! " # $ % & " ' %( " & " ' %) # " & " ' )) % & ""' )) * + # # + , " .-/0'11/2 + ') ) - + '/103 " .-/0'11/2$ %4 " + " '/ 5 &$ % + " '2/// 5 &$ %5 ' " -//'113/0$ %6 ! 7 $'3/## .$ %6 " ! 7 $'3/## .$ %. & 7 '/0## .$ %) ,# + 6 .$'0//# $ 57 5$'3//#( 5 $ # $'36 . & , 8 + & 7 ,# + 7 9# %. -/0 + : 5 ' 8)8)8)$ : + & " 5 " ' %; %" 7&7 & %*< , # & # & =' 7 8;' $ 5 8)8)8)$ 5 " %; %" 7&7 & %*< , # & # & =' 7 8;' $ 5 8)8)8)$ 5 " * %; %" 7&7 & %*< , # & # & =' 7 8;' $ 5 8)8)8)$ 5 " 0 5 8)8)8)$ ± ± ! ± "# "± !# "± !" 5 " >°6$ &,- 0-- 1 ! $% & ' ()*+ * ! $./*+ * /.$*+ * * * * $$% & ' $ " &*+ * 2 * 0+% . 34 °$ 5+% .34 " °$ 1" 5+% °$ " %6< 8?@>0/A2/B . + " # " 7"# $) 7 # , 7 # , $ + " 7 C *$ 7 + # + " 7 + %</) 5 8)8)8)$ 5 " 2 >°6$ &,- 0-- " " #" ! *+ * 6 " ()$% & 6 6 $ $ 6 $$% & 6 % 6? = &7 µ' *7* " *7 27 89: 6 " ' *7" 6 6 * &7 &7 ' &7 &7 µ' ;* /.$ ;*+ ;* 6 6 * & ' 1 $%( $( $./ 5%*+ * &( ( +$ $ 2 2 6 × 2 × ! (( 6 ( 6 *2&7 &7 ' *7"* * &7" ' &7 ' 6 Ω $ * 3 <( 9 *7 27 =9: 6 " ' " 6 < 6 $%.0 >%? 9: µ µ *7"*2&7" ' Ω2.; (7 *7"*2&7" ' Ω (7 . × //B . 5 8)8)8)$ * $./ ;*+ $$% (',5 /( $9'('$/(&5&$5 $ 5 " 3 $) . &,&/$ @ % . &,*/ =B%0+ &*+ * + + *+; &%0%% +" =B%0).)+ . 7 2>C$ A . A" " . @ * "! * # * ( + 2" * 7 2>C$ * 7 ! * 5?=B%(+ $% &7 27 "&%$% & 7 ' /0%% & . ! &( *+; &%0%%E$ 5 * ( ! $ 7 =&, 7='D =&, 7"$ =&, ( +% 2 Ω #" %5 " # -/0'11/2 " %5 D , $+ 8 , " ,""+ " E$ , " " + " $ 5 5 " Method (A) for type testing and random testing. V VINTIAL Vpr VIORM tp tb t3 t1 tini t2 t4 t1, t2 = 1 to 10s t3, t4 = 1s tp (Partial Discharge Measuring Time)= 60s tb = 62s tini = 10s t Method (B) for routine testing. V Vpr VIORM t3 tp tb t4 t3, t4 = 0.1s tp (Partial Discharge Measuring Time)= 1s tb = 1.2s t " + E 6" " # " # + 7 + 5 5 " 1 Fig.1 Forward Current vs. Ambient Temperature Fig.2 Collector Power Dissipation vs. Ambient Temperature Collector power dissipation Pc (mW) Forward current I F (mA) 60 50 40 30 20 10 0 -30 0 25 50 75 100 125 200 150 100 50 0 -30 o 4 3 2.5 2 1.5 100 1 100 C o o 80 C 40 C o 20 C o 60 C 10 0.5 1 0 1 2 3 4 5 0.5 0.7 0.9 1.1 Fig.5 Current Transfer Ratio vs. Forward Current Fig.6 Collector Current vs. Collector-emitter Voltage 7000 100 VCE= 2V Collector current Ic (mA) 6000 5000 4000 3000 2000 2.5mA 10mA 5mA 80 3mA 2mA 1.5mA 60 1mA PC (MAX.) 40 20 1000 0 0.1 1.3 1.5 1.7 1.9 Forward voltage (V) Forward current IF (mA) Current transfer ratio CTR (%) 80 o 0 I F= 0.5mA 0 1 10 Forward current (mA) 5 8)8)8)$ 60 100 Ic= 5mA 10mA 30mA 50mA 70mA 100mA 3.5 40 Fig.4 Forward Current vs. Forward Voltage Forward current (mA) Collector-emitter saturation voltage V (sat) (V) 5 20 Ambient temperature Ta ( C) Fig.3 Collector-emitter saturation Voltage vs. Forward current 4.5 0 o Ambient temperature Ta ( C) 0 1 2 3 4 5 Collector-emitter voltage VCE(V) 5 " / Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature 1.0 Relative current transfer ratio (%) 0.8 0.6 0.4 0.2 Collector-emitter saturation voltage VCE (sat) (V) 1.20 IF= 1mA VCE= 2V 0 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 20 40 60 80 20 100 O 60 100 Fig.10 Response Time vs. Load Resistance 1000 VCE = 200V Response time ( s) 500 100 VCE= 2V I C= 20mA tr 200 100 tf 50 td ts 20 10 5 2 10 20 40 60 80 1 100 O Ambient temperature Ta ( C) 0.1 Test Circuit for Response Time Vcc 0 10 1 Load resistance RL (k ) Fig.11 Frequency Response Voltage gain Av (dB) 80 Ambient temperature Ta ( C) Fig.9 Collector Dark Current vs. Temperature 1000 40 O Ambient temperature Ta ( C) Collector dark current ICEO (nA) I F= 20mA Ic= 100mA 1.10 VCE= 2V I C= 20mA Input RD RL Input Output Output 10% -5 90% td -10 ts tr -15 RL= 1k 100 tf Test Circuit for Frequency Response 10 Vcc -20 RD -25 0.1 1 10 100 RL Output 500 Frequency f (kHz) 5 8)8)8)$ 5 "