HP HCPL-814-500E Ac input phototransistor optocoupler high density mounting type Datasheet

Agilent HCPL-814
AC Input Phototransistor
Optocoupler
High Density Mounting Type
Data Sheet
Description
The HCPL-814 contains a
phototransistor, optically coupled
to two light emitting diodes
connected inverse parallel. It can
operate directly by AC input
current. It is packaged in a 4-pin
DIP package and available in widelead spacing option and lead bend
SMD option. Input-output isolation
voltage is 5000 Vrms. Response
time, tr, is typically 4 µs and
minimum CTR is 20% at input
current of ± 1 mA.
Ordering Information
Specify Part Number followed by
Option Number (if desired).
HCPL-814-XXXE
Lead Free
Option Number
000 = No Options
060 = IEC/EN/DIN EN 60747-5-2
Option
W00 = 0.4" Lead Spacing Option
300 = Lead Bend SMD Option
500 = Tape and Reel Packaging
Option
00A = Rank Mark A
Functional Diagram
1
2
1. ANODE, CATHODE
2. CATHODE, ANODE
Features
• AC input response
• High input-output isolation voltage
(Viso = 5,000 Vrms)
• Low collector dark current
(ICEO: max. 10-7 A at VCE = 20 V)
• Current transfer ratio
(CTR: min. 20% at IF = ± 1 mA,
VCE = 5 V)
• Response time
(tr: typ. 4 µs at VCE = 2 V, IC = 2 mA,
RL = 100 Ω)
• Compact dual-in-line package
• UL approved
• CSA approved
• IEC/EN/DIN EN 60747-5-2
approved
• Options available:
– Leads with 0.4" (10.16 mm)
spacing (W00)
– Leads bend for surface
mounting (300)
– Tape and reel for SMD (500)
– IEC/EN/DIN EN 60747-5-2
approvals (060)
4
3
3. EMITTER
4. COLLECTOR
Applications
• Detecting or monitoring AC signals
• AC line/digital logic isolation
• Programmable logic controllers
• AC/DC – input modules
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to
prevent damage and/or degradation which may be induced by ESD.
Package Outline Drawings
HCPL-814-000E
7.62 ± 0.3
(0.3)
4.6 ± 0.5
(0.181)
DATE CODE *1
LEAD FREE
A 814
ANODE
Y WW
3.5 ± 0.5
(0.138)
6.5 ± 0.5
(0.256)
0.5 TYP.
(0.02)
3.3 ± 0.5
(0.130)
2.8 ± 0.5
(0.110)
RANK *2
0.5 ± 0.1
(0.02)
DIMENSIONS IN MILLIMETERS AND (INCHES)
0.26
(0.010)
2.54 ± 0.25
(0.1)
7.62 ~ 9.98
4.6 ± 0.5
(0.181)
7.62 ± 0.3
(0.3)
HCPL-814-060E
DATE CODE *1
LEAD FREE
3.5 ± 0.5
(0.138)
A 814 V
Y WW
ANODE
6.5 ± 0.5
(0.256)
0.5 TYP.
(0.02)
3.3 ± 0.5
(0.130)
2.8 ± 0.5
(0.110)
RANK *2
0.5 ± 0.1
(0.02)
DIMENSIONS IN MILLIMETERS AND (INCHES)
0.26
(0.010)
2.54 ± 0.25
(0.1)
7.62 ~ 9.98
4.6 ± 0.5
(0.181)
7.62 ± 0.3
(0.3)
HCPL-814-W00E
DATE CODE *1
LEAD FREE
A 814
ANODE
Y WW
3.5 ± 0.5
(0.138)
6.5 ± 0.5
(0.256)
6.9 ± 0.5
(0.272)
2.3 ± 0.5
(0.09)
2.8 ± 0.5
(0.110)
0.5 ± 0.1
(0.02)
RANK *2
DIMENSIONS IN MILLIMETERS AND (INCHES)
2
2.54 ± 0.25
(0.1)
0.26
(0.010)
10.16 ± 0.5
(0.4)
HCPL-814-300E
7.62 ± 0.3
(0.3)
4.6 ± 0.5
(0.181)
DATE CODE *1
LEAD FREE
ANODE
3.5 ± 0.5
(0.138)
A 814
Y WW
0.26
(0.010)
6.5 ± 0.5
(0.256)
1.2 ± 0.1
(0.047)
1.0 ± 0.25
(0.039)
0.35 ± 0.25
(0.014)
10.16 ± 0.3
(0.4)
2.54 ± 0.25
(0.1)
RANK *2
DIMENSIONS IN MILLIMETERS AND (INCHES)
2) When using another soldering
method such as infrared ray
lamp, the temperature may rise
partially in the mold of the
device. Keep the temperature on
the package of the device within
the condition of (1) above.
30 seconds
250°C
Temperature (°C)
Solder Reflow Temperature Profile
1) One-time soldering reflow is
recommended within the
condition of temperature and
time profile shown at right.
260°C (Peak Temperature)
217°C
200°C
150°C
60 sec
25°C
60 ~ 150 sec
90 sec
60 sec
Time (sec)
Absolute Maximum Ratings
Parameters
Storage Temperature
Ambient Operating Temperature
Lead Solder Temperature for 10s
(1.6 mm below seating plane)
Average Forward Current
Input Power Dissipation
Collector Current
Collector-Emitter Voltage
Emitter-Collector Voltage
Collector Power Dissipation
Total Power Dissipation
Isolation Voltage
(AC for 1 minute, R.H. = 40 ~ 60%)[1]
3
Symbol
TS
TA
Tsol
IF
PI
IC
VCEO
VECO
PC
Ptot
Viso
Min.
–55
–30
Max.
125
100
260
Units
˚C
˚C
˚C
±50
70
50
35
6
150
200
5000
mA
mW
mA
V
V
mW
mW
Vrms
Electrical Specifications (TA = 25˚C)
Parameter
Forward Voltage
Terminal Capacitance
Collector Dark Current
Collector-Emitter Breakdown Voltage
Emitter-Collector Breakdown Voltage
Collector Current
Current Transfer Ratio[2]
Collector-Emitter Saturation Voltage
Isolation Resistance
Symbol
VF
Ct
ICEO
BVCEO
BVECO
IC
CTR
VCE(sat)
Riso
Min.
–
–
–
35
6
0.2
20
–
5 x 1010
Typ.
1.2
50
–
–
–
–
–
0.1
1 x 1011
Max.
1.4
250
100
–
–
3
300
0.2
–
Units
V
pF
nA
V
V
mA
%
V
Ω
Floating Capacitance
Cut-off Frequency
Cf
fc
–
15
0.6
80
1
–
pF
kHz
Response Time (Rise)
Response Time (Fall)
tr
tf
–
–
4
3
18
18
µs
µs
Rank Mark
A
No Mark
CTR (%)
50 ~ 150
20 ~ 300
Test Conditions
IF = ±20 mA
V = 0, f = 1 kHz
VCE = 20 V, IF = 0
IC = 0.1 mA, IF = 0
IE = 10 µA, IF = 0
IF = ±1 mA,
VCE = 5 V
IF = ±20 mA, IC = 1 mA
DC 500 V
40 ~ 60% R.H.
V = 0, f = 1 MHz
VCE = 5 V, IC = 2 mA
RL = 100 Ω, –3 dB
VCE = 2 V, IC = 2 mA,
RL = 100 Ω
Conditions
IF = ±1 mA,
VCE = 5 V,
TA = 25˚C
Notes:
1. Isolation voltage shall be measured using the following method:
(a) Short between anode and cathode on the primary side and between collector and emitter
on the secondary side.
(b) The isolation voltage tester with zero-cross circuit shall be used.
(c) The waveform of applied voltage shall be a sine wave.
I
2. CTR = C x 100%
50
40
30
20
10
0
-30
0
25
50
75
100
125
TA – AMBIENT TEMPERATURE – °C
Figure 1. Forward current vs. temperature.
4
6
200
VCE(SAT.) – COLLECTOR-EMITTER
SATURATION VOLTAGE – V
IF – FORWARD CURRENT – mA
60
PC – COLLECTOR POWER DISSIPATION – mW
IF
150
100
50
0
-30
0
25
50
75
100
125
TA – AMBIENT TEMPERATURE – °C
Figure 2. Collector power dissipation vs.
temperature.
TA = 25°C
5
IC = 0.5 mA
IC = 1 mA
4
IC = 3 mA
3
IC = 5 mA
IC = 7 mA
2
1
0
0
2.5
5.0
7.5
10.0
12.5
15.0
IF – FORWARD CURRENT – mA
Figure 3. Collector-emitter saturation voltage
vs. forward current.
TA = 0°C
100
TA = -25°C
50
20
10
5
2
1
0.5
0
1.5
1.0
2.5
2.0
3.0
50
VCE = 5 V
TA = 25°C
120
100
80
60
40
20
0
0.1 0.2 0.5 1
VF – FORWARD VOLTAGE – V
VCE(SAT.) – COLLECTOR-EMITTER
SATURATION VOLTAGE – V
RELATIVE CURRENT TRANSFER RATIO – %
100
50
0
-30
0
25
50
75
0.06
0.04
0.02
0
-30
Figure 7. Relative current transfer ratio vs.
temperature.
0
20
40
TA = 25°C
10
tf
5
td
2
ts
1
0.5
100
Figure 8. Collector-emitter saturation
voltage vs. temperature.
VOLTAGE GAIN AV – dB
tr
80
TA – AMBIENT TEMPERATURE – °C
0
RL = 10 kΩ
-10
RL = 1 kΩ
RL = 100 Ω
0.2
0.1
0.1 0.2
0.5
1
2
5
10
RL – LOAD RESISTANCE – kΩ
Figure 10. Response time vs. load resistance.
5
-20
0.2
0.5 1 2
5 10
100
f – FREQUENCY – kHz
Figure 11. Frequency response.
IF = 20 mA
IF = 10 mA
20
IF = 5 mA
10
IF = 1 mA
1
0
2
3
4
5
6
7
8
9 10
10-6
10-7
10-8
10-9
10-10
10-11
10-12
-30
0
20
40
60
1000
80
100
TA – AMBIENT TEMPERATURE – °C
Figure 9. Collector dark current vs.
temperature.
VCE = 2 V
IC = 2 mA
TA = 25°C
VCE = 2 V
IC = 2 mA
60
PC (MAX.)
30
Figure 6. Collector current vs. collectoremitter voltage.
0.08
100
40
VCE – COLLECTOR-EMITTER VOLTAGE – V
IF = 20 mA
IC = 1 mA
TA – AMBIENT TEMPERATURE – °C
RESPONSE TIME – µs
50 100
0.10
IF = 5 mA
VCE = 5 V
20
5 10 20
Figure 5. Current transfer ratio vs. forward
current.
150
50
2
TA = 25°C
IF = 30 mA
0
IF – FORWARD CURRENT – mA
Figure 4. Forward current vs. forward voltage.
100
IC – COLLECTOR CURRENT – mA
200
140
ICEO – COLLECTOR DARK CURRENT – A
TA = 75°C
TA = 50°C
TA = 25°C
CTR – CURRENT TRANSFER RATIO – %
IF – FORWARD CURRENT – mA
500
VCC
;;
; ;;
RD
INPUT
RL
INPUT
OUTPUT
90%
td
ts
tr
Figure 12. Test circuit for response time.
VCC
RD
10%
OUTPUT
RL
OUTPUT
Figure 13. Test circuit for frequency response.
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(916) 788-6763
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 6756 2394
India, Australia, New Zealand: (+65) 6755 1939
Japan: (+81 3) 3335-8152 (Domestic/International), or 0120-61-1280 (Domestic Only)
Korea: (+65) 6755 1989
Singapore, Malaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 6755 2044
Taiwan: (+65) 6755 1843
Data subject to change.
Copyright © 2004 Agilent Technologies, Inc.
Obsoletes 5989-0301EN
November 3, 2004
5989-1735EN
tf
Similar pages