Low Cost, High Performance, CMOS Rail-to-Rail Output Operational Amplifier AD8692 PIN CONFIGURATIONS OUT A 1 –IN A 2 +IN A 3 AD8692 TOP VIEW (Not to Scale) V– 4 Photodiode amplification Battery-powered instrumentation Medical instruments Multipole filters Sensors Portable audio devices V+ 7 OUT B 6 –IN B 5 +IN B Figure 1. 8-Lead MSOP Pin Configuration OUT A 1 APPLICATIONS 8 04991-001 Offset voltage: 400 µV typ Low offset voltage drift: 6 µV/°C maximum Very low input bias currents: 1 pA maximum Low noise: 8 nV/√Hz Low distortion: 0.0006% Wide bandwidth: 10 MHz Unity gain stable Single-supply operation: 2.7 V to 6 V –IN A 2 +IN A 3 AD8692 8 V+ 7 OUT B 6 –IN B TOP VIEW V– 4 (Not to Scale) 5 +IN B 04991-002 FEATURES Figure 2. 8-Lead SOIC Pin Configuration GENERAL DESCRIPTION The AD8692 is a low cost, dual rail-to-rail output, single-supply amplifier featuring low offset voltage, low input voltage and current noise, and wide signal bandwidth. The combination of low offset, low noise, very low input bias currents, and high speed makes this amplifier useful in a wide variety of applications. Filters, integrators, photodiode amplifiers, and high impedance sensors all benefit from the combination of performance features. Audio and other ac applications benefit from the wide bandwidth and low distortion. Applications for this amplifier include PA controls, laser diode control loops, portable and loop-powered instrumentation, audio amplification for portable devices, and ASIC input and output amplifiers. The AD8692 is specified over the extended industrial temperature range of −40°C to +125°C. The AD8692 is available in the micro-SOIC and 8-lead narrow SOIC surface-mount packages. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved. AD8692 TABLE OF CONTENTS Electrical Characteristics ................................................................. 3 Typical Performance Characteristics ..............................................6 Absolute Maximum Ratings............................................................ 5 Outline Dimensions ....................................................................... 11 Thermal Characteristics .............................................................. 5 Ordering Guide .......................................................................... 11 ESD Caution.................................................................................. 5 REVISION HISTORY 10/04—Revision 0: Initial Version Rev. 0 | Page 2 of 12 AD8692 ELECTRICAL CHARACTERISTICS VS = 2.7 V, VCM = VS/2, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Symbol Conditions VOS VCM = −0.3 V to +1.6 V VCM = −0.1 V to +1.6 V; −40°C < TA < +125°C Min IB Typ Max Unit 0.4 2.0 3.0 1 50 260 0.5 20 75 +1.6 mV mV pA pA pA pA pA pA V dB dB V/mV µV/°C 0.2 −40°C < TA < +85°C −40°C < TA < +125°C Input Offset Current IOS 0.1 −40°C < TA < +85°C −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power-Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin Total Harmonic Distortion + Noise NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density CMRR AVO ∆VOS/∆T VOH VOL ISC ZOUT PSRR ISY VCM = −0.3 V to +1.6 V VCM = −0.1 V to +1.6 V; −40°C < TA < +125°C RL = 2 kΩ, VO = 0.5 V to 2.2 V IL = 1 mA −40°C < TA < +125°C IL = 1 mA −40°C < TA < +125°C −0.3 70 65 90 2.64 2.6 RL = 2 kΩ To 0.01% 40 50 ±20 12 80 75 95 95 0.85 SR tS GBP Øo THD+N G = 1, RL = 600 Ω, f = 1 kHz, VO = 250 mV p-p 5 1 10 60 0.003 en p-p en en in f = 0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 1 kHz 1.6 8 6.5 0.05 Rev. 0 | Page 3 of 12 6.0 2.66 25 f = 1 MHz, AV = 1 VS = 2.7 V to 5.5 V −40°C < TA < +125°C VO = 0 V −40°C < TA < +125°C 90 85 250 1.3 0.95 1.2 V V mV mV mA Ω dB dB mA mA V/µs µs MHz Degrees % 3.0 12 µV p-p nV/√Hz nV/√Hz pA/√Hz AD8692 VS = 5.0 V, VCM = VS/2, TA = 5°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Symbol Conditions VOS VCM = −0.3 V to +3.9 V VCM = −0.1 V to +3.9 V; −40°C < TA < +125°C Min A Grade Typ 0.4 IB 0.2 −40°C < TA < +85°C −40°C < TA < +125°C Input Offset Current IOS 0.1 −40°C < TA < +85°C −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift OUTPUT CHARACTERISTICS Output Voltage High Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power-Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Full Power Bandwidth Gain Bandwidth Product Phase Margin Total Harmonic Distortion + Noise NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density CMRR AVO ∆VOS/∆T VOH VOL ISC ZOUT PSRR ISY VCM = −0.3 V to +3.9 V VCM = −0.1 V to +3.9 V; −40°C < TA < +125°C VO = 0.5 V to 4.5 V, RL = 2 kΩ, VCM = 0 V IL = 1 mA IL = 10 mA −40°C to +125°C IL = 1 mA IL = 10 mA −40°C to +125°C −0.3 75 70 250 4.96 4.7 4.6 RL = 2 kΩ To 0.01% <1% distortion Unit 2.0 3.0 1 50 260 0.5 20 75 +3.9 mV mV pA pA pA pA pA pA V dB dB V/mV µV/°C 6 4.98 4.78 16.5 165 40 210 290 ±80 10 f = 1 MHz, AV = 1 VS = 2.7 V to 5.5 V −40°C < TA < +125°C VO = 0 V −40°C < TA < +125°C 95 95 2,000 1.3 Max 80 75 95 95 0.95 1.05 1.3 V V V mV mV mV mA Ω dB dB mA mA SR tS BWP GBP Øo THD+N G = 1, RL = 600 Ω, f = 1 kHz, VO = 1 V p-p 5 1 360 10 65 0.0006 en p-p en f = 0.1 Hz to 10 Hz f = 1 kHz 1.6 8 en f = 10 kHz 6.5 nV/√Hz in f = 1 kHz 0.05 pA/√Hz Rev. 0 | Page 4 of 12 V/µs µs kHz MHz Degrees % 3.0 12 µV p-p nV/√Hz AD8692 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 3. Parameters Supply Voltage Input Voltage Differential Input Voltage Output Short-Circuit Duration to Gnd1 Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature Range (Soldering, 60 s) 1 Ratings 6V VSS − 0.3 V to VDD + 0.3 V ±6 V Observe derating curves −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C θJA is specified for the worst-case conditions, that is, the device soldered in the circuit board for surface-mount packages. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL CHARACTERISTICS Table 4. Package Type 8-Lead MSOP (RM) 8-Lead SOIC (R) ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. 0 | Page 5 of 12 θJA 210 158 θJC 45 43 Unit °C/W °C/W AD8692 TYPICAL PERFORMANCE CHARACTERISTICS VS = +5 V or ±2.5 V. 2.5k 300 VS = 5V VCM = –0.3V TO +3.9V VS = 5V AND 2.7V 250 200 1.5k IB (pA) NUMBER OF AMPLIFIERS 2.0k 1.0k 150 100 50 500 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 VOS (mV) –50 04991-003 0 –2.0 –40 –30 –20 –10 10 20 30 40 50 70 60 80 90 100 110 120 TEMPERATURE (°C) Figure 3. Input Offset Voltage Distribution Figure 6. Input Bias Current vs. Temperature 2.0 30 VS = 5V AND 2.7V VCM = 2.5V TA = –40°C TO +125°C 25 1.8 1.6 1.4 20 ISY (mA) NUMBER OF AMPLIFIERS 0 04991-006 0 15 10 1.2 1.0 0.8 0.6 0.4 5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 TCVOS (µV/°C) 0 0 3 4 5 6 7 140 Figure 7. Supply Current vs. Supply Voltage 2.0k 2.5 VS = 5V TA = 25°C VS = ±2.5V AND ±1.35V 1.2k ISY @ ±2.5V SUPPLY CURRENT (mA) 2.0 800 400 0 –400 –800 –1.2k ISY @ ±1.35V 1.5 1.0 0.5 –1.6k –2.0k –0.3 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9 COMMON-MODE VOLTAGE (V) 04991-005 INPUT OFFSET VOLTAGE (µV) 2 VSY (V) Figure 4. Input Offset Voltage Drift Distribution 1.6k 1 04991-007 0 04991-004 0 04991-008 0.2 0 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 8. Supply Current vs. Temperature Figure 5. Input Offset Voltage vs. Common-Mode Voltage Rev. 0 | Page 6 of 12 AD8692 100 VSY = ±2.5V, ±1.35V RL = 2kΩ CL = 15pF 80 1k 100 SINK 10 60 40 90 20 45 0 0 1 0.01 0.1 1 10 100 LOAD CURRENT (mA) –40 1k 10k 100k 10M –90 FREQUENCY (Hz) Figure 12. Open-Loop Gain and Phase vs. Frequency Figure 9. Output Voltage to Supply Rail vs. Load Current 35 120 VS = 5V VS = 5V AND 2.7V 30 100 VDD – VOH @ 1mA 25 80 CMRR (dB) 20 VOL @ 1mA 15 40 10 0 20 40 60 80 100 120 140 TEMPERATURE (°C) 0 04991-010 –20 1k 10k 100k 1M 10M FREQUENCY (Hz) 04991-013 20 5 0 –40 60 Figure 13. CMRR vs. Frequency Figure 10. Output Voltage Swing vs. Temperature (IL = 1 mA) 350 120 VS = 5V VS = 5V AND 2.7V 300 100 VDD – VOH @ 10mA 250 PSRR (dB) 80 200 VOL @ 10mA 150 40 100 20 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 140 04991-011 50 0 –40 60 Figure 11. Output Voltage Swing vs. Temperature (IL = 10 mA) 0 10 100 1k 10k 100k FREQUENCY (Hz) Figure 14. PSRR vs. Frequency Rev. 0 | Page 7 of 12 1M 10M 04991-014 OUTPUT VOLTAGE SWING (mV) 1M 04991-012 –45 –20 0.1 0.001 OUTPUT VOLTAGE SWING (mV) PHASE (Degrees) OPEN-LOOP GAIN (dB) SOURCE 04991-009 OUTPUT VOLTAGE TO SUPPLY RAIL (mV) 10k AD8692 10k VS = ±2.5V VS = 5V CL = 200pF RL = ∞ AV = 1 1k IMPEDANCE (Ω) 10 VOLTAGE (1V/DIV) AV = 100 100 AV = 10 1 AV = 1 0.1 0.01 1k 10k 100k 1M 10M FREQUENCY (Hz) 04991-018 0.0001 100 04991-015 0.001 TIME (400nV/DIV) Figure 15. Closed-Loop Output Impedance vs. Frequency Figure 18. Large Signal Transient Response 40 VS = 5V AND 2.7V RL = ∞ AV = 1 35 VS = ±2.5V AV = –50 0 VOUT (V) 25 20 –2.5 15 100 VIN (mV) 10 1 10 100 1k LOAD CAPACITANCE (pF) 04991-016 0 04991-019 0 5 TIME (400ns/DIV) Figure 16. Small Signal Overshoot vs. Load Capacitance Figure 19. Positive Overload Recovery VS = ±2.5V, ±1.35V RL = 10kΩ CL = 200pF AV = 1 VS = ±2.5V AV = –50 VOLTAGE (50mV/DIV) VOUT (V) 2.5 0 VIN (mV) 0 TIME (200ns/DIV) 04991-017 –100 Figure 17. Small Signal Transient Response TIME (400ns/DIV) Figure 20. Negative Overload Recovery Rev. 0 | Page 8 of 12 04991-020 OVERSHOOT (%) 30 AD8692 0.1 1k VS = ±2.5V AV = 1 VIN = 1V p-p BW = 20kHz NOISE (nV/ Hz) THD + N (%) 0.01 RL = 600Ω RL = 1kΩ 0.001 VS = ±2.5V AND ±1.35V 100 10 100 1k 10k FREQUENCY (Hz) 20k 1 04991-021 1 10 100 1k 10k FREQUENCY (Hz) Figure 21. THD + N vs. Frequency Figure 23. Voltage Noise Density 150 +2.5V VS = 5V AND 2.7V CHANNEL SEPARATION (dB) VOLTAGE NOISE (1µV/DIV) R1 10kΩ V+ 140 A VIN 28mV p-p V– 130 –2.5V V– VOUT R2 100Ω B V+ 120 110 100 TIME (1s/DIV) 04991-022 90 Figure 22. 0.1 Hz to 10 Hz Input Voltage Noise 80 1k 10k 100k 1M FREQUENCY (Hz) Figure 24. Channel Separation Rev. 0 | Page 9 of 12 10M 04991-024 0.0001 20 04991-023 RL = 100kΩ AD8692 VS = +2.7 V or ±1.35 V. 60 VS = 2.7V VCM = –0.3V TO +1.6V OUTPUT VOLTAGE SWING (mV) NUMBER OF AMPLIFIERS 1.0k 800 600 400 0 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 VOS (mV) 50 VDD – VOH @ 1mA 40 30 VOL @ 1mA 20 10 0 –40 04991-025 200 VS = 2.7V –20 0 20 40 60 2.0k 120 140 VS = 2.7V CL = 200pF RL = ∞ AV = 1 VS = 2.7V TA = 25°C 1.2k VOLTAGE (500mV/DIV) INPUT OFFSET VOLTAGE (µV) 100 Figure 28. Output Voltage Swing vs. Temperature Figure 25. Input Offset Voltage Distribution 1.6k 80 TEMPERATURE (°C) 04991-028 1.2k 800 400 0 –400 –800 –1.2k 0 0.3 0.6 0.9 1.2 1.5 1.6 COMMON-MODE VOLTAGE (V) Figure 26. Input Offset Voltage vs. Common-Mode Voltage VS = 2.7V 1k SOURCE SINK 10 1 0.1 0.001 0.01 0.1 1 10 100 LOAD CURRENT (mA) 04991-027 OUTPUT VOLTAGE TO SUPPLY RAIL (mV) 10k 100 TIME (400ns/DIV) Figure 29. Large Signal Transient Response Figure 27. Output Voltage to Supply Rail vs. Load Current Rev. 0 | Page 10 of 12 04991-029 –2.0k –0.3 04991-026 –1.6k AD8692 OUTLINE DIMENSIONS 3.00 BSC 8 5 4.90 BSC 3.00 BSC 4 PIN 1 0.65 BSC 1.10 MAX 0.15 0.00 0.38 0.22 COPLANARITY 0.10 0.80 0.60 0.40 8° 0° 0.23 0.08 SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-187AA Figure 30. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 8 4.00 (0.1574) 3.80 (0.1497) 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 6.20 (0.2440) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE 0.50 (0.0196) × 45° 0.25 (0.0099) 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN Figure 31. 8-Lead Standard Small Outline Package [SOIC] (R-8) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model AD8692ARMZ-R21 AD8692ARMZ-REEL1 AD8692ARZ1 AD8692ARZ-REEL1 AD8692ARZ-REEL71 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC Z = Pb-free part. Rev. 0 | Page 11 of 12 Package Option RM-8 RM-8 R-8 R-8 R-8 Branding APA APA AD8692 NOTES © 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04991–0–10/04(0) Rev. 0 | Page 12 of 12