 1 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23 © 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products. MAX9718/MAX9719 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)