HT82V38 16-Bit CCD/CIS Analog Signal Processor Features · Operating voltage: 3.3V (typ.) · Internal voltage reference · Low Power CMOS: 300 mW (typ.) · Multiplexed byte-wide output (8+8 format) · Power-Down Mode: 10mA (max.) · Programmable 3-wire serial interface · 16-Bit 30 MSPS A/D converter · 3 .3V digital I/O compatibility · Guaranteed won¢t miss codes · 3-Channel operation up to 30 MSPS · 1~5.85x programmable gain · 2-Channel (even-odd) operation up to 30 MSPS · Correlated double sampling · 1-Channel operation up to 20 MSPS · ±250 mV programmable offset · 28-pin SSOP (209mil) package · Input clamp circuitry Applications · Flatbed document scanners · Digital color copiers · Film scanners · Multifunction peripherals General Description The 16-bit digital output is multiplexed into an 8-bit output word that is accessed using two read cycles. The internal registers are programmed through a 3-wire serial interface, and provide adjustment of the gain, offset, and operating mode. The HT82V38 is a complete analog signal processor for CCD imaging applications. It features a 3 channel architecture designed to sample and condition the outputs of trilinear color CCD arrays. Each channel consists of an input clamp, Correlated Double Sampler (CDS), offset DAC and Programmable Gain Amplifier (PGA), multiplexed to a high performance 16-bit A/D converter. The CDS amplifiers may be disabled for use with sensors such as Contact Image Sensors (CIS) and CMOS active pixel sensors, which do not require CDS. Block Diagram A V D D V IN R A V S S R E F T R E F B + A V D D C D S A V S S D V D D P G A O E 9 - B it D A C V IN G + B A N D G A P R e fe re n c e C D S C D S O F F S E T C D S C L K 1 Rev. 1.00 1 6 1 6 :8 M U X 8 D O U T + C o n fig u r a tio n R e g is te r M U X R e g is te r P G A 6 In p u t C la m p B ia s 1 6 - B it A D C 3 .1 M U X P G A 9 - B it D A C V IN B D V S S 9 - B it D A C 9 R E D G R E E N B L U E R E D G R E E N B L U E G a in R e g is te r s D ig ita l C o n tro l In te rfa c e S C L K S L O A D S D A T A O ffs e t R e g is te r s C D S C L K 2 A D C C L K 1 July 23, 2009 HT82V38 Pin Assignment C D S C L K 1 1 2 8 A V D D C D S C L K 2 2 2 7 A V S S A D C C L K 3 2 6 V IN R O E 4 2 5 O F F S E T D V D D 5 2 4 V IN G D V S S 6 2 3 C M L D 7 (M S B ) 7 2 2 V IN B D 6 8 2 1 R E F T D 5 9 2 0 R E F B D 4 1 0 1 9 A V S S D 3 1 1 1 8 A V D D D 2 1 2 1 7 S L O A D D 1 1 3 1 6 S C L K D 0 (L S B ) 1 4 1 5 S D A T A H T 8 2 V 3 8 2 8 S S O P -A Pin Description Pin No. Pin Name I/O Description 1 CDSCLK1 DI CDS Reference Clock Pulse Input 2 CDSCLK2 DI CDS Data Clock Pulse Input 3 ADCCLK DI A/D Sample Clock Input for 3-channels Mode 4 OE DI Output Enable, Active Low Internal pull-low 50W 5 DVDD P Digital Power 6 DVSS P Digital Ground 7~14 D7~D0 DO 15 SDATA DI/DO 16 SCLK DI 17 SLOAD DI Serial Interface Load Pulse 18, 28 AVDD P Analog Supply 19, 27 AVSS P Analog Ground 20 REFB AO Reference Decoupling 21 REFT AO Reference Decoupling Digital Data Output Serial Data Input/Output Clock Input for Serial Interface 22 VINB AI Analog Input, Blue 23 CML AO Internal Reference Output 24 VING AI Analog Input, Green 25 OFFSET AO Clamp Bias Level Decoupling 26 VINR AI Analog Input, Red Note: AI=Analog Input, AO=Analog Output, DI=Digital Input, DO=Digital Output, P=Power Rev. 1.00 2 July 23, 2009 HT82V38 Absolute Maximum Ratings Supply Voltage ..........................VSS-0.3V to VSS+4.3V Storage Temperature ...........................-50°C to 125°C Input Voltage .............................VSS-0.3V to VDD+0.3V Operating Temperature ..............................0°C to 70°C Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability. D.C. Characteristics Symbol Parameter Test Conditions VDD Conditions Min. Typ. Max. Unit Logic Inputs VIH High Level Input Voltage ¾ ¾ 0.8VDD ¾ ¾ V VIL Low Level Input Voltage ¾ ¾ ¾ ¾ 0.2VDD V IIH High Level Input Current ¾ ¾ ¾ ¾ 1 mA IIL Low Level Input Current ¾ ¾ ¾ ¾ 1 mA CIN Input Capacitance ¾ ¾ ¾ 5 ¾ pF Logic Outputs VOH High Level Output Voltage ¾ IOH=3mA DVDD-0.5 ¾ ¾ V VOL Low Level Output Voltage ¾ IOL=3mA ¾ ¾ 0.5 V Min. Typ. Max. Unit A.C. Characteristics Symbol Parameter Test Conditions VDD Conditions Power Supplies AVDD AVDD ¾ ¾ 3.15 3.3 3.45 V DVDD DVDD ¾ ¾ 3.15 3.3 3.45 V 3-channel Mode with CDS ¾ ¾ 30 ¾ ¾ MPS 2-channel Mode with CDS ¾ ¾ 30 ¾ ¾ MPS 1-channel Mode with CDS ¾ ¾ 20 ¾ ¾ MPS ADC Resolution ¾ ¾ ¾ 16 ¾ Bits Integral Nonlinear (INL) ¾ ¾ ¾ ±32 ¾ LSB Differential Nonlinear (DNL) ¾ ¾ -1 ¾ +1 mV Offset Error ¾ ¾ -100 ¾ +100 mV Gain Error ¾ ¾ ¾ 5 ¾ %FSR Maximum Conversion Rate tMAX Accuracy (Entire Signal Path) Rev. 1.00 3 July 23, 2009 HT82V38 Symbol Parameter Test Conditions VDD Conditions Min. Typ. Max. Unit Analog Inputs RFS Full-scale Input Range ¾ ¾ ¾ 1.6/2.0 ¾ V Vi Input Limits ¾ ¾ AVSS-0.3 ¾ AVDD+0.3 V Ci Input Capacitance ¾ ¾ ¾ 10 ¾ pF Ii Input Current ¾ ¾ ¾ 10 ¾ mA PGA Gain at Minimum ¾ ¾ ¾ 1 ¾ V/V PGA Gain at Maximum ¾ ¾ ¾ 5.85 ¾ V/V PGA Gain Resolution ¾ ¾ ¾ 6 ¾ Bits Programmable Offset at Minimum ¾ ¾ ¾ -250 ¾ mV Programmable Offset at Maximum ¾ ¾ ¾ 250 ¾ mV Offset Resolution ¾ ¾ ¾ 9 ¾ Bits ¾ ¾ ¾ 4 ¾ Bits Clamp DAC output voltage at code 0 ¾ 0.45 ¾ V Clamp DAC output voltage at code F ¾ 2.7 ¾ V Clamp DAC Step size ¾ 0.15 ¾ V/Step -50 ¾ 50 mV Amplifiers Clamp DAC Circuit tA Clamp DAC resolution Clamp DAC deviation (AVDD=3.300V) Temperature Range tA Operating ¾ ¾ 0 ¾ 70 °C ¾ ¾ ¾ 300 ¾ mW Power Consumption Ptot Total Power Consumption Timing Specification Symbol AVDD=DRVDD=3.3V, AVSS=DRVSS=0V, Ta=25°C, ADCCLK=30MHz unless otherwise stated Parameter Min. Typ. Max. Unit Clock Parameters tPRA 3-Channel Pixel Rate 100 ¾ ¾ ns tPRB 2-Channel Pixel Rate 66 ¾ ¾ ns tPRC 1-Channel Pixel Rate 50 ¾ ¾ ns tADCLK ADCCLK Pulse Width 16 ¾ ¾ ns tC1 CDSCLK1 Pulse Width 10 ¾ ¾ ns tC2 CDSCLK2 Pulse Width 10 ¾ ¾ ns tC1C2 CDSCLK1 Falling to CDSCLK2 Rising 0 ¾ ¾ ns tADC2 ADCCLK Falling to CDSCLK2 Rising 2 ¾ ¾ ns tC2ADR CDSCLK2 Rising to ADCCLK Rising 2 ¾ ¾ ns tC2ADF CDSCLK2 Falling to ADCCLK Falling 20 ¾ ¾ ns tADC1 ADCCLK Falling to CDSCLK1 Rising 0 ¾ ¾ ns tAD Aperture Delay for CDS Clocks ¾ 3 ¾ ns Rev. 1.00 4 July 23, 2009 HT82V38 Symbol Parameter Min. Typ. Max. Unit Serial Interface fSCLK Maximum SCLK Frequency 10 ¾ ¾ MHz tLS SLOAD to SCLK Setup Time 10 ¾ ¾ ns tLH SCLK to SLOAD Hold Time 10 ¾ ¾ ns tDS SDATA to SCLK Rising Setup Time 10 ¾ ¾ ns tDH SCLK Rising to SDATA Hold Time 10 ¾ ¾ ns tRDV SCLK Falling to SDATA Valid 10 ¾ ¾ ns Output Delay (output load 10pF) ¾ 10 ¾ ns Latency (Pipeline Delay) ¾ 9 ¾ Cycles Data Output tOD Functional Description Integral Nonlinear (INL) Gain Error Integral nonlinearity error refers to the deviation of each individual code from a line drawn from ²zero scale² through ²positive full scale². The point used as ²zero scale² occurs 1/2 LSB before the first code transition. ²Positive full scale² is defined as a level 1/2 LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line. The last code transition should occur for an analog va l u e 1 /2 L S B b e l o w t h e f u l l - sca l e vo l t a g e (2´(REFT-REFB)). Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between the first and last code transitions. Aperture Delay The aperture delay is the time delay that occurs from when a sampling edge is applied to the HT82V38 until the actual sample of the input signal is held. Both CDSCLK1 and CDSCLK2 sample the input signal during the transition from high to low, so the aperture delay is measured from each clock¢s falling edge to the instant the actual internal sample is taken. Differential Nonlinear (DNL) An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Thus every code must have a finite width. No missing codes guaranteed to 16-bit resolution indicates that all 4096 codes, respectively, must be present over all operating ranges. Offset Error The first ADC code transition should occur at a level 1/2 LSB above the nominal zero scale voltage. The offset error is the deviation of the actual first code transition level from the ideal level. Rev. 1.00 5 July 23, 2009 HT82V38 Internal Register Descriptions Address Data Bits Register Name A2 A1 A0 D8 D7 D6 D5 D4 D3 D2 Configuration 0 0 0 0 0 Clamp Int 3 CH CDS on 0 Pwr Dn MUX 0 0 1 0 RGB/ BGR ClapC[3] ClapC[2] Red PGA 0 1 0 0 0 0 MSB LSB Green PGA 0 1 1 0 0 0 MSB LSB Blue PGA 1 0 0 0 0 0 MSB LSB Red Offset 1 0 1 MSB LSB Green Offset 1 1 0 MSB LSB Blue Offset 1 1 1 MSB LSB Red Green Blue D1 D0 Full scale 1byte out input range ClapC[1] ClapC[0] Internal Register Map Configuration Register The Configuration Register controls the HT82V38¢s operating mode and bias levels. Bits D6 controls reference clamp voltage. Setting this bit low change OFFSET to high-Z, allowing OFFSET to be driven from external power source. Bit D5 will configure the HT82V38 for the 3-Channel (high) mode of operation. Setting Bit D4 high will enable the CDS mode of operation, and setting this bit low will enable the SHA mode of operation. Bit D3 should always be set low. Bit D2 controls the power-down mode. Setting Bit D2 high will place the HT82V38 into a very low power ²sleep² mode. All register contents are retained while the HT82V38 is in the powered-down state. Bit D1 controls full-scale input range. D1=1, full scale input range will be 2V, D1=0 full scale input range will be 1.6V. Bit D0 controls the output mode of the HT82V38. Setting bit D0 high will enable a single byte output mode where only 8 MSBs of the 16-bit ADC will be output. If bit D0 is set low, then the 16-bit ADC output is multiplexed into two bytes. D8 Set to 0 D7 Set to 0 D6 D5 D4 D3 D2 D1 D0 ClampInt 3 Channels CDS operation ¾ Power-down Full scale input range 1 byte out 1=Internal* 1=On* 1=CDS mode* ¾ 1=On 1=2V 1=On 0* 0=Off (Normal)* 0=1.6V* 0=Off * 0=External 0=Off 0=SHA mode Note: * Power-on default value Configuration Register Settings Rev. 1.00 6 July 23, 2009 HT82V38 MUX Register The MUX Register controls the sampling channel order in the HT82V38. Bits D8 should always be set low. Bit D7 is used when operating in 3-Channel Mode. Setting Bit D7 high will sequence the MUX to sample the red channel first, then the green channel, and then the blue channel. When in this mode, the CDSCLK2 rising edge always resets the MUX to sample the red channel first (see Timing Figure). When Bit D7 is set low, the channel order is reversed to blue first, green second, and red third. The CDSCLK2 rising edge pulse will always reset the MUX to sample the blue channel first. Bits D6, D5, and D4 are used when operating in 1-Channel Mode. Bit D6 is set high to sample the red channel. Bit D5 is set high to sample the green channel. Bit D4 is set high to sample the blue channel. The MUX will remain stationary during 1-Channel Mode. Bit D3 to Bit D0 control 4 bits DAC clamp voltage from 0.45V to 2.7V. D8 Set to 0 D7 D6 D5 D4 D3 D2 D1 D0 3-Channel 1-Channel 1-Channel 1-Channel Clap[3] Clap[2] Clap[1] Clap[0] 1=R-G-B* 0=B-G-R 1=RED* 0=Off 1=GREEN 0=Off* 1111=2.7V* 1110=2.55V : : 0001=0.6V 0000=0.45V 1=BLUE 0=Off * Note: * Power-on default value MUX Register Settings PGA Gain Register There are three PGA registers for individually programming the gain in the red, green, and blue channels. Bits D8, D7, and D6 in each register must be set low, and bits D5 through D0 control the gain range in 64 increments. See Figure for a graph of the PGA Gain versus PGA register code. The coding for the PGA registers is straight binary, with an all ²zeros² word corresponding to the minimum gain setting (1x) and an all ²ones² word corresponding to the maximum gain setting (5.85x). The PGA has a gain range from 1´(0dB) to 5.85´(15.3dB), adjustable in 64 steps. The Figure shows the PGA gain as a function of the PGA register code. Although the gain curve is approximately linear in dB, the gain in V/V varies in nonlinear proportion with the register code, according to the following the equation: 76 76 - G Gain= Where ²G² is the decimal value of the gain register contents, and varies from 0 to 63. 5 .8 5 1 5 .3 4 5 .0 4 .0 6 3 .0 3 2 .0 G A IN -d B ( 9 G A IN -V /V ( ) ) 1 2 1 .0 0 0 4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8 5 2 5 6 6 0 6 3 P G A r e g is te r v a lu e - - D e c im a l PGA Gain Transfer Function Rev. 1.00 7 July 23, 2009 HT82V38 D8 D7 D6 D5 D4 Set to 0 Set to 0 Set to 0 MSB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 D3 D2 D1 D0 Gain (V/V) Gain (dB) 1.0 1.013 : : 5.43 5.85 0.0 0.11 : : 14.7 15.34 LSB 0 0 : : 1 1 0 0 0 0 0* 1 1 1 1 1 0 1 Note: * Power-on default value PGA Gain Register Settings Offset Register There are three PGA registers for individually programming the offset in the red, green, and blue channels. Bits D8 through D0 control the offset range from -250mV to +250mV in 512 increments. The coding for the offset registers is sign magnitude, with D8 as the sign bit. Table shows the offset range as a function of the Bits D8 through D0. D8 D7 D6 D5 D4 D3 D2 D1 D0 MSB Offset (mV) LSB 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 : : 1 0 0 : : 1 0 0 0 0 0* 1 1 0 0 1 0 0 1 0 1 1 1 1 0 +0.98 : : +250 0 -0.98 : : -250 Note: * Power-on default value Offset Register Settings Timing Diagrams S D A T A A 2 R /W b tD A 1 A 0 H tD D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0 S S C L K tL tL S H S L O A D Serial Write Operation Timing S D A T A R /W b A 2 A 1 A 0 D 8 tR D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0 D V S C L K tL tL S H S L O A D Serial Read Operation Timing Rev. 1.00 8 July 23, 2009 HT82V38 A n a lo g In p u t (R , G , B ) tA tC P ix e l ( N + 2 ) D 1 tA P ix e l ( N + 3 ) tP D P ix e l ( N + 4 ) R A C D S C L K 1 tC tC 1 C 2 tC 2 2 A D F tA C D S C L K 2 tA tC D C L K tA D C 1 2 A D R tA D C 2 D C L K A D C C L K tO O u tp u t D a ta D 7 ~ D 0 G (N -2 ) G (N -2 ) H ig h B y te B (N -2 ) B (N -2 ) R (N -1 ) R (N -1 ) H ig h B y te L o w B y te H ig h B y te L o w B y te L o w B y te G (N -1 ) G H ig h B y te (N -1 ) L o w B y te B (N -1 ) B (N -1 ) R (N ) R (N ) G H ig h B y te L o w B y te H ig h B y te L o w B y te H ig h B y te D (N ) G (N ) L o w B y te B (N ) H ig h B y te 3-Channel CCD Mode Timing (select R-G-B mode) P ix e l ( N + 4 ) A n a lo g In p u t (G , B ) tC 1 tA P ix e l ( N + 5 ) P ix e l ( N + 6 ) D tA tP P ix e l ( N + 7 ) R B D C D S C L K 1 tC tC 1 C 2 2 tC 2 A D F tA C D S C L K 2 tC D C 1 2 A D R tA tA D C 2 tA D C L K D C L K A D C C L K tO O u tp u t D a ta D 7 ~ D 0 B (N -2 ) B (N -2 ) H ig h B y te L o w B y te G (N -1 ) G H ig h B y te (N -1 ) L o w B y te B (N -1 ) B (N -1 ) H ig h B y te L o w B y te G (N ) G H ig h B y te (N ) L o w B y te B (N ) B (N ) H ig h B y te L o w B y te G (N + 1 ) G H ig h B y te D (N + 1 ) B (N + 1 ) B (N + 1 ) G L o w B y te H ig h B y te L o w B y te (N + 2 ) H ig h B y te 2-Channel CCD Mode Timing (select G-B mode) Rev. 1.00 9 July 23, 2009 HT82V38 P ix e l (N + 8 ) P ix e l (N + 9 ) P ix e l (N + 1 0 ) P ix e l (N + 1 1 ) A n a lo g In p u t tA tA D tC D tP 1 R C C D S C L K 1 tC tC 1 C 2 2 tA D C 1 C D S C L K 2 tC tA 2 A D F D C L K tA A D C C L K D C L K tO O u tp u t D a ta D 7 ~ D 0 P ix e l (N -2 ) P ix e l (N -2 ) P ix e l (N -1 ) P ix e l (N -1 ) P ix e l (N ) H IG H B Y T E L O W B Y T E H IG H B Y T E L O W B Y T E H IG H B Y T E P ix e l (N ) P ix e l (N + 1 ) L O W B Y T E D P ix e l (N + 1 ) H IG H B Y T E P ix e l (N + 2 ) L O W B Y T E H IG H B Y T E 1-Channel CCD Mode Timing P IX E L (N + 2 ) A n a lo g In p u t (R , G , B ) P IX E L (N + 3 ) tA tC P IX E L (N + 4 ) D 2 tC tP 2 A D F R A C D S C L K 2 tC tA D C L K tA 2 A D R tA D C 2 D C L K A D C C L K tO O u tp u t D a ta D 7 ~ D 0 G (N -2 ) H ig h B y te G (N -2 ) L o w B y te B (N -2 ) B (N -2 ) H ig h B y te L o w B y te R (N -1 ) R (N -1 ) H ig h B y te L o w B y te G (N -1 ) G H ig h B y te (N -1 ) L o w B y te B (N -1 ) B (N -1 ) H ig h B y te L o w B y te R (N ) R (N ) G H ig h B y te L o w B y te H ig h B y te D (N ) G (N ) L o w B y te B (N ) H ig h B y te 3-Channel SHA Mode Timing (select R-G-B mode) Rev. 1.00 10 July 23, 2009 HT82V38 P IX E L (N + 4 ) A n a lo g In p u t (G , B ) tC P IX E L (N + 6 ) P IX E L (N + 5 ) tA 2 tC P IX E L (N + 7 ) D tP 2 A D F R B C D S C L K 2 tA D C L K tA tC 2 A D R tA D C 2 D C L K A D C C L K tO O u tp u t D a ta D 7 ~ D 0 B (N -2 ) B (N -2 ) H ig h B y te L o w B y te G (N -1 ) G H ig h B y te (N -1 ) L o w B y te B (N -1 ) B (N -1 ) H ig h B y te L o w B y te G (N ) H ig h B y te G (N ) L o w B y te B (N ) B (N ) H ig h B y te L o w B y te G (N + 1 ) G D (N + 1 ) B (N + 1 ) B (N + 1 ) G H ig h B y te L o w B y te H ig h B y te L o w B y te (N + 2 ) H ig h B y te 2-Channel SHA Mode Timing (select G-B mode) P IX E L (N + 9 ) P IX E L (N + 8 ) A n a lo g In p u t tA tC 2 A D F tC P IX E L (N + 1 0 ) P IX E L (N + 1 1 ) D P IX E L (N + 1 2 ) tP 2 R C C D S C L K 2 tA tA D C 2 D C L K tA A D C C L K tO O u tp u t D a ta D 7 ~ D 0 D C L K D P ix e l (N -2 ) P ix e l (N -2 ) P ix e l (N -1 ) P ix e l (N -1 ) P ix e l (N ) P ix e l (N ) P ix e l (N + 1 ) P ix e l (N + 1 ) P ix e l (N + 2 ) P ix e l (N + 2 ) H ig h B y te L o w B y te H ig h B y te L o w B y te H ig h B y te L o w B y te H ig h B y te L o w B y te H ig h B y te L o w B y te 1-Channel SHA Mode Timing Rev. 1.00 11 July 23, 2009 HT82V38 Application Circuits Circuit and Layout Recommendations The recommended circuit configuration for 3-Channel CDS mode operation is shown in Figure. The recommended input coupling capacitor value is 0.1mF (see Circuit Operation section for more details). A single ground plane is recommended for the HT82V38. A separate power supply may be used for DRVDD, the digital driver supply, but this supply pin should still be decoupled to the same ground plane as the rest of the HT82V38. The loading of the digital outputs should be minimized, either by using short traces to the digital ASIC, or by using external digital buffers. To minimize the effect of digital transients during major output code transitions, the falling edge of CDSCLK2 should occur coincident with or before the transient edge of ADCCLK. All 0.1mF decoupling capacitors should be located as close as possible to the HT82V38 pins. When operating in single channel mode, the unused analog inputs should be grounded. 3 .3 V C lo c k In p u ts 1 2 3 A V D D C D S C L K 2 A V S S A D C C L K 3 .3 V 4 O E 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 D a ta In p u ts C D S C L K 1 V IN R O F F S E T D V D D V IN G D V S S C M L D 7 (M S B ) V IN B D 6 R E F T D 5 R E F B D 4 A V S S D 3 A V D D D 2 S L O A D D 1 S C L K D 0 (L S B ) S D A T A 2 8 0 .1 m F 2 7 2 6 0 .1 m F 0 .1 m F 2 5 2 4 0 .1 m F 2 3 2 2 0 .1 m F 0 .1 m F 2 0 1 8 1 7 0 .1 m F 1 0 m F H T 8 2 V 3 8 (C D S M o d e ) 0 .1 m F 0 .1 m F 3 .3 V 1 6 1 5 1 .0 m F 0 .1 m F 2 1 1 9 R e d In p u t G re e n In p u t B lu e In p u t S e r ia l In p u ts CDS Application Circuit Figure shows the recommended circuit configuration for 3-Channel SHA mode. All of the above considerations also apply for this configuration, except that the analog input signals are directly connected to the HT82V38 without the use of coupling capacitors. The analog input signals must already be dc-biased (relative to OFFSET pin) between 0V and 1.60V/2.0V. 3 .3 V C lo c k In p u ts 1 2 3 A V D D C D S C L K 2 A V S S A D C C L K 3 .3 V 4 O E 5 6 7 8 9 1 0 1 1 1 2 1 3 D a ta In p u ts C D S C L K 1 1 4 V IN R O F F S E T D V D D V IN G D V S S C M L D 7 (M S B ) V IN B D 6 R E F T D 5 R E F B D 4 A V S S D 3 A V D D D 2 S L O A D D 1 S C L K D 0 (L S B ) S D A T A H T 8 2 V 3 8 (S H A M o d e ) 2 8 0 .1 m F R e d In p u t G re e n In p u t B lu e In p u t 2 7 2 6 2 5 2 4 2 3 D C L e v e l 0 .1 m F 2 2 2 1 0 .1 m F 2 0 1 9 1 8 1 7 1 6 1 5 0 .1 m F 1 0 m F 0 .1 m F 0 .1 m F 3 .3 V S e r ia l In p u ts SHA Application Circuit Rev. 1.00 12 July 23, 2009 HT82V38 Package Information 28-pin SSOP (209mil) Outline Dimensions 1 5 2 8 A B 1 4 1 C C ' G H D E a F · MO-150 Symbol A Rev. 1.00 Dimensions in mm Min. Nom. Max. 7.40 ¾ 8.20 B 5.00 ¾ 5.60 C 0.22 ¾ 0.33 C¢ 9.90 ¾ 10.50 D ¾ 2.00 E ¾ 0.65 ¾ F 0.05 ¾ ¾ G 0.55 ¾ 0.95 H 0.09 ¾ 0.21 a 0° ¾ 8° 13 July 23, 2009 HT82V38 Product Tape and Reel Specifications Reel Dimensions D T 2 A C B T 1 SSOP 28S (209mil) Symbol Description Dimensions in mm A Reel Outer Diameter 330.0±1.0 B Reel Inner Diameter 100.0±1.5 C Spindle Hole Diameter 13.0 +0.5/-0.2 D Key Slit Width T1 Space Between Flange 28.4 T2 Reel Thickness 31.1 (max.) Rev. 1.00 2.0±0.5 14 +0.3/-0.2 July 23, 2009 HT82V38 Carrier Tape Dimensions P 0 D P 1 t E F W B 0 C D 1 P K 0 A 0 R e e l H o le IC p a c k a g e p in 1 a n d th e r e e l h o le s a r e lo c a te d o n th e s a m e s id e . SSOP 28S (209mil) Symbol Description Dimensions in mm W Carrier Tape Width 24.0±0.3 P Cavity Pitch 12.0±0.1 E Perforation Position 1.75±0.10 F Cavity to Perforation (Width Direction) D Perforation Diameter 1.5 D1 Cavity Hole Diameter 1.50 P0 Perforation Pitch 4.0±0.2 P1 Cavity to Perforation (Length Direction) 2.0±0.1 A0 Cavity Length 8.4±0.1 B0 Cavity Width 10.65±0.10 K0 Cavity Depth 2.4±0.1 11.5±0.1 +0.1/-0.0 +0.25/-0.00 t Carrier Tape Thickness 0.30±0.05 C Cover Tape Width 21.3±0.1 Rev. 1.00 15 July 23, 2009 HT82V38 Holtek Semiconductor Inc. (Headquarters) No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw Holtek Semiconductor Inc. (Taipei Sales Office) 4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline) Holtek Semiconductor Inc. (Shenzhen Sales Office) 5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057 Tel: 86-755-8616-9908, 86-755-8616-9308 Fax: 86-755-8616-9722 Holtek Semiconductor (USA), Inc. (North America Sales Office) 46729 Fremont Blvd., Fremont, CA 94538 Tel: 1-510-252-9880 Fax: 1-510-252-9885 http://www.holtek.com Copyright Ó 2009 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw. Rev. 1.00 16 July 23, 2009