CREE C2M0045170P Silicon carbide power mosfet c2m mosfet technology Datasheet

C2M0045170P
Silicon Carbide Power MOSFET
TM
C2M MOSFET Technology
VDS
1700 V
ID @ 25˚C
72 A
RDS(on)
45 mΩ
N-Channel Enhancement Mode
Features
•
•
•
•
•
•
Package
Optimized package with separate driver source pin
8mm of creepage distance between drain and source
High Blocking Voltage with Low On-Resistance
High Speed Switching with Low Capacitances
Easy to Parallel and Simple to Drive
Halogen Free, RoHS Compliant
TAB
Drain
Benefits
•
•
•
•
•
Drain
(Pin 1, TAB)
Reduce switching losses and minimize gate ringing
Higher system efficiency
Reduce cooling requirements
Increase power density
Increase system switching frequency
1
D
2 3 4
S S G
Gate
(Pin 4)
Applications
•
•
•
•
Driver
Source
(Pin 3)
1500V Solar Inverters
Switch Mode Power Supplies
High Voltage DC/DC converters
Pulsed Power Applications
Power
Source
(Pin 2)
Part Number
Package
Marking
C2M0045170P
TO-247-4 Plus
C2M0045170P
Maximum Ratings (TC = 25 ˚C unless otherwise specified)
Symbol
Parameter
Unit
Test Conditions
1700
V
VGS = 0 V, ID = 100 μA
Note
VDSmax
Drain - Source Voltage
VGSmax
Gate - Source Voltage (dynamic)
-10/+25
V
AC (f >1 Hz)
Note: 1
VGSop
Gate - Source Voltage (Static)
-5/+20
V
Static
Note: 2
VGS =20 V, TC = 25˚C
Fig. 19
ID
Continuous Drain Current
ID(pulse)
PD
TJ , Tstg
TL
72
48
A
VGS =20 V, TC = 100˚C
Pulsed Drain Current
160
A
Pulse width tP limited by Tjmax
Fig. 22
Power Dissipation
520
W
TC=25˚C, TJ = 150 ˚C
Fig. 20
-40 to
+150
˚C
260
˚C
Operating Junction and Storage Temperature
Solder Temperature
Note (1): When using MOSFET Body Diode VGSmax = -5V/+25V
Note (2): MOSFET can also safely operate at 0/+20V
1
Value
C2M0045170P Rev. -, 04-2018
1.6mm (0.063”) from case for 10s
Electrical Characteristics (TC = 25˚C unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-Source Breakdown Voltage
VGS(th)
Gate Threshold Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate-Source Leakage Current
RDS(on)
Min.
Typ.
2.0
2.6
2
45
Drain-Source On-State Resistance
3672
Coss
Output Capacitance
171
Crss
Reverse Transfer Capacitance
6.7
Eoss
Coss Stored Energy
105
EON
Turn-On Switching Energy (SiC Diode FWD)
0.67
EOFF
Turn Off Switching Energy (SiC Diode FWD)
0.31
EON
Turn-On Switching Energy (Body Diode FWD)
2.8
EOFF
Turn Off Switching Energy (Body Diode FWD)
0.35
td(on)
Turn-On Delay Time
35
Rise Time
13
Turn-Off Delay Time
46
Fall Time
10
Internal Gate Resistance
1.3
Qgs
Gate to Source Charge
44
Qgd
Gate to Drain Charge
57
Qg
Total Gate Charge
188
tf
RG(int)
VDS = VGS, ID = 18mA
V
VDS = VGS, ID = 18mA, TJ = 150 °C
100
μA
VDS = 1700 V, VGS = 0 V
600
nA
VGS = 20 V, VDS = 0 V
mΩ
21.7
Input Capacitance
td(off)
V
4
90
Ciss
Test Conditions
VGS = 0 V, ID = 100 μA
59
Transconductance
Unit
V
1.8
gfs
tr
Max.
1700
S
24.4
VGS = 20 V, ID = 50 A
VGS = 20 V, ID = 50 A, TJ = 150 °C
VDS= 20 V, IDS= 50 A
VDS= 20 V, IDS= 50 A, TJ = 150 °C
VGS = 0 V
pF
VDS = 1000 V
Note
Fig. 11
Fig.
4,5,6
Fig. 7
Fig.
17,18
f = 1 MHz
μJ
VAC = 25 mV
Fig 16
mJ
VDS = 1200 V, VGS = -5/20 V,
ID = 50A, RG(ext) = 2.5Ω, L= 105 μH,
TJ = 150 °C, using SiC Diode as FWD
Fig. 26,
29b
mJ
VDS = 1200 V, VGS = -5/20 V,
ID = 50A, RG(ext) = 2.5Ω, L= 105 μH,
TJ = 150 °C, using MOSFET as FWD
Fig. 26,
29a
ns
VDD = 1200 V, VGS = -5/20 V
ID = 50 A,
RG(ext) = 2.5 Ω, Timing relative to VDS
Inductive load
Ω
f = 1 MHz, VAC = 25 mV
nC
VDS = 1200 V, VGS = -5/20 V
ID = 50 A
Per IEC60747-8-4 pg 21
Fig. 27,
29
Fig. 12
Reverse Diode Characteristics
Symbol
VSD
Parameter
Diode Forward Voltage
Typ.
Max.
Unit
Test Conditions
Note
4.1
V
VGS = - 5 V, ISD = 25 A
3.6
V
VGS = - 5 V, ISD = 25 A, TJ = 150 °C
Fig. 8, 9,
10
Note 1
A
TC= 25 °C, VGS = - 5 V
Note 1
VGS = - 5 V, ISD = 50 A , VR = 1200 V
dif/dt = 3000 A/µs
Note 1
IS
Continuous Diode Forward Current
72
trr
Reverse Recovery Time
44
ns
Qrr
Reverse Recovery Charge
2
µC
Irrm
Peak Reverse Recovery Current
60
A
Note (1): When using SiC Body Diode the maximum recommended VGS = -5V
Thermal Characteristics
Symbol
2
Parameter
Typ.
Max.
RθJC
Thermal Resistance from Junction to Case
0.22
0.24
RθJC
Thermal Resistance from Junction to Ambient
C2M0045170P Rev. -, 04-2018
40
Unit
°C/W
Test Conditions
Note
Fig. 21
Typical Performance
125
Drain-Source Current, IDS (A)
150
Conditions:
TJ = -40 °C
tp < 200 µs
125
VGS = 18 V
VGS = 16 V
100
Conditions:
TJ = 25 °C
tp < 200 µs
VGS = 20 V
Drain-Source Current, IDS (A)
150
VGS = 14 V
75
VGS = 12 V
50
VGS = 10 V
25
VGS = 20 V
VGS = 18 V
100
VGS = 12 V
75
50
VGS = 10 V
25
0
0
0.0
2.5
5.0
7.5
10.0
12.5
15.0
0.0
2.5
5.0
Drain-Source Voltage, VDS (V)
150
VGS = 18 V
2.0
VGS = 16 V
VGS = 14 V
100
VGS = 12 V
75
VGS = 10 V
50
25
15.0
1.5
1.0
0.5
0.0
0
0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
-50
20.0
-25
0
120
Conditions:
VGS = 20 V
tp < 200 µs
140
On Resistance, RDS On (mOhms)
120
TJ = 150 °C
80
TJ = 25 °C
60
40
75
100
125
150
Conditions:
IDS = 50 A
tp < 200 µs
100
100
50
Figure 4. Normalized On-Resistance vs. Temperature
Figure 3. Output Characteristics TJ = 150 °C
160
25
Junction Temperature, TJ (°C)
Drain-Source Voltage, VDS (V)
On Resistance, RDS On (mOhms)
12.5
Conditions:
IDS = 50 A
VGS = 20 V
tp < 200 µs
VGS = 20 V
On Resistance, RDS On (P.U.)
Drain-Source Current, IDS (A)
125
10.0
Figure 2. Output Characteristics TJ = 25 °C
2.5
Conditions:
TJ = 150 °C
tp < 200 µs
7.5
Drain-Source Voltage, VDS (V)
Figure 1. Output Characteristics TJ = -40 °C
TJ = -40 °C
20
0
80
VGS = 14 V
60
VGS = 16 V
40
VGS = 20 V
VGS = 18 V
20
0
0
20
40
60
80
100
Drain-Source Current, IDS (A)
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
3
VGS = 14 V
VGS = 16 V
C2M0045170P Rev. -, 04-2018
120
140
-50
-25
0
25
50
75
100
Junction Temperature, TJ (°C)
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
125
150
Typical Performance
125
-7
Conditions:
VDS = 20 V
tp < 200 µs
-5
-4
-3
-2
-1
0
0
Drain-Source Current, IDS (A)
100
Drain-Source Current, IDS (A)
-6
TJ = 150 °C
75
TJ = 25 °C
50
TJ = -40 °C
25
VGS = -5 V
-30
VGS = 0 V
-60
VGS = -2 V
-90
-120
Conditions:
TJ = -40°C
tp < 200 µs
0
0
2
4
6
8
10
12
14
Figure 7. Transfer Characteristic For
Various Junction Temperatures
-7
-6
-5
-4
-3
-150
Drain-Source Voltage VDS (V)
Gate-Source Voltage, VGS (V)
-2
Figure 8. Body Diode Characteristic at -40 ºC
-1
0
-7
-6
-5
-4
-3
-2
-1
0
VGS = -5 V
-30
VGS = 0 V
VGS = -2 V
-60
-90
0
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
0
-30
VGS = -5 V
VGS = 0 V
-60
VGS = -2 V
-90
-120
Conditions:
TJ = 25°C
tp < 200 µs
Drain-Source Voltage VDS (V)
-120
Conditions:
TJ = 150°C
tp < 200 µs
-150
Drain-Source Voltage VDS (V)
Figure 9. Body Diode Characteristic at 25 ºC
Figure 10. Body Diode Characteristic at 150 ºC
4.0
25
Conditons
VGS =VDS
IDS = 18 mA
3.5
Gate-Source Voltage, VGS (V)
Threshold Voltage, Vth (V)
2.5
2.0
1.5
1.0
0.5
0.0
-25
0
25
50
75
100
125
Junction Temperature TJ (°C)
Figure 11. Threshold Voltage vs. Temperature
4
C2M0045170P Rev. -, 04-2018
Conditions:
IDS = 50 A
IGS = 100 mA
VDS = 1200 V
TJ = 25 °C
20
3.0
-50
-150
150
15
10
5
0
-5
0
20
40
60
80
100
120
140
160
Gate Charge, QG (nC)
Figure 12. Gate Charge Characteristic
180
200
Typical Performance
-6
-5
-4
-3
-2
-1
0
-6
-5
-4
-3
-2
-1
0
0
0
VGS = 0 V
-30
VGS = 5 V
VGS = 10 V
-60
VGS = 15 V
-90
VGS = 20 V
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
VGS = 0 V
VGS = 10 V
-60
VGS = 15 V
Conditions:
TJ = 25 °C
tp < 200 µs
-150
Drain-Source Voltage VDS (V)
-4
-3
-2
-1
-120
-150
Drain-Source Voltage VDS (V)
Figure 13. 3rd Quadrant Characteristic at -40 ºC
-5
-90
VGS = 20 V
-120
Conditions:
TJ = -40 °C
tp < 200 µs
-6
-30
VGS = 5 V
Figure 14. 3rd Quadrant Characteristic at 25 ºC
120
0
0
100
-30
VGS = 5 V
VGS = 10 V
-60
VGS = 15 V
VGS = 20 V
-90
Conditions:
TJ = 150 °C
tp < 200 µs
Stored Energy, EOSS (µJ)
Drain-Source Current, IDS (A)
VGS = 0 V
60
40
20
-120
0
0
-150
Drain-Source Voltage VDS (V)
80
200
Figure 15. 3rd Quadrant Characteristic at 150 ºC
10000
1000
1200
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
Ciss
1000
Capacitance (pF)
Capacitance (pF)
800
10000
1000
Coss
100
Crss
10
Coss
100
Crss
10
1
0
50
100
Drain-Source Voltage, VDS (V)
150
Figure 17. Capacitances vs. Drain-Source
Voltage (0-200 V)
5
600
Figure 16. Output Capacitor Stored Energy
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
Ciss
400
Drain to Source Voltage, VDS (V)
C2M0045170P Rev. -, 04-2018
200
1
0
200
400
600
Drain-Source Voltage, VDS (V)
800
Figure 18. Capacitances vs. Drain-Source
Voltage (0-1000 V)
1000
Typical Performance
600
Conditions:
TJ ≤ 150 °C
70
Conditions:
TJ ≤ 150 °C
Maximum Dissipated Power, Ptot (W)
Drain-Source Continous Current, IDS (DC) (A)
80
60
50
40
30
20
10
0
-55
-30
-5
20
45
70
95
120
500
400
300
200
100
0
145
-55
Case Temperature, TC (°C)
-30
-5
20
45
70
95
120
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
0.3
0.1
0.05
10E-3
10 µs
Limited by RDS On
0.5
Drain-Source Current, IDS (A)
Junction To Case Impedance, ZthJC (oC/W)
100.00
100E-3
0.02
SinglePulse
0.01
10E-6
100E-6
1E-3
Time, tp (s)
10E-3
100E-3
1 ms
100 ms
1.00
0.10
Conditions:
TC = 25 °C
D = 0,
Parameter: tp
0.1
1
1
1.2
2.5
0.9
EOn
0.6
EOff
0.3
10
20
30
40
50
60
70
80
Drain to Source Current, IDS (A)
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 900V)
6
C2M0045170P Rev. -, 04-2018
2.0
1000
ETotal
1.5
EOn
1.0
EOff
0.5
0.0
0
Conditions:
TJ = 25 °C
VDD = 1200 V
RG(ext) = 2.5 Ω
VGS = -5V/+20 V
FWD = C2M0045170P
L = 130 μH
ETotal
Switching Loss (mJ)
Switching Loss (mJ)
1.5
100
Figure 22. Safe Operating Area
3.0
Conditions:
TJ = 25 °C
VDD = 900 V
RG(ext) = 2.5 Ω
VGS = -5V/+20 V
FWD = C2M0045170P
L = 130 μH
10
Drain-Source Voltage, VDS (V)
Figure 21. Transient Thermal Impedance
(Junction - Case)
1.8
100 µs
10.00
0.01
1E-3
1E-6
145
Case Temperature, TC (°C)
90
0.0
0
10
20
30
40
50
60
70
80
Drain to Source Current, IDS (A)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 1200V)
90
Typical Performance
5.0
Switching Loss (mJ)
3.5
Conditions:
TJ = 25 °C
VDD = 1200 V
IDS = 50 A
VGS = -5V/+20 V
FWD = C2M0045170P
L = 130 μH
4.0
2.5
ETotal
3.0
EOn
2.0
2.0
ETotal
EOn
1.5
ETotal
1.0
EOn
EOff
1.0
0.5
0.0
EOff
EOff
0.0
0
5
10
15
20
25
External Gate Resistor RG(ext) (Ohms)
150
Conditions:
TJ = 25 °C
VDD = 1200 V
IDS = 50 A
VGS = -5V/+20 V
FWD = C2M0045170P
L = 130 μH
125
100
0
25
50
75
100
125
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
td(off)
75
td(on)
50
tf
tr
25
0
0
5
10
15
20
25
External Gate Resistor RG(ext) (Ohms)
Figure 27. Switching Times vs. RG(ext)
7
C2M0045170P Rev. -, 04-2018
150
Junction Temperature, TJ (°C)
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
Switching Times (ns)
Conditions:
IDS = 20 A
VDD = 1200 V
RG(ext) = 2.5 Ω
VGS = -5V/+20 V
FWD = C2M0045170P
(- - -)FWD = C3D25170H
L = 130 μH
3.0
Switching Loss (mJ)
6.0
Figure 28. Switching Times Definition
175
Test Circuit Schematic
Q1
RG
VGS= - 5V
Q2
RG
C2M0045170P
D.U.T
Figure 29a. Clamped Inductive Switching Test Circuit using
MOSFET intristic body diode
C3D25170H
25A, 1700V
SiC Schottky
D1
VDC
RG
Q2
D.U.T
C2M0045170P
Figure 29b. Clamped Inductive Switching Test Circuit using
SiC Schottky diode
8
C2M0045170P Rev. -, 04-2018
Package Dimensions
Package TO-247-4L
Plus
Semiconductor
ASE
Advanced
Engineering Weihai, Inc.
PACKAGE
OUTLINE
DWG NO.
98W0004TO005
ISSUE
A
DATE
May.20, 2016
NOTE ;
1. ALL METAL SURFACES: TIN PLATED,EXCEPT
2. DIMENSIONING & TOLERANCEING CONFIRM
ASME Y14.5M-1994.
3. ALL DIMENSIONS ARE IN MILLIMETERS.
ANGLES ARE IN DEGREES.
E
MILLIMETERS
SYM
E1
E4
A
A1
A2
b'
b
b1
b2
b3
b4
b5
b6
c'
c
D
D1
D2
E
E1
E2
E3
E4
e
e1
N
L
L1
L2
Q
T
W
X
E2
E3
BASE METAL
SECTION "F-F", "G-G" AND "H-H"
SCALE: NONE
TITLE:
9
TO-247 Plus 4 LD
C2M0045170P Rev. -, 04-2018
COMPANY
ASE Weihai
SHEET
1 OF 3
TITLE:
MIN
MAX
4.83
5.21
2.29
2.54
1.91
2.16
1.07
1.28
1.07
1.33
2.39
2.94
2.39
2.84
1.07
1.60
1.07
1.50
2.39
2.69
2.39
2.64
0.55
0.65
0.55
0.68
23.30
23.60
16.25
17.65
0.95
1.25
15.75
16.13
13.10
14.15
3.68
5.10
1.00
1.90
12.38
13.43
2.54 BSC
5.08 BSC
4
17.31
17.82
3.97
4.37
2.35
2.65
5.49
6.00
17.5° REF.
3.5 ° REF.
4 ° REF.
TO-247 Plus 4LD
Notes
•
RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
•
REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
•
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems.
Related Links
•
•
•
C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support
Copyright © 2018 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
10
C2M0045170P Rev. -, 04-2018
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power
Similar pages