Intersil ISL60002 Precision low power fgaâ ¢ voltage reference Datasheet

Precision Low Power FGA™ Voltage References
ISL60002
Features
The ISL60002 FGA™ voltage references are very high precision
analog voltage references fabricated in Intersil's proprietary
Floating Gate Analog technology and feature low supply
voltage operation at ultra-low 350nA operating current.
• Reference Voltages . . . . . 1.024V, 1.2V, 1.25V, 1.8V, 2.048V,
2.5V, 2.6V, 3.0V and 3.3V
Additionally, the ISL60002 family features guaranteed initial
accuracy as low as ±1.0mV and 20ppm/°C temperature
coefficient. The initial accuracy and temperature stability
performance of the ISL60002 family, plus the low supply
voltage and 350nA power consumption, eliminates the need
to compromise thermal stability for reduced power
consumption making it an ideal companion to high resolution,
low power data conversion systems.
• Supply Voltage Range
- ISL60002-10, -11, -12, -18, -20, -25 . . . . . . . .
- ISL60002-26 . . . . . . . . . . . . . . . . . . . . . . . . . . .
- ISL60002-30 . . . . . . . . . . . . . . . . . . . . . . . . . . .
- ISL60002-33 . . . . . . . . . . . . . . . . . . . . . . . . . . .
• Absolute Initial Accuracy Options . . . . . . . . ±1.0mV, ±2.5mV
and ±5.0mV
2.7V to 5.5V
2.8V to 5.5V
3.2V to 5.5V
3.5V to 5.5V
• Ultra-Low Supply Current. . . . . . . . . . . . . . . . . . . . . . 350nA typ
• Low 20ppm/°C Temperature Coefficient
Special Note: Post-assembly x-ray inspection may lead to
permanent changes in device output voltage and should be
minimized or avoided. For further information, please see
“Applications Information” on page 32 and AN1533, “X-Ray
Effects on Intersil FGA References”.
• ISOURCE and ISINK = 7mA
• ISOURCE and ISINK = 20mA for ISL60002-33 only
• ESD Protection . . . . . . . . . . . . . . 5500V (Human Body Model)
• Standard 3 Ld SOT-23 Packaging
Applications
• Operating Temperature Range
- ISL60002-10, -11, -12, -18, -20, -25,
-26, -30 . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C
- ISL60002-33 . . . . . . . . . . . . . . . . . . . . . . . -40°C to +105°C
• High Resolution A/Ds and D/As
• Digital Meters
• Bar Code Scanners
• Pb-Free (RoHS Compliant)
• Mobile Communications
Related Literature
• PDA’s and Notebooks
• Medical Systems
• See AN1494, “Reflow and PC Board Assembly Effects on
Intersil FGA References”
• See AN1533, “X-Ray Effects on Intersil FGA References”
Typical Application
VIN = +3.0V
0.1µF
VIN
10µF
VOUT
0.001µF *
ISL60002-25
VOUT = 2.50V
GND
REF IN
ENABLE
SERIAL
BUS
SCK
SDAT
16 TO 24-BIT
A/D CONVERTER
*Also see Figure 118 in Applications Information.
December 16, 2010
FN8082.17
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2004-2010. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. FGA is a trademark of Intersil Corporation.
All other trademarks mentioned are the property of their respective owners.
ISL60002
Table of Contents
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Environmental Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Recommended Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Electrical Specifications ISL60002-10, VOUT = 1.024V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Electrical Specifications ISL60002-11, VOUT = 1.200V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Electrical Specifications ISL60002-12, VOUT = 1.250V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Electrical Specifications ISL60002-18, VOUT = 1.800V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Electrical Specifications ISL60002-20, VOUT = 2.048V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Electrical Specifications ISL60002-25, VOUT = 2.500V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Electrical Specifications ISL60002-26, VOUT = 2.600V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical Specifications ISL60002-30, VOUT = 3.000V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Electrical Specifications ISL60002-33, VOUT = 3.300V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Common Electrical Specifications ISL60002 -10, -11, -12, -18, -20, and -25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Typical Performance Characteristic Curves, VOUT = 1.024V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Typical Performance Characteristic Curves, VOUT = 1.20V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Typical Performance Characteristic Curves, VOUT = 1.25V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Typical Performance Curves, VOUT = 1.8V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Typical Performance Curves, VOUT = 2.048V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Typical Performance Characteristic Curves, VOUT = 2.50V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Typical Performance Characteristic Curves, VOUT = 3.0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Typical Performance Characteristic Curves, VOUT = 3.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
High Current Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
FGA Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Nanopower Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Board Mounting Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Board Assembly Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Special Applications Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Noise Performance and Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Turn-On Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Temperature Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Typical Application Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2
FN8082.17
December 16, 2010
ISL60002
Pin Configuration
Pin Descriptions
ISL60002
(3 LD SOT-23)
TOP VIEW
PIN NUMBER
PIN NAME
1
VIN
2
VOUT
Voltage Reference Output
3
GND
Ground
VIN 1
3
DESCRIPTION
Power Supply Input
GND
VOUT 2
Ordering Information
PART NUMBER
(Notes 1, 2, 3)
PART MARKING
(Bottom)
VOUT
(V)
GRADE
TEMP. RANGE
(°C)
PACKAGE
Tape & Reel (Pb-free)
PKG.
DWG. #
ISL60002BIH310Z-TK
DFB
1.024
±1.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002CIH310Z-TK
DFC
1.024
±2.5mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002DIH310Z-TK
DFD
1.024
±5.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002BIH311Z-TK
APM
1.200
±1.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002CIH311Z-TK
AOR
1.200
±2.5mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002DIH311Z-TK
AOY
1.200
±5.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002BIH312Z-TK
AOM
1.250
±1.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002CIH312Z-TK
AOS
1.250
±2.5mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002DIH312Z-TK
APA
1.250
±5.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002BIH318Z-TK
DEO
1.800
±1.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002CIH318Z-TK
DEP
1.800
±2.5mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002DIH318Z-TK
DEQ
1.800
±5.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002BIH320Z-TK
DEY
2.048
±1.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002CIH320Z-TK
DEZ
2.048
±2.5mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002DIH320Z-TK
DFA
2.048
±5.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002BIH325Z-TK
AON
2.500
±1.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002DIH325Z-TK
APB
2.500
±5.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002CIH325Z-TK
AOT
2.500
±2.5mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002BIH326Z-TK
DFK
2.600
±1.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002CIH326Z-TK
DFL
2.600
±2.5mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002DIH326Z-TK
DFM
2.600
±5.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002BIH330Z-TK
DFI
3.000
±1.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002CIH330Z-TK
DFJ
3.000
±2.5mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002DIH330Z-TK
DFH
3.000
±5.0mV, 20ppm/°C
-40 to +85
3 Ld SOT-23
P3.064
ISL60002BAH333Z-TK
AOP
3.300
±1.0mV, 20ppm/°C
-40 to +105
3 Ld SOT-23
P3.064
ISL60002CAH333Z-TK
AOU
3.300
±2.5mV, 20ppm/°C
-40 to +105
3 Ld SOT-23
P3.064
ISL60002DAH333Z-TK
APC
3.300
±5.0mV, 20ppm/°C
-40 to +105
3 Ld SOT-23
P3.064
NOTES:
1. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL60002. For more information on MSL please see techbrief TB363.
3
FN8082.17
December 16, 2010
ISL60002
Absolute Maximum Ratings
Thermal Information
Max Voltage VIN to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +6.5V
Max Voltage VOUT to GND (10s): . . . . . . . . . . . . . . . . . . .-0.5V to +VOUT + 1V
Voltage on “DNC” pins . . . . . . . . . .No connections permitted to these pins
ESD Ratings
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5500V
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550V
Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV
Thermal Resistance (Typical)
θJA (°C/W) θJC (°C/W)
3 Ld SOT-23 (Notes 5, 6) . . . . . . . . . . . . . . .
275
110
Continuous Power Dissipation (TA = +85°C) . . . . . . . . . . . . . . . . . . . 99mW
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+107°C
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C
Pb-free Reflow Profile (Note 7) . . . . . . . . . . . . . . . . . . . . . . . . see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Environmental Operating Conditions
Recommended Operating Conditions
X-Ray Exposure (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mRem
Temperature Range
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C
3.3V Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. Measured with no filtering, distance of 10” from source, intensity set to 55kV and 70mA current, 30s duration. Other exposure levels should be
analyzed for Output Voltage drift effects. See “Applications Information” on page 32.
5. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
6. For θJC, the “case temp” location is taken at the package top center.
7. Post-reflow drift for the ISL60002 devices will range from 100µV to 1.0mV based on experimental results with devices on FR4 double sided boards.
The design engineer must take this into account when considering the reference voltage after assembly.
8. Post-assembly x-ray inspection may also lead to permanent changes in device output voltage and should be minimized or avoided. Initial accuracy
can change 10mV or more under extreme radiation. Most inspection equipment will not affect the FGA reference voltage, but if x-ray inspection is
required, it is advisable to monitor the reference output voltage to verify excessive shift has not occurred.
Electrical Specifications ISL60002-10, VOUT = 1.024V (Additional specifications on page 7, “Common Electrical
Specifications”) Operating Conditions: VIN = 3.0V, IOUT = 0mA, COUT = 0.001µF, TA = -40 to +85°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +85°C
SYMBOL
VOUT
VOA
VIN
PARAMETER
CONDITIONS
MIN
(Note 9)
Output Voltage
NOTES:VOUT Accuracy (Notes 10, 8)
TYP
MAX
(Note 9)
1.024
UNITS
V
TA = +25°C
ISL60002B10
-1.0
+1.0
mV
ISL60002C10
-2.5
+2.5
mV
ISL60002D10
-5.0
+5.0
mV
2.7
5.5
V
Input Voltage Range
Electrical Specifications ISL60002-11, VOUT = 1.200V
(Additional specifications on page 7, “Common Electrical
Specifications”). Operating Conditions: VIN = 3.0V, IOUT = 0mA, COUT = 0.001µF, TA = -40 to +85°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +85°C
SYMBOL
PARAMETER
VOUT
Output Voltage
VOA
VOUT Accuracy (Note 10)
VIN
Input Voltage Range
4
CONDITIONS
MIN
(Note 9)
TYP
MAX
(Note 9)
1.200
UNITS
V
TA = +25°C
ISL60002B11
-1.0
+1.0
mV
ISL60002C11
-2.5
+2.5
mV
ISL60002D11
-5.0
+5.0
mV
2.7
5.5
V
FN8082.17
December 16, 2010
ISL60002
Electrical Specifications ISL60002-12, VOUT = 1.250V (Additional specifications on page 7, “Common Electrical
Specifications”) Operating Conditions: VIN = 3.0V, IOUT = 0mA, COUT = 0.001µF, TA = -40 to +85°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +85°C
SYMBOL
PARAMETER
VOUT
Output Voltage
VOA
VOUT Accuracy (Note 10)
VIN
CONDITIONS
MIN
(Note 9)
TYP
MAX
(Note 9)
1.250
UNITS
V
TA = +25°C
ISL60002B12
-1.0
+1.0
mV
ISL60002C12
-2.5
+2.5
mV
ISL60002D12
-5.0
+5.0
mV
2.7
5.5
V
Input Voltage Range
Electrical Specifications ISL60002-18, VOUT = 1.800V (Additional specifications on page 7, “Common Electrical
Specifications”). Operating Conditions: VIN = 3.0V, IOUT = 0mA, COUT = 0.001µF, TA = -40 to +85°C, unless otherwise specified.. Boldface limits apply over
the operating temperature range, -40°C to +85°C
SYMBOL
PARAMETER
VOUT
Output Voltage
VOA
VOUT Accuracy (Note 10)
VIN
CONDITIONS
MIN
(Note 9)
TYP
MAX
(Note 9)
1.800
UNITS
V
TA = +25°C
ISL60002B18
-1.0
+1.0
mV
ISL60002C18
-2.5
+2.5
mV
ISL60002D18
-5.0
+5.0
mV
2.7
5.5
V
Input Voltage Range
Electrical Specifications ISL60002-20, VOUT = 2.048V (Additional specifications on page 7, “Common Electrical
Specifications”). Operating Conditions: VIN = 3.0V, IOUT = 0mA, COUT = 0.001µF, TA = -40 to +85°C, unless otherwise specified.. Boldface limits apply over
the operating temperature range, -40°C to +85°C
SYMBOL
PARAMETER
VOUT
Output Voltage
VOA
VOUT Accuracy (Note 10)
VIN
CONDITIONS
MIN
(Note 9)
TYP
MAX
(Note 9)
2.048
UNITS
V
TA = +25°C
ISL60002B20
-1.0
+1.0
mV
ISL60002C20
-2.5
+2.5
mV
ISL60002D20
-5.0
+5.0
mV
2.7
5.5
V
Input Voltage Range
Electrical Specifications ISL60002-25, VOUT = 2.500V (Additional specifications on page 7, “Common Electrical
Specifications”). Operating Conditions: VIN = 3.0V, IOUT = 0mA, COUT = 0.001µF, TA = -40 to +85°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +85°C
SYMBOL
PARAMETER
VOUT
Output Voltage
VOA
VOUT Accuracy (Note 10)
VIN
Input Voltage Range
5
CONDITIONS
MIN
(Note 9)
TYP
MAX
(Note 9)
2.500
UNITS
V
TA = +25°C
ISL60002B25
-1.0
+1.0
mV
ISL60002C25
-2.5
+2.5
mV
ISL60002D25
-5.0
+5.0
mV
2.7
5.5
V
FN8082.17
December 16, 2010
ISL60002
Electrical Specifications ISL60002-26, VOUT = 2.600V (Additional specifications on page 7, “Common Electrical
Specifications”). Operating Conditions: VIN = 3.0V, IOUT = 0mA, COUT = 0.001µF, TA = -40 to +85°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +85°C
SYMBOL
PARAMETER
VOUT
Output Voltage
VOA
VOUT Accuracy (Note 10)
VIN
TC VOUT
CONDITIONS
MIN
(Note 9)
TYP
MAX
(Note 9)
2.600
UNITS
V
TA = +25°C
ISL60002B26
-1.0
+1.0
mV
ISL60002C26
-2.5
+2.5
mV
ISL60002D26
-5.0
+5.0
mV
2.8
5.5
V
20
ppm/°C
350
900
nA
Input Voltage Range
Output Voltage Temperature
Coefficient (Note 10)
IIN
Supply Current
ΔVOUT/ΔVIN
Line Regulation
+2.8V ≤ VIN ≤ +5.5V
80
350
µV/V
ΔVOUT/ΔIOUT
Load Regulation
0mA ≤ ISOURCE ≤ 7mA
25
100
µV/mA
-7mA ≤ ISINK ≤ 0mA
50
250
µV/mA
ΔVOUT/ΔTA
Thermal Hysteresis (Note 11)
ΔTA = +125°C
100
ppm
ΔVOUT/Δt
Long Term Stability (Note 12)
TA = +25°C; First 1khrs
50
ppm
ISC
Short Circuit Current (to GND)*
TA = +25°C
50
mA
VN
Output Voltage Noise
0.1Hz ≤ f ≤ 10Hz
30
µVP-P
Electrical Specifications ISL60002-30, VOUT = 3.000V Operating Conditions: VIN = 5.0V, IOUT = 0mA, COUT = 0.001µF,
TA = -40 to +85°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +85°C
SYMBOL
PARAMETER
VOUT
Output Voltage
VOA
VOUT Accuracy (Note 10)
VIN
TC VOUT
CONDITIONS
MIN
(Note 9)
TYP
MAX
(Note 9)
3.000
UNITS
V
TA = +25°C
ISL60002B30
-1.0
+1.0
mV
ISL60002C30
-2.5
+2.5
mV
ISL60002D30
-5.0
+5.0
mV
3.2
5.5
V
20
ppm/°C
350
900
nA
Input Voltage Range
Output Voltage Temperature
Coefficient (Note 10)
IIN
Supply Current
ΔVOUT/ΔVIN
Line Regulation
+3.2V ≤ VIN ≤ +5.5V
80
250
µV/V
ΔVOUT/ΔIOUT
Load Regulation
0mA ≤ ISOURCE ≤ 7mA
25
100
µV/mA
-7mA ≤ ISINK ≤ 0mA
50
150
µV/mA
ΔVOUT/ΔTA
Thermal Hysteresis (Note 11)
ΔTA = +125°C
100
ppm
ΔVOUT/Δt
Long Term Stability (Note 12)
TA = +25°C; First 1khrs
50
ppm
ISC
Short Circuit Current (to GND)
TA = +25°C
50
mA
VN
Output Voltage Noise
0.1Hz ≤ f ≤ 10Hz
30
µVP-P
6
FN8082.17
December 16, 2010
ISL60002
Electrical Specifications ISL60002-33, VOUT = 3.300V Operating Conditions: VIN = 5.0V, IOUT = 0mA, COUT = 0.001µF,
TA = -40 to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C
SYMBOL
PARAMETER
VOUT
Output Voltage
VOA
VOUT Accuracy (Note 10)
TC VOUT
CONDITIONS
MIN
(Note 9)
TYP
MAX
(Note 9)
UNITS
3.300
V
TA = +25°C
ISL60002B33
-1.0
1.0
mV
ISL60002C33
-2.5
2.5
mV
ISL60002D33
-5.0
5.0
mV
20
ppm/°C
5.5
V
350
700
nA
Output Voltage Temperature
Coefficient (Note 10)
VIN
Input Voltage Range
3.5
IIN
Supply Current
ΔVOUT/ΔVIN
Line Regulation
+3.5V ≤ VIN ≤ +5.5V
80
200
µV/V
ΔVOUT/ΔIOUT
Load Regulation
0mA ≤ ISOURCE ≤ 20mA
25
100
µV/mA
-20mA ≤ ISINK ≤ 0mA
50
150
µV/mA
ΔVOUT/ΔTA
Thermal Hysteresis (Note 11)
ΔTA = +145°C
100
ppm
ΔVOUT/Δt
Long Term Stability (Note 12)
TA = +25°C; First 1khrs
50
ppm
ISC
Short Circuit Current (to GND)
TA = +25°C
50
mA
VN
Output Voltage Noise
0.1Hz ≤ f ≤ 10Hz
30
µVP-P
Common Electrical Specifications ISL60002 -10, -11, -12, -18, -20, and -25
Operating Conditions: VIN = 3.0V, IOUT = 0mA, COUT = 0.001µF, TA = -40 to +85°C, unless otherwise specified. Boldface limits apply over the operating
temperature range, -40°C to +85°C
SYMBOL
TC VOUT
PARAMETER
CONDITIONS
MIN
(Note 9)
MAX
(Note 9)
UNITS
20
ppm/°C
350
900
nA
TYP
Output Voltage Temperature
Coefficient (Note 10)
IIN
Supply Current
ΔVOUT/ΔVIN
Line Regulation
+2.7V ≤ VIN ≤ +5.5V
80
250
µV/V
ΔVOUT/ΔIOUT
Load Regulation
0mA ≤ ISOURCE ≤ 7mA
25
100
µV/mA
-7mA ≤ ISINK ≤ 0mA
50
150
µV/mA
ΔVOUT/ΔTA
Thermal Hysteresis (Note 11)
ΔTA = +125°C
100
ppm
ΔVOUT/Δt
Long Term Stability (Note 12)
TA = +25°C; First 1khrs
50
ppm
ISC
Short Circuit Current (to GND)
(Note 13)
TA = +25°C
50
mA
VN
Output Voltage Noise
0.1Hz ≤ f ≤ 10Hz
30
µVP-P
NOTES:
9. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
10. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in VOUT is divided by the
temperature range: (-40°C to +85°C = +125°C, or -40°C to +105°C = +145°C for the ISL60002-33).
11. Thermal Hysteresis is the change in VOUT measured @ TA = +25°C after temperature cycling over a specified range, ΔTA, VOUT is read initially at
TA = +25°C for the device under test. The device is temperature cycled and a second VOUT measurement is taken at +25°C. The difference between
the initial VOUT reading and the second VOUT reading is then expressed in ppm. For ΔTA = +125°C, the device under is cycled from +25°C to +85°C
to -40°C to +25°C, and for ΔTA = +145°C, the device under is cycled from +25°C to +105°C to -40°C to +25°C
12. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours will be approximately 10ppm.
13. Short Circuit Current (to VCC) for ISL60002-25 at VIN = 5.0V and +25°C is typically around 30mA. Shorting VOUT to VCC is not recommended due to
risk of resetting the part.
7
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 1.024V
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified.
700
500
600
450
UNIT 3
400
UNIT 2
300
UNIT 1
300
-40°C
250
200
200
100
150
100
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
0
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
VIN (V)
VIN (V)
FIGURE 2. I IN vs V IN OVER-TEMPERATURE
150
1.0244
125
1.0243
ΔVO (µV)
(NORMALIZED TO VIN = 3.0V)
100
1.0242
UNIT 3
1.0241
1.0240
UNIT 2
1.0239
UNIT 1
1.0238
1.0237
75
-40°C
50
25
0
-25
+85°C
-50
+25°C
-75
-100
-125
1.0236
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
VIN (V)
-150
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
VIN (V)
FIGURE 3. LINE REGULATION, 3 UNITS
FIGURE 4. LINE REGULATION OVER-TEMPERATURE
1.0250
1.0248
UNIT 2
1.0246
1.0244
VOUT (V)
VOUT (V)
FIGURE 1. I IN vs V IN, 3 UNITS
(NORMALIZED TO 1.024V AT VIN = 3V)
+85°C
350
IIN (nA)
IIN (nA)
+25°C
400
500
UNIT 3
1.0242
1.0240
UNIT 1
1.0238
1.0236
1.0234
1.0232
1.0230
-40
-15
10
35
60
85
TEMPERATURE (°C)
FIGURE 5. VOUT vs TEMPERATURE NORMALIZED to +25°C
8
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 1.024V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified.
CL = 0pF
CL = 500pF
ΔV = 0.3V
50mV/DIV
50mV/DIV
ΔV = 0.3V
ΔV = -0.3V
ΔV = -0.3V
1ms/DIV
1ms/DIV
FIGURE 6. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD
FIGURE 7. LINE TRANSIENT RESPONSE
0.6
0.5
+85°C
0.4
ΔVOUT (mV)
0.3
0.2
+25°C
0.1
0
-40°C
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-7 -6 -5
SINKING
-4
-3
-2 -1 0 1 2
OUTPUT CURRENT
3
4
5 6 7
SOURCING
FIGURE 8. LOAD REGULATION OVER-TEMPERATURE
ΔIL = 7mA
500mV/DIV
500mV/DIV
ΔIL = 50µA
ΔIL = -50µA
ΔIL = -7mA
2ms/DIV
FIGURE 9. LOAD TRANSIENT RESPONSE
9
1ms/DIV
FIGURE 10. LOAD TRANSIENT RESPONSE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 1.024V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified.
3.2
3.2
2.4
2.0
2.0
VIN AND VOUT (V)
2.4
1.6
UNIT 3
1.2
0.8
UNIT 2
0.4
0
2
1.6
0.8
0
4
VREF
1.2
0.4
UNIT 1
0
VIN
2.8
VIN
6
TIME (ms)
8
10
12
0
2
4
6
TIME (ms)
8
10
12
FIGURE 12. TURN-ON TIME (+25°C)
FIGURE 11. TURN-ON TIME (+25°C)
160
NO LOAD
140
120
ZOUT (Ω)
VIN AND VOUT (V)
2.8
1nF LOAD
100
80
10nF LOAD
60
40
100nF LOAD
20
0
1
10
100
1k
FREQUENCY (Hz)
10k
100k
FIGURE 13. Z OUT vs FREQUENCY
10
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 1.20V
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
500
700
450
600
UNIT 3
UNIT 2
400
IIN (nA)
IIN (nA)
500
UNIT 1
300
400
+85°C
350
+25°C
300
-40°C
250
200
200
100
150
100
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
0
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
VIN (V)
VIN (V)
FIGURE 15. I IN vs V IN OVER-TEMPERATURE
FIGURE 14. I IN vs V IN, 3 UNITS
1.2006
UNIT 2
1.2004
VOUT (V)
1.2002
1.2000
UNIT 3
UNIT 1
1.1998
1.1996
1.1994
-40
-15
10
35
60
85
TEMPERATURE (°C)
1.20010
150
1.20008
125
1.20006
1.20004
UNIT 3
1.20002
1.20000
UNIT 2
1.19998
1.19996
1.19994
UNIT 1
1.19992
ΔVO (µV)
(NORMALIZED TO VIN = 3.0V)
VOUT (V)
(NORMAILIZED TO 1.25V AT VIN = 3V)
FIGURE 16. VOUT vs TEMPERATURE NORMALIZED TO +25°C
100
+85°C
75
50
+25°C
25
0
-25
-40°C
-50
-75
-100
-125
1.19990
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
VIN (V)
FIGURE 17. LINE REGULATION, 3 UNITS
11
-150
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
VIN
FIGURE 18. LINE REGULATION OVER-TEMPERATURE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 1.20V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
100mV/DIV
CL = 500pF
100mV/DIV
CL = 0nF
ΔVIN = 0.30V
ΔVIN = -0.30V
1ms/DIV
1ms/DIV
FIGURE 19. LINE TRANSIENT RESPONSE
FIGURE 20. LINE TRANSIENT RESPONSE WITH CAPACITIVE LOAD
0
0.6
-10
0.5
-20
0.3
-50
10nF LOAD
-60
100nF LOAD
-70
+25°C
0.2
ΔVOUT (mV)
1nF LOAD
-40
0.1
-40°C
0.0
-0.1
-0.2
-0.3
-80
-0.4
-90
-0.5
1
10
100
1k
10k
100k
1M
-0.6
-7
FREQUENCY (Hz)
-6 -5 -4
SINKING
-3
-2 -1 0 1 2 3
OUTPUT CURRENT (mA)
4 5 6 7
SOURCING
FIGURE 22. LOAD REGULATION OVER-TEMPERATURE
200mV/DIV
FIGURE 21. PSRR vs CAPACITIVE LOAD
50mV/DIV
PSRR (dB)
+85°C
0.4
NO LOAD
-30
-100
ΔVIN = 0.30V
ΔVIN = -0.30V
IL = -50µA
IL = 50µA
IL = -7mA
200µs/DIV
FIGURE 23. LOAD TRANSIENT RESPONSE
12
IL = 7mA
500µs/DIV
FIGURE 24. LOAD TRANSIENT RESPONSE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 1.20V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
160
3.2
120
0
100
ZOUT (Ω)
2.4
1.6
1.2
VREF
0.8
10nF LOAD
80
60
100nF LOAD
40
20
0.4
0
1nF LOAD
NO LOAD
140
VIN
0
2
4
6
TIME (ms)
8
10
0
12
1
FIGURE 25. TURN-ON TIME (+25°C)
10
100
1k
FREQUENCY (Hz)
10k
100k
FIGURE 26. Z OUT vs FREQUENCY
10µV/DIV
VIN AND VOUT (V)
2.8
10s/DIV
FIGURE 27. VOUT NOISE
13
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 1.25V
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
460
700
650
440
UNIT 3
600
400
450
IIN (nA)
500
IIN (nA)
+85°C
420
550
UNIT 2
400
350
380
-40°C
360
340
UNIT 1
300
+25°C
320
250
200
2.5
3.0
3.5
4.0
4.5
5.0
300
2.5
5.5
3.0
3.5
4.0
4.5
5.0
5.5
VIN (V)
VIN (V)
FIGURE 29. I IN vs V IN OVER-TEMPERATURE
FIGURE 28. I IN vs V IN, 3 UNITS
1.2510
1.2508
UNIT 2
1.2506
VOUT (V)
1.2504
UNIT 3
1.2502 UNIT 1
1.2500
1.2498
1.2496
1.2494
1.2492
1.249
-40
-15
10
35
60
85
TEMPERATURE (°C)
FIGURE 30. VOUT vs TEMPERATURE NORMALIZED TO +25°C
50
1.25025
ΔVO (µV)
(NORMALIZED TO VIN = 3.0V)
VOUT (V)
NORMAILIZED TO 1.25V AT VIN = 3V
1.25030
UNIT 1
1.25020
1.25015
UNIT 3
1.25010
UNIT 2
1.25005
1.25000
1.24995
1.24990
2.5
3.0
3.5
4.0
4.5
VIN (V)
FIGURE 31. LINE REGULATION, 3 UNITS
14
5.0
5.5
25
-40°C
+25°C
+85°C
0
-25
2.5
3.0
3.5
4.0
4.5
5.0
5.5
VIN (V)
FIGURE 32. LINE REGULATION OVER-TEMPERATURE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 1.25V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
CL = 0nF
100mV/DIV
100mV/DIV
CL = 1nF
ΔVIN = 0.30V
ΔVIN = -0.30V
ΔVIN = 0.30V
ΔVIN = -0.30V
1ms/DIV
1ms/DIV
FIGURE 34. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD
FIGURE 33. LINE TRANSIENT RESPONSE
0.3
0
-10
NO LOAD
0.2 +85°C
ΔVOUT (mV)
-30
1nF LOAD
-40
-50
10nF LOAD
-60
-70
-80
+25°C
0.1
-40°C
0.0
100nF LOAD
1
10
100
1k
10k
100k
1M
-0.1
-7
FREQUENCY (Hz)
-6 -5 -4
SINKING
-3
-2
-1
0
1
2
3
OUTPUT CURRENT (mA)
4 5 6 7
SOURCING
FIGURE 36. LOAD REGULATION
200mV/DIV
FIGURE 35. PSRR vs CAPACITIVE LOAD
50mV/DIV
PSRR (dB)
-20
IL = 50µA
IL = -50µA
IL = -7mA
100µs/DIV
FIGURE 37. LOAD TRANSIENT RESPONSE
15
IL = 7mA
500µs/DIV
FIGURE 38. LOAD TRANSIENT RESPONSE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 1.25V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
3.0
180
VIN
2.5
10nF LOAD
140
2.0
1nF LOAD
ZOUT (Ω)
120
1.5
1.0
100
80
60
VREF
100nF LOAD
40
0.5
20
0
-1
1
3
5
TIME (ms)
7
9
0
11
FIGURE 39. TURN-ON TIME (+25°C)
1
10
100
1k
FREQUENCY (Hz)
10k
1M
FIGURE 40. Z OUT vs FREQUENCY
10µV/DIV
VIN AND VOUT (V)
NO LOAD
160
10s/DIV
FIGURE 41. VOUT NOISE
16
FN8082.17
December 16, 2010
ISL60002
Typical Performance Curves, VOUT = 1.8V
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
700
500
600
450
400
UNIT 3
400
UNIT 2
300
UNIT 1
+25°C
300
-40°C
250
200
200
100
150
0
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
100
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
VIN (V)
VIN (V)
FIGURE 42. I IN vs V IN, 3 UNITS
FIGURE 43. I IN vs V IN OVER-TEMPERATURE
1.80020
150
1.80015
1.80010
1.80005
UNIT 3
1.80000
UNIT 1
1.79995
UNIT 2
1.79990
1.79985
ΔVO (µV)
(NORMALIZED TO VIN = 3.0V)
VOUT (µV)
(NORMALIZED TO 1.80V AT VIN = 3V)
+85°C
350
IIN (nA)
IIN (nA)
500
125
100
75
-40°C
50
25
0
+85°C
-25
+25°C
-50
-75
-100
-125
1.7998
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
-150
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
VIN (V)
VIN (V)
FIGURE 44. LINE REGULATION (3 REPRESENTATIVE UNITS)
FIGURE 45. LINE REGULATION OVER-TEMPERATURE
CL = 500pF
CL = 500pF
ΔV = 0.3V
50mV/DIV
50mV/DIV
ΔV = 0.3V
ΔV = -0.3V
ΔV = -0.3V
1ms/DIV
1ms/DIV
FIGURE 46. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD
FIGURE 47. LINE TRANSIENT RESPONSE
17
FN8082.17
December 16, 2010
ISL60002
Typical Performance Curves, VOUT = 1.8V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
0
0.8
-10
0.6
NO LOAD
-20
ΔVOUT (mV)
-40
PSRR (dB)
+25°C
0.4
-30
1nF LOAD
-50
-60
10nF LOAD
-70
0.2
-40°C
0.0
-0.2
-0.4
-80
100nF LOAD
-0.6
-90
-100
+85°C
-0.8
1
10
100
1k
10k
100k
1G
FREQUENCY (Hz)
-10
-8
SINKING
-6
-4
-2
0
2
OUTPUT CURRENT
4
6
8
10
SOURCING
FIGURE 49. LOAD REGULATION OVER-TEMPERATURE
FIGURE 48. PSRR vs CAPACITIVE LOAD
ΔIL = 10mA
500mV/DIV
500mV/DIV
ΔIL = 50µA
ΔIL = -50µA
ΔIL = -10mA
2ms/DIV
1ms/DIV
FIGURE 50. LOAD TRANSIENT RESPONSE
FIGURE 51. LOAD TRANSIENT RESPONSE
3.2
3.2
2.4
VIN AND VOUT (V)
VIN AND VOUT (V)
2.4
2.0
UNIT 3
1.6
UNIT 2
1.2
UNIT 1
2.0
1.6
0.8
0.4
0.4
0
2
4
6
TIME (ms)
8
FIGURE 52. TURN-ON TIME (+25°C)
18
10
12
VREF
1.2
0.8
0
VIN
2.8
VIN
2.8
0
0
2
4
6
TIME (ms)
8
10
12
FIGURE 53. TURN-ON TIME (+25°C)
FN8082.17
December 16, 2010
ISL60002
Typical Performance Curves, VOUT = 1.8V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
160
1nF LOAD
140
NO LOAD
100
100nF LOAD
5mV/DIV
ZOUT (Ω)
120
80
60
10nF LOAD
40
20
0
1
10
100
1k
FREQUENCY (Hz)
FIGURE 54. Z OUT vs FREQUENCY
19
10k
100k
1ms/DIV
FIGURE 55. VOUT NOISE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Curves, VOUT = 2.048V
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
700
500
600
450
400
UNIT 3
400
300
+25°C
UNIT 1
300
-40°C
250
200
200
100
150
100
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
0
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
VIN (V)
VIN (V)
FIGURE 57. I IN vs V IN OVER-TEMPERATURE
FIGURE 56. I IN vs V IN (3 REPRESENTATIVE UNITS)
2.0484
2.0483
2.0482
UNIT 1
ΔVO (µV)
NORMALIZED TO VIN = 3.0V)
VOUT (V)
(NORMALIZED TO 2.048V AT VIN = 3V)
+85°C
350
UNIT 2
IIN (nA)
IIN (nA)
500
UNIT 2
2.0481
2.0480
UNIT 3
2.0479
2.0478
2.0477
2.0476
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
200
175
-40°C
150
125
100
+25°C
75
50
+85°C
25
0
-25
-50
-75
-100
-125
-150
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
VIN (V)
VIN (V)
FIGURE 58. LINE REGULATION (3 REPRESENTATIVE UNITS)
FIGURE 59. LINE REGULATION OVER-TEMPERATURE
2.0484
2.0483
2.0482
VOUT (V)
2.0481
UNIT 2
2.0480
2.0479
UNIT 1
2.0478
2.0477
UNIT 3
2.0476
2.0475
2.0474
-40
-15
10
35
60
85
TEMPERATURE (°C)
FIGURE 60. VOUT vs TEMPERATURE NORMALIZED to +25°C
20
FN8082.17
December 16, 2010
ISL60002
Typical Performance Curves, VOUT = 2.048V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
CL = 500pF
CL = 0pF
ΔV = 0.3V
50mV/DIV
50mV/DIV
ΔV = 0.3V
ΔV = -0.3V
ΔV = -0.3V
1ms/DIV
1ms/DIV
FIGURE 61. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD
FIGURE 62. LINE TRANSIENT RESPONSE
1.4
1.2
1.0
ΔVOUT (mV)
0.8
0.6
0.4
0.2
+85°C
+25°C
-40°C
0
-0.2
-0.4
-0.6
-7 -6 -5
SINKING
-4
-3
-2 -1 0 1 2 3
OUTPUT CURRENT
4
5
6
7
SOURCING
FIGURE 63. LOAD REGULATION OVER-TEMPERATURE
ΔIL = 7mA
500mV/DIV
500mV/DIV
ΔIL = 50µA
ΔIL = -50µA
ΔIL = -7mA
2ms/DIV
FIGURE 64. LOAD TRANSIENT RESPONSE
21
2ms/DIV
FIGURE 65. LOAD TRANSIENT RESPONSE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Curves, VOUT = 2.048V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
3.2
3.2
VIN
2.8
VIN AND VOUT (V)
2.0
UNIT 3
UNIT 2
1.6
UNIT 1
1.2
0.8
2.4
2.0
VREF
1.6
1.2
0.8
0.4
0.4
0
2
4
6
TIME (ms)
8
10
0
12
0
2
FIGURE 66. TURN-ON TIME (+25°C)
4
6
TIME (ms)
8
10
12
FIGURE 67. TURN-ON TIME (+25°C)
160
NO LOAD
140
120
ZOUT (Ω)
VIN AND VOUT (V)
2.4
0
VIN
2.8
10nF LOAD
1nF LOAD
100
80
60
40
100nF LOAD
20
0
1
10
100
1k
FREQUENCY (Hz)
10k
100k
FIGURE 68. Z OUT vs FREQUENCY
22
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 2.50V
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
600
460
550
440
500
420
UNIT 3
+85°C
400
IIN (nA)
IIN (nA)
450
400
UNIT 2
350
+25°C
380
-40°C
360
300
340
UNIT 1
250
200
2.5
3.0
320
3.5
4.0
4.5
5.0
300
2.5
5.5
3.0
3.5
VIN (V)
4.0
4.5
5.0
5.5
VIN (V)
FIGURE 69. I IN vs V IN, 3 UNITS
FIGURE 70. I IN vs V IN OVER-TEMPERATURE
2.5020
2.5015
UNIT 2
UNIT 1
VOUT (V)
2.5010
2.5005
UNIT 3
2.5000
2.4995
2.4990
2.4985
-40
-15
10
35
60
85
TEMPERATURE (°C)
FIGURE 71. VOUT vs TEMPERATURE NORMALIZED TO +25°C
200
NORMAILIZED TO 2.50V AT VIN = 3V
2.50016
UNIT 2
UNIT 1
ΔVO (µV)
VOUT (V)
2.50008
150
2.50004
UNIT 3
2.50000
2.49996
2.49992
2.5
3.0
3.5
4.0
4.5
VIN (V)
FIGURE 72. LINE REGULATION, 3 UNITS
23
5.0
5.5
(NORMALIZED TO VIN = 3.0V)
2.50012
-40°C
+25°C
100
+85°C
50
0
-50
-100
2.5
3.0
3.5
4.0
4.5
5.0
5.5
VIN (V)
FIGURE 73. LINE REGULATION OVER-TEMPERATURE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 2.50V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
CL = 0nF
100mV/DIV
100mV/DIV
CL = 1nF
ΔVIN = 0.30V
ΔVIN = -0.30V
ΔVIN = 0.30V
ΔVIN = -0.30V
1ms/DIV
1ms/DIV
FIGURE 74. LINE TRANSIENT RESPONSE
FIGURE 75. LINE TRANSIENT RESPONSE
0.2
0
-10
NO LOAD
+85°C
0.1
ΔVOUT (mV)
-30
1nF LOAD
-40
-50
10nF LOAD
+25°C
-40°C
0.0
-60
100nF LOAD
-70
-80
1
10
100
1k
10k
100k
-0.1
-7
1M
FREQUENCY (Hz)
-6 -5 -4
SINKING
-3
-2
-1
0
1
2
OUTPUT CURRENT (mA)
3
4 5 6 7
SOURCING
FIGURE 77. LOAD REGULATION OVER-TEMPERATURE
200mV/DIV
FIGURE 76. PSRR vs CAPACITIVE LOAD
50mV/DIV
PSRR (dB)
-20
IL = -50µA
IL = 50µA
IL = -7mA
200µs/DIV
FIGURE 78. LOAD TRANSIENT RESPONSE
24
IL = 7mA
500µs/DIV
FIGURE 79. LOAD TRANSIENT RESPONSE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 2.50V (Continued)
VIN = 3.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
200
3.5
1nF LOAD
NO LOAD
3.0
VREF
150
ZOUT (Ω)
2.0
1.5
1.0
10nF LOAD
100
50
100nF LOAD
0.5
0
-1
1
3
5
7
9
0
11
TIME (ms)
1
10
100
1k
10k
100k
FREQUENCY (Hz)
FIGURE 81. Z OUT vs FREQUENCY
FIGURE 80. TURN-ON TIME (+25°C)
10µV/DIV
VIN AND VOUT (V)
2.5
10s/DIV
FIGURE 82. VOUT NOISE
25
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 3.0V
VIN = 5.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
500
350
450
335
UNIT 1
320
IIN (nA)
IIN (nA)
400
UNIT 2
350
+85°C
305
+25°C
290
300
UNIT 3
250
275
200
3.2
260
3.2
-40°C
3.6
4.0
4.4
VIN (V)
4.8
5.2
5.6
3.6
4.0
4.4
VIN (V)
4.8
5.2
5.6
FIGURE 84. I IN vs V IN OVER-TEMPERATURE
FIGURE 83. I IN vs V IN, 3 UNITS
VOUT (V) NORMALIZED TO +25°C
3.0008
3.0006
3.0004
3.0002
UNIT 1
3.0000
2.9998
UNIT 2
2.9996
UNIT 3
2.9994
2.9992
2.9990
-40
-15
10
35
60
85
TEMPERATURE (°C)
3.0001
40
20
UNIT 3
3.0000
UNIT 2
3.0000
UNIT 1
2.9999
3.2
+85°C
+25°C
0
Δ VOUT (µV)
VOUT(V) NORMALIZED TO VOUT = 3.0V
AT VIN = 5.0V
FIGURE 85. VOUT vs TEMPERATURE NORMALIZED TO +25°C
3.6
4.0
4.4
VIN (V)
4.8
5.2
FIGURE 86. LINE REGULATION (3 REPRESENTATIVE UNITS)
26
5.6
-20
-40
-60
-40°C
-80
3.2
3.6
4.0
4.4
4.8
5.2
5.6
VIN (V)
FIGURE 87. LINE REGULATION OVER-TEMPERATURE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 3.0V (Continued)
VIN = 5.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
CL = 0nF
100mV/DIV
100mV/DIV
CL = 1nF
ΔVIN = 0.30V
ΔVIN = -0.30V
ΔVIN = 0.30V
ΔVIN = -0.30V
1ms/DIV
1ms/DIV
FIGURE 89. LINE TRANSIENT RESPONSE
FIGURE 88. LINE TRANSIENT RESPONSE
0.35
0
0.25
-20
1nF LOAD
-40
-50
ΔVOUT (mV)
PSRR (dB)
+25°C
0.20
-30
10nF LOAD
-60
100nF LOAD
-70
0.15
-40°C
0.10
0.05
0.00
-0.05
-80
-0.10
-90
-100
+85°C
0.30
NO LOAD
-10
1
10
100
1k
10k
FREQUENCY (Hz)
100k
-0.15
-7 -6 -5
SINKING
-4
-3
-2
-1
0
1
2
3
4
OUTPUT CURRENT (mA)
5 6 7
SOURCING
FIGURE 91. LOAD REGULATION OVER-TEMPERATURE
1V/DIV
200mV/DIV
FIGURE 90. PSRR vs CAPACITIVE LOAD
1M
IL = -50µA
IL = 50µA
200µs/DIV
FIGURE 92. LOAD TRANSIENT RESPONSE
27
IL = -1mA
IL = 1mA
200µs/DIV
FIGURE 93. LOAD TRANSIENT RESPONSE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 3.0V (Continued)
1V/DIV
1V/DIV
VIN = 5.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
IL = -7mA
IL = 7mA
IL = -20mA
200µs/DIV
200µs/DIV
FIGURE 94. LOAD TRANSIENT RESPONSE
FIGURE 95. LOAD TRANSIENT RESPONSE
160
5
120
ZOUT (Ω)
4
3
VREF
2
10nF LOAD
100
80
60
40
1
0
1nF LOAD
NO LOAD
140
VIN
VIN AND VOUT (V)
IL = 20mA
100nF LOAD
20
0
2
4
6
TIME (ms)
8
FIGURE 96. TURN-ON TIME (+25°C)
28
10
12
0
1
10
100
1k
FREQUENCY (Hz)
10k
100k
FIGURE 97. Z OUT vs FREQUENCY
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 3.3V
VIN = 5.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
400
600
550
380
500
400
360
IIN (nA)
IIN (nA)
+105°C
UNIT 3
450
UNIT 2
350
300
UNIT 1
250
-40°C
320
300
200
280
150
100
3.5
+25°C
340
3.7
3.9
4.1
4.3
4.5
4.7
4.9
5.1
5.3
260
3.5
5.5
3.7
3.9
4.1
4.3
VIN (V)
4.5 4.7
VIN (V)
4.9
5.1
5.3
5.5
FIGURE 99. I IN vs V IN OVER-TEMPERATURE
FIGURE 98. I IN vs V IN, 3 UNITS
3.3008
3.3006
3.3004
UNIT 1
UNIT 3
VOUT (V)
3.3002
3.3000
UNIT 2
3.2998
3.2996
3.2994
3.2992
3.2990
-40
-15
10
35
60
85
TEMPERATURE (°C)
3.30020
150
3.30015
125
3.30010
100
ΔVO (µV)
(NORMALIZED TO VIN = 5.0V)
VOUT (V)
(NORMAILIZED TO 3.30V AT VIN = 5V)
FIGURE 100. VOUT vs TEMPERATURE NORMALIZED TO +25°C
3.30005 UNIT 3
3.30000
UNIT 2
3.29995
UNIT 1
3.29990
3.29985
3.29980
3.29975
75
50
+105°C
-40°C
25
0
-25
-50
+25°C
-75
-100
-125
3.29970
3.5
3.7
3.9
4.1
4.3
4.5
4.7
4.9
VIN (V)
FIGURE 101. LINE REGULATION, 3 UNITS
29
5.1
5.3
5.5
-150
3.5
3.7
3.9
4.1
4.3
4.5 4.7
VIN (V)
4.9
5.1
5.3
5.5
FIGURE 102. LINE REGULATION OVER-TEMPERATURE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 3.3V (Continued)
VIN = 5.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
CL = 1nF
100mV/DIV
100mV/DIV
CL = 0nF
ΔVIN = 0.30V
ΔVIN = -0.30V
ΔVIN = 0.30V
ΔVIN = -0.30V
1ms/DIV
1ms/DIV
FIGURE 103. LINE TRANSIENT RESPONSE
FIGURE 104. LINE TRANSIENT RESPONSE
0
NO LOAD
-10
-20
PSRR (dB)
-30
1nF LOAD
-40
-50
10nF LOAD
-60
100nF LOAD
-70
-80
-90
-100
1
10
100
1k
10k
FREQUENCY (Hz)
100k
1M
FIGURE 105. PSRR vs CAPACITIVE LOAD
0.60
1.00
0.50
0.80
0.40
0.40
+25°C
0.20
0.10
ΔVOUT (mV)
ΔVOUT (mV)
0.30
-40°C
0.00
+105°C
0.60
+105°C
-0.10
-0.20
0.20
0.00
+25°C
-40°C
-0.20
-0.40
-0.30
-0.60
-0.40
-0.50
-0.60
-7 -6 -5
SINKING
-0.80
-4
-3
-2
-1
0
1
2
3
OUTPUT CURRENT (mA)
FIGURE 106. LOAD REGULATION
30
4
5 6 7
SOURCING
-1.00
-20 -18-16 -14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20
SINKING
SOURCING
OUTPUT CURRENT (mA)
FIGURE 107. LOAD REGULATION OVER-TEMPERATURE
FN8082.17
December 16, 2010
ISL60002
Typical Performance Characteristic Curves, VOUT = 3.3V (Continued)
1V/DIV
200mV/DIV
VIN = 5.0V, IOUT = 0mA, TA = +25°C unless otherwise specified
IL = -50µA
IL = -1mA
IL = 50µA
200µs/DIV
200µs/DIV
FIGURE 109. LOAD TRANSIENT RESPONSE
1V/DIV
1V/DIV
FIGURE 108. LOAD TRANSIENT RESPONSE
IL = -7mA
IL = 7mA
IL = -20mA
200µs/DIV
IL = 20mA
200µs/DIV
FIGURE 110. LOAD TRANSIENT RESPONSE
FIGURE 111. LOAD TRANSIENT RESPONSE
160
5
1nF LOAD
NO LOAD
140
VIN
120
4
10nF LOAD
100
3
ZOUT (Ω)
VIN AND VOUT (V)
IL = 1mA
VREF
2
80
60
40
1
0
100nF LOAD
20
0
2
4
6
TIME (ms)
8
FIGURE 112. TURN-ON TIME (+25°C)
31
10
12
0
1
10
100
1k
FREQUENCY (Hz)
10k
100k
FIGURE 113. Z OUT vs FREQUENCY
FN8082.17
December 16, 2010
ISL60002
High Current Application
2.5001
2.502
2.500
VOUT (V) NORMALIZED TO 0mA LOAD
VIN = 5V
VOUT (V)
2.498
2.496
VIN = 3.3V
2.494
2.492
2.490
VIN = 3.5V
2.488
2.486
0
5
10
15
20
25
30
2.4998
2.4995
2.4992
5VIN, +85°C
3.2VIN, +85°C
2.4989
2.4986
2.4983
2.4980
3.3VIN, +85°C
0
4
8
FIGURE 114. DIFFERENT V IN AT ROOM TEMPERATURE
Applications Information
FGA Technology
The ISL60002 series of voltage references use the floating gate
technology to create references with very low drift and supply
current. Essentially, the charge stored on a floating gate cell is
set precisely in manufacturing. The reference voltage output
itself is a buffered version of the floating gate voltage. The
resulting reference device has excellent characteristics which are
unique in the industry: very low temperature drift, high initial
accuracy, and almost zero supply current. Also, the reference
voltage itself is not limited by voltage bandgaps or zener settings,
so a wide range of reference voltages can be programmed
(standard voltage settings are provided, but customer-specific
voltages are available).
The process used for these reference devices is a floating gate
CMOS process, and the amplifier circuitry uses CMOS transistors
for amplifier and output transistor circuitry. While providing
excellent accuracy, there are limitations in output noise level and
load regulation due to the MOS device characteristics. These
limitations are addressed with circuit techniques discussed in
other sections.
12
16
The ISL60002 is the first high precision voltage reference with
ultra low power consumption that makes it possible to leave
power on continuously in battery operated circuits. The ISL60002
consumes extremely low supply current due to the proprietary
FGA technology. Supply current at room temperature is typically
350nA, which is 1 to 2 orders of magnitude lower than
competitive devices. Application circuits using battery power will
benefit greatly from having an accurate, stable reference, which
essentially presents no load to the battery.
In particular, battery powered data converter circuits that would
normally require the entire circuit to be disabled when not in use
can remain powered up between conversions as shown in
32
24
28
32
FIGURE 115. DIFFERENT V IN AT HIGH TEMPERATURE
Figure 116. Data acquisition circuits providing 12 to 24 bits of
accuracy can operate with the reference device continuously
biased with no power penalty, providing the highest accuracy and
lowest possible long term drift.
Other reference devices consuming higher supply currents will
need to be disabled in between conversions to conserve battery
capacity. Absolute accuracy will suffer as the device is biased and
requires time to settle to its final value, or, may not actually settle
to a final value as power on time may be short.
VIN = +3.0V
10µF
0.01µF
VIN
VOUT
ISL60002-25
VOUT = 2.5V
GND
0.001µF TO 0.01µF
REF IN
SERIAL
BUS
ENABLE
SCK
SDAT
12 TO 24-BIT
A/D CONVERTER
Nanopower Operation
Reference devices achieve their highest accuracy when powered
up continuously, and after initial stabilization has taken place.
This drift can be eliminated by leaving the power on continuously.
20
ILOAD (mA)
ILOAD (mA)
FIGURE 116.
Board Mounting Considerations
For applications requiring the highest accuracy, board mounting
location should be reviewed. Placing the device in areas subject to
slight twisting can cause degradation of the accuracy of the
reference voltage due to die stresses. It is normally best to place the
device near the edge of a board, or the shortest side, as the axis of
bending is most limited at that location. Obviously mounting the
device on flexprint or extremely thin PC material will likewise cause
loss of reference accuracy.
FN8082.17
December 16, 2010
ISL60002
FGA references provide high accuracy and low temperature drift
but some PC board assembly precautions are necessary. Normal
Output voltage shifts of 100µV to 1mV can be expected with Pbfree reflow profiles. Precautions should be taken to avoid
excessive heat or extended exposure to high reflow
temperatures, which may reduce device initial accuracy.
Post-assembly x-ray inspection may also lead to permanent
changes in device output voltage and should be minimized or
avoided. If x-ray inspection is required, it is advisable to monitor
the reference output voltage to verify excessive shift has not
occurred. If large amounts of shift are observed, it is best to add
an X-ray shield consisting of thin zinc (300µm) sheeting to allow
clear imaging, yet block x-ray energy that affects the FGA
reference.
Special Applications Considerations
In addition to post-assembly examination, there are also other Xray sources that may affect the FGA reference long term
accuracy. Airport screening machines contain X-rays and will
have a cumulative effect on the voltage reference output
accuracy. Carry-on luggage screening uses low level X-rays and is
not a major source of output voltage shift, however, if a product is
expected to pass through that type of screening over 100 times,
it may need to consider shielding with copper or aluminum.
Checked luggage X-rays are higher intensity and can cause
output voltage shift in much fewer passes, thus devices expected
to go through those machines should definitely consider
shielding. Note that just two layers of 1/2 ounce copper planes
will reduce the received dose by over 90%. The leadframe for the
device which is on the bottom also provides similar shielding.
If a device is expected to pass through luggage X-ray machines
numerous times, it is advised to mount a 2-layer (minimum) PC
board on the top, and along with a ground plane underneath will
effectively shield it from from 50 to 100 passes through the
machine. Since these machines vary in X-ray dose delivered, it is
difficult to produce an accurate maximum pass
recommendation.
Noise Performance and Reduction
The output noise voltage in a 0.1Hz to 10Hz bandwidth is
typically 30µVP-P. This is shown in the plot in the Typical
Performance Curves. The noise measurement is made with a
bandpass filter made of a 1 pole high-pass filter with a corner
frequency at 0.1Hz and a 2-pole low-pass filter with a corner
frequency at 12.6Hz to create a filter with a 9.9Hz bandwidth.
Noise in the 10kHz to 1MHz bandwidth is approximately 400µVPP with no capacitance on the output, as shown in Figure 117.
These noise measurements are made with a 2 decade bandpass
filter made of a 1 pole high-pass filter with a corner frequency at
1/10 of the center frequency and 1-pole low-pass filter with a
corner frequency at 10 times the center frequency. Figure 117
also shows the noise in the 10kHz to 1MHz band can be reduced
to about 50µVP-P using a 0.001µF capacitor on the output. Noise
in the 1kHz to 100kHz band can be further reduced using a
0.1µF capacitor on the output, but noise in the 1Hz to 100Hz
band increases due to instability of the very low power amplifier
with a 0.1µF capacitance load. For load capacitances above
0.001µF the noise reduction network shown in Figure 118 is
33
recommended. This network reduces noise significantly over the
full bandwidth. As shown in Figure 117, noise is reduced to less
than 40µVP-P from 1Hz to 1MHz using this network with a
0.01µF capacitor and a 2kΩ resistor in series with a 10µF
capacitor.
400
NOISE VOLTAGE (µVP-P)
Board Assembly Considerations
CL = 0
350
CL = 0.001µF
300
CL = 0.1µF
CL = 0.01µF AND 10µF + 2kΩ
250
200
150
100
50
0
1
10
100
1k
10k
100k
FIGURE 117. NOISE REDUCTION
VIN = 3.0V
10µF
0.1µF
VIN
VO
ISL60002-25
VOUT = 2.50V
GND
2kΩ
0.01µF
10µF
FIGURE 118. NOISE REDUCTION NETWORK
Turn-On Time
The ISL60002 devices have ultra-low supply current and thus the
time to bias up internal circuitry to final values will be longer than
with higher power references. Normal turn-on time is typically
7ms. This is shown in Figure 119. Since devices can vary in
supply current down to >300nA, turn-on time can last up to about
12ms. Care should be taken in system design to include this
delay before measurements or conversions are started.
FN8082.17
December 16, 2010
ISL60002
Temperature Coefficient
3.5
3.0
The limits stated for temperature coefficient (tempco) are
governed by the method of measurement. The overwhelming
standard for specifying the temperature drift of a reference is to
measure the reference voltage at two temperatures, take the
total variation, (VHIGH – VLOW), and divide by the temperature
extremes of measurement (THIGH – TLOW). The result is divided
by the nominal reference voltage (at T = +25°C) and multiplied
by 106 to yield ppm/°C. This is the “Box” method for specifying
temperature coefficient.
VIN
VIN AND VOUT (V)
2.5
2.0
1.5
UNIT 3
1.0
UNIT 1
UNIT 2
0.5
0
-1
1
3
5
TIME (ms)
7
9
11
5
TIME (ms)
7
9
11
3.5
VIN
3.0
VIN AND VOUT (V)
2.5
2.0
UNIT 3
UNIT 1
1.5
1.0
UNIT 2
0.5
0
-1
1
3
FIGURE 119. TURN-ON TIME
Typical Application Circuits
VIN = 3.0V
R = 200Ω
2N2905
VIN
ISL60002 VOUT
VOUT = 2.50V
GND
2.5V/50mA
0.001µF
FIGURE 120. PRECISION 2.5V 50mA REFERENCE
34
FN8082.17
December 16, 2010
ISL60002
Typical Application Circuits (Continued)
2.7V TO 5.5V
0.1µF
10µF
VIN
VOUT
ISL60002-25
VOUT = 2.50V
GND
0.001µF
VCC
RH
VOUT
X9119
+
SDA
2-WIRE BUS
SCL
VSS
–
VOUT
(BUFFERED)
RL
FIGURE 121. 2.5V FULL SCALE LOW-DRIFT 10-BIT ADJUSTABLE VOLTAGE SOURCE
2.7V TO 5.5V
0.1µF
10µF
VIN
VOUT
ISL60002-25
VOUT = 2.50V
GND
+
VOUT SENSE
–
LOAD
FIGURE 122. KELVIN SENSED LOAD
For additional products, see www.intersil.com/product_tree
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted
in the quality certifications found at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
35
FN8082.17
December 16, 2010
ISL60002
Package Outline Drawing
P3.064
3 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE (SOT23-3)
Rev 2, 9/09
2.92±0.12
4
DETAIL "A"
C
L
0.13±0.05
2.37±0.27
1.30±0.10
4
C
L
0.950
0.435±0.065
0 - 8 deg.
0.20 M C
TOP VIEW
10° TYP
(2 plcs)
0.25
0.91±0.03
GAUGE PLANE
1.00±0.12
SEATING PLANE
C
SEATING PLANE
0.10 C
0.31±0.10 5
0.013(MIN)
0.100(MAX)
SIDE VIEW
DETAIL "A"
(0.60)
NOTES:
(2.15)
1.
Dimensions are in millimeters.
Dimensions in ( ) for Reference Only.
2.
Dimensioning and tolerancing conform to AMSEY14.5m-1994.
3.
Reference JEDEC TO-236.
4.
Dimension does not include interlead flash or protrusions.
Interlead flash or protrusions shall not exceed 0.25mm per side.
5.
Footlength is measured at reference to gauge plane.
(1.25)
(0.95 typ.)
TYPICAL RECOMMENDED LAND PATTERN
36
FN8082.17
December 16, 2010
Similar pages