MOTOROLA L4949D Multifunction very low dropout voltage regulator Datasheet

Order this document from L4949/D
The L4949 is a monolithic integrated 5.0 V voltage regulator with a very
low dropout and additional functions such as power–on reset and input
voltage sense.
It is designed for supplying the micro–computer controlled systems
especially in automotive applications.
• Operating DC Supply Voltage Range 5.0 V to 28 V
•
•
•
•
•
•
•
•
•
MULTIFUNCTION
VERY LOW DROPOUT
VOLTAGE REGULATOR
SILICON MONOLITHIC
INTEGRATED CIRCUIT
Transient Supply Voltage Up to 40 V
Extremely Low Quiescent Current in Standby Mode
High Precision Standby Output Voltage 5.0 V ±1%
Output Current Capability Up to 100 mA
Very Low Dropout Voltage Less Than 0.4 V
Reset Circuit Sensing The Output Voltage
Programmable Reset Pulse Delay With External Capacitor
8
1
Voltage Sense Comparator
Thermal Shutdown and Short Circuit Protections
N SUFFIX
PLASTIC PACKAGE
CASE 626
8
1
D SUFFIX
PLASTIC PACKAGE
CASE 751
Representative Block Diagram
Output
Voltage (Vout)
VZ 3
8
Supply
Voltage (VCC)
CT 4
PIN CONNECTIONS
Preregulator
6.0 V
1
VCC 1
2.0 µA
+
–
Regulator
Sense
Input
(Si)
2.0 V
2
7
So
VZ
3
6
Reset
CT
4
5
Gnd
Sense
Output
(So)
Reset
Vs
Vout
Si
Reset
6
8
(Top View)
7
2
+
–
1.23 Vref
1.23 V
ORDERING INFORMATION
Sense
Device
5
Gnd
L4949N
L4949D
This document contains information on a new product. Specifications
and information herein are subject to change without notice.
Operating
Temperature Range
TJ = –40° to +125°C
 Motorola, Inc. 1997
Package
DIP–8
SO–8
Rev 0
L4949
ABSOLUTE MAXIMUM RATINGS (Absolute Maximum Ratings indicate limits beyond
which damage to the device may occur.)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Rating
Symbol
Value
Unit
VCC
28
V
VCC TR
40
V
Output Current
Iout
Internally
Limited
–
Output Voltage
Vout
20
V
Sense Input Current
ISI
±1.0
mA
Sense Input Voltage
VSI
VCC
–
Output Voltages
Reset Output
Sense Output
VReset
VSO
20
20
Output Currents
Reset Output
Sense Output
IReset
ISO
5.0
5.0
Preregulator Output Voltage
VZ
7.0
V
Preregulator Output Current
IZ
5.0
mA
ESD Protection at any pin
Human Body Model
Machine Model
–
–
2000
400
DC Operating Supply Voltage
Transient Supply Voltage (t < 1.0 s)
V
mA
V
Thermal Resistance, Junction–to–Air
P Suffix, DIP–8 Plastic Package, Case 626
D Suffix, SO–8 Plastic Package, Case 751
Maximim Junction Temperature
Storage Temperature Range
NOTE:
°C/W
RθJA
100
200
TJ
150
°C
Tstg
–65 to +150
°C
ESD data available upon request.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ELECTRICAL CHARACTERISTICS (VCC = 14 V, –40°C < TJ < 125°C, unless otherwise specified.)
Characteristic
Symbol
Min
Typ
Max
Unit
Output Voltage (TJ = 25°C, Iout = 1.0 mA)
Vout
4.95
5.0
5.05
V
Output Voltage (6.0 V < VCC < 28 V, 1.0 mA < Iout < 50 mA)
Vout
4.9
5.0
5.1
V
Output Voltage (VCC = 35 V, t < 1.0 s, 1.0 mA < Iout < 50 mA)
Vout
4.9
5.0
5.1
V
–
–
–
0.1
0.2
0.3
0.25
0.40
0.50
VIO
–
0.2
0.4
V
Line Regulation (6.0 V < VCC < 28 V, Iout = 1.0 mA)
Regline
–
1.0
20
mV
Load Regulation (1.0 mA < Iout < 100 mA)
Regload
–
8.0
30
mV
105
–
200
100
400
–
Dropout Voltage
Iout = 10 mA
Iout = 50 mA
Iout = 100 mA
Input to Output Voltage Difference in Undervoltage Condition
(VCC = 4.0 V, Iout = 35 mA)
Vdrop
V
Current Limit
Vout = 4.5 V
Vout = 0 V
ILim
Quiescent Current (Iout = 0.3 mA, TJ < 100°C)
IQSE
–
150
260
µA
IQ
–
–
5.0
mA
Quiescent Current (Iout = 100 mA)
2
mA
MOTOROLA ANALOG IC DEVICE DATA
L4949
ELECTRICAL CHARACTERISTICS (continued) (VCC = 14 V, –40°C < TJ < 125°C, unless otherwise specified.)
Characteristic
Symbol
Min
Typ
Max
VResth
–
Vout – 0.5
–
Unit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
RESET
Reset Threshold Voltage
Reset Threshold Hysteresis
@ TJ = 25°C
@ TJ = –40 to +125°C
V
VResth,hys
mV
50
50
100
–
200
300
Reset Pulse Delay (CT = 100 nF, tR ≥ 100 µs)
tResD
55
100
180
ms
Reset Reaction Time (CT = 100 nF)
tResR
–
5.0
30
µs
Reset Output Low Voltage (RReset = 10 kΩ to Vout, VCC ≥ 3.0 V)
VResL
–
–
0.4
V
Reset Output High Leakage Current (VReset = 5.0 V)
IResH
–
–
1.0
µA
Delay Comparator Threshold
VCTth
–
2.0
–
V
VCTth, hys
–
100
–
mV
VSOth
1.16
1.23
1.35
V
VSOth,hys
20
100
200
mV
Sense Output Low Voltage
(VSI ≤ 1.16 V, VCC ≥ 3.0 V, RSO = 10 kΩ to Vout)
VSOL
–
–
0.4
V
Sense Output Leakage (VSO = 5.0 V, VSI ≥ 1.5 V)
ISOH
–
–
1.0
µA
ISI
–1.0
0.1
1.0
µA
VZ
–
6.3
–
V
Delay Comparator Threshold Hysteresis
SENSE
Sense Low Threshold (VSI Decreasing = 1.5 V to 1.0 V)
Sense Threshold Hysteresis
Sense Input Current
PREREGULATOR
Preregulator Output Voltage (IZ = 10 µA)
PIN FUNCTION DESCRIPTION
Pin
Symbol
Description
1
VCC
Supply Voltage
2
Si
Input of Sense Comparator
3
VZ
Output of Preregulator
4
CT
Reset Delay Capacitor
5
Gnd
Ground
6
Reset
Output of Reset Comparator
7
SO
Output of Sense Comparator
8
Vout
Main Regulator Output
TYPICAL CHARACTERIZATION CURVES
Figure 2. Output Voltage versus
Supply Voltage
Figure 1. Output Voltage versus
Junction Temperature
6.0
TJ = 25°C
VCC = 14 V
Iout = 1.0 mA
Vout , OUTPUT VOLTAGE (V)
Vout , OUTPUT VOLTAGE (V)
5.04
5.02
5.0
4.98
4.96
–40
–20
0
20
40
60
80
TJ, JUNCTION TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
100
120
5.0
4.0
RL = 5.0 k
RL = 100 Ω
3.0
2.0
1.0
0
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
10
9.0
VCC, SUPPLY VOLTAGE (V)
3
L4949
TYPICAL CHARACTERIZATION CURVES (continued)
Figure 3. Dropout Voltage versus
Output Current
Figure 4. Dropout Voltage versus
Junction Temperature
0.40
TJ = 25°C
Vdrop , DROPOUT VOLTAGE (mV)
Vdrop , DROPOUT VOLTAGE (mV)
250
200
150
100
50
0
0.1
1.0
10
Iout = 100 mA
0.30
Iout = 50 mA
0.20
Iout = 10 mA
0.10
0
–40
100
–20
0
Figure 5. Quiescent Current versus
Output Current
IQ, QUIESCENT CURRENT (mA)
IQ, QUIESCENT CURRENT (mA)
VCC = 14 V
TJ = 25°C
2.5
100
80
120
2.0
1.5
1.0
0.5
0.1
1.0
10
2.0
RL = 100 Ω
1.5
1.0
0.5
0
100
TJ = 25°C
2.5
RL = 5.0 k
0
5.0
10
VReset , RESET THRESHOLD VOLTAGE (V)
TJ = 25°C
5.0
Resistor 10 k
from Reset Output
to 5.0 V
3.0
2.0
1.0
0
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
Vout, OUTPUT VOLTAGE (V)
20
25
30
Figure 8. Reset Thresholds versus
Junction Temperature
6.0
4.0
15
VCC, SUPPLY VOLTAGE (V)
Figure 7. Reset Output versus
Regulator Output Voltage
VReset , RESET OUTPUT (V)
60
3.0
Iout, OUTPUT CURRENT (mA)
4
40
Figure 6. Quiescent Current versus
Supply Voltage
3.0
0
20
TJ, JUNCTION TEMPERATURE (°C)
Iout, OUTPUT CURRENT (mA)
4.8
4.9
5.0
4.7
4.66
Upper Threshold
4.62
4.58
4.54
4.5
Lower Threshold
4.46
4.42
–40
–20
0
20
40
60
80
100
120
TJ, JUNCTION TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
L4949
TYPICAL CHARACTERIZATION CURVES (continued)
Figure 9. Sense Output versus
Sense Input Voltage
Figure 10. Sense Thresholds versus
Junction Temperature
1.4
5.0
TJ = 25°C
4.0
Resistor 10 k
from Sense Output
to 5.0 V
3.0
1.38
VSI, SENSE INPUT VOLTAGE (V)
VSO , SENSE OUTPUT VOLTAGE (V)
6.0
2.0
1.0
1.36
Upper Threshold
1.34
1.32
1.3
1.28
1.26
Lower Threshold
1.24
1.22
0
1.0 1.05
1.1
1.2
1.15
1.25
1.3
1.35
1.4
1.45
1.2
–40
1.5
0
–20
VSI, SENSE INPUT VOLTAGE (V)
20
40
60
80
100
120
TJ, JUNCTION TEMPERATURE (°C)
APPLICATION INFORMATION
less than 8.0 V supply transients of more than 0.4 V/µs can
cause a reset signal perturbation. To improve the transient
behavior for supply voltages less than 8.0 V a capacitor at Pin
3 can be used. A capacitor at Pin 3 (C3 ≤ 1.0 µF) reduces
also the output noise.
Supply Voltage Transient
High supply voltage transients can cause a reset output
signal perturbation. For supply voltages greater than 8.0 V
the circuit shows a high immunity of the reset output against
supply transients of more than 100 V/µs. For supply voltages
Figure 11. Application Schematic
Vout
C3
VZ
(optional)
Vbat
VCC
3
CO
8
CT 4
Preregulator
6.0 V
1
Cs
2.0 µA
Reset
6
10 kΩ
+
–
Vout
2.0 V
Regulator
Reset
VCC
RSO 10 kΩ
So
Si
7
2
+
–
1.23 Vref
1.23 V
Sense
5 Gnd
NOTES: 1. For stability: Cs ≥ 1.0 µF, CO ≥ 4.7 µF, ESR < 10 Ω at 10 kHz
2. Recommended for application: Cs = CO = 10 µF
MOTOROLA ANALOG IC DEVICE DATA
5
L4949
OPERATING DESCRIPTION
Voltage Regulator
The voltage regulator uses an isolated Collector Vertical
PNP transistor as a regulating element. With this structure,
very low dropout voltage at currents up to 100 mA is
obtained. The dropout operation of the standby regulator is
maintained down to 3.0 V input supply voltage. The output
voltage is regulated up to the transient input supply voltage of
35 V. With this feature no functional interruption due to
overvoltage pulses is generated.
The typical curve showing the standby output voltage as a
function of the input supply voltage is shown in Figure 13.
The current consumption of the device (quiescent current)
is less than 200 µA.
To reduce the quiescent current peak in the undervoltage
region and to improve the transient response in this region,
the dropout voltage is controlled. The quiescent current as a
function of the supply input voltage is shown in Figure 14.
Short Circuit Protection:
The maximum output current is internally limited. In case
of short circuit, the output current is foldback current limited
as described in Figure 12.
Vout
Vout
5.0 V
0V
2.0 V
5.0 V
35 V
VCC
Figure 14. Quiescent Current versus Supply Voltage
3.0
2.5
TJ = 25°C
2.0
RL = 100 Ω
1.5
1.0
0.5
0
0
Figure 12. Foldback Characteristic of Vout
RL = 5.0 k
5.0
10
15
20
25
30
VCC, SUPPLY VOLTAGE (V)
10
Vout (V)
Figure 13. Output Voltage versus Supply Voltage
IQ, QUIESCENT CURRENT (mA)
The L4949 is a monolithic integrated low dropout voltage
regulator. Several outstanding features and auxiliary
functions are implemented to meet the requirements of
supplying microprocessor systems in automotive
applications. Nevertheless, it is suitable also in other
applications where the present functions are required. The
modular approach of this device allows the use of other
features and functions independently when required.
Preregulator
To improve the transient immunity a preregulator stabilizes
the internal supply voltage to 6.0 V. This internal voltage is
present at Pin 3 (VZ). This voltage should not be used as an
output because the output capability is very small (≤ 100 µA).
This output may be used as an option when better
transient behavior for supply voltages less than 8.0 V is
required. In this case a capacitor (100 nF – 1.0 µF) must be
connected between Pin 3 and Gnd. If this feature is not used
Pin 3 must be left open.
5.0
0
20
100
200
Iout (mA)
6
MOTOROLA ANALOG IC DEVICE DATA
L4949
Reset Circuit
The block circuit diagram of the reset circuit is shown in
Figure 15.
The reset circuit supervises the output voltage. The reset
thereshold of 4.5 V is defined with the internal reference
voltage and standby output drivider.
The reset pulse delay time tRD, is defined with the charge
time of an external capacitor CT:
t
RD
+
Standby output voltage drops below the reset threshold
only a bit longer than the reaction time results in a shorter
reset delay time.
The nominal reset delay time will be generated for standby
output voltage drops longer than approximately 50 µs. The
typical reset output waveforms are shown in Figure 16.
Figure 16. Typical Reset Output Waveforms
C
x 2.0 V
T
2.0 mA
Vout
The reaction time of the reset circuit originates from the
discharge time limitation of the reset capacitor CT and is
proportional to the value of CT. The reaction time of the reset
circuit increases the noise immunity.
40 V
Vin
Vout1
5.0 V
VRT + 0.1 V
UKT
3.0 V
t
tR
Reset
Figure 15. Reset Circuit
tRD
tRR
1.23 V Vref
22 k
Out
Switch On
2.0 µA
Input Drop
tRD
Dump
Output
Overload
Switch Off
Reset
CT
+
–
2.0 V
Reg
MOTOROLA ANALOG IC DEVICE DATA
Sense Comparator
The sense comparator compares an input signal with an
internal voltage reference of typical 1.23 V. The use of an
external voltage divider makes this comparator very flexible
in the application.
It can be used to supervise the input voltage either before
or after the protection diode and to give additional information
to the microprocessor like low voltage warnings.
7
L4949
OUTLINE DIMENSIONS
8
N SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
5
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
–B–
1
4
DIM
A
B
C
D
F
G
H
J
K
L
M
N
F
–A–
NOTE 2
L
C
J
–T–
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
N
SEATING
PLANE
D
M
K
G
H
0.13 (0.005)
T A
M
B
M
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
M
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
AC IN
DC + IN
DC – IN
AC IN
GROUND
OUTPUT
AUXILIARY
VCC
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
ISSUE S
D
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
8
5
0.25
H
E
M
B
M
1
4
h
B
X 45 _
e
q
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
M
C B
S
A
S
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.18
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488
Mfax: [email protected] – TOUCHTONE 602–244–6609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
INTERNET: http://motorola.com/sps
8
◊
MOTOROLA ANALOG IC DEVICEL4949/D
DATA
Similar pages