LRC BCWALT1 General purpose transistors(npn silicon) Datasheet

LESHAN RADIO COMPANY, LTD.
General Purpose Transistors
NPN Silicon
BCW60ALT1
BCW60BLT1
BCW60DLT1
3
COLLECTOR
1
BASE
2
EMITTER
3
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
1
Collector–Emitter Voltage
V
CEO
32
Vdc
Collector–Base Voltage
V
CBO
32
Vdc
CASE 318–08, STYLE 6
Emitter–Base Voltage
V
5.0
Vdc
SOT–23 (TO–236AB)
EBO
100
mAdc
Collector Current — Continuous
IC
2
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation FR– 5 Board, (1)
TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Total Device Dissipation
Alumina Substrate, (2) TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Junction and Storage Temperature
Symbol
Max
Unit
PD
225
mW
1.8
mW/°C
RθJA
556
°C/W
PD
300
mW
2.4
mW/°C
417
–55 to +150
°C/W
°C
RθJA
TJ , Tstg
DEVICE MARKING
BCW60ALT1 = AA, BCW60BLT1 = AB, BCW60DLT1 = AD
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Max
Unit
V (BR)CEO
32
—
Vdc
V (BR)EBO
5.0
—
Vdc
(VCE = 32 Vdc, )
—
20
nAdc
(VCE = 32 Vdc, TA = 150°C)
—
20
µAdc
—
20
nAdc
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage
(IC = 2.0mAdc, IE = 0 )
Emitter–Base Breakdown Voltage
(I E= 1.0 µAdc, I C = 0)
Collector Cutoff Current
I CES
Emitter Cutoff Current
(I EB= 4.0 Vdc, I C = 0)
I EBO
1. FR– 5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
M9–1/6
LESHAN RADIO COMPANY, LTD.
BCW60ALT1 BCW60BLT1 BCW60DLT1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Max
Unit
20
30
100
—
—
—
120
175
380
220
310
630
60
70
100
—
—
—
125
175
350
250
350
700
—
—
0.55
0.35
0.7
0.6
1.05
0.85
0.6
0.75
fT
125
—
MHz
C obo
—
4.5
pF
NF
—
6.0
dB
t on
—
150
ns
t off
—
800
ns
ON CHARACTERISTICS
DC Current Gain
( IC= 10 µAdc, VCE = 5.0 Vdc )
hFE
—
BCW60A
BCW60B
BCW60D
( IC= 2.0 mAdc, VCE = 5.0 Vdc )
hFE
—
BCW60A
BCW60B
BCW60D
( IC= 50 mAdc, VCE = 1.0 Vdc )
hFE
—
BCW60A
BCW60B
BCW60D
AC Current Gain
( VCE = 5.0Vdc, IC= 2.0 mAdc,
f= 1.0 kHz )
hFE
BCW60A
BCW60B
BCW60D
Collector–Emitter Saturation Voltage
( IC = 50 mAdc, IB = 1.25 mAdc )
( IC = 10 mAdc, IB = 0.25 mAdc )
Base–Emitter Saturation Voltage
( IC = 50 mAdc, IB = 1.25 mAdc )
( IC = 50 mAdc, IB = 0.25 mAdc )
Base–Emitter On Voltage
( IC = 2.0 mAdc, VCE = 5.0 Vdc )
—
V CE(sat)
V
Vdc
Vdc
BE(sat)
V BE(on)
Vdc
SMSMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product
(I C = 10 mAdc, V CE = 5.0 Vdc, f = 100 MHz)
Output Capacitance
(V CE = 10 Vdc, I C = 0, f = 1.0 MHz)
Noise Figure
(V CE = 5.0 Vdc, I C = 0.2 mAdc, R S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz)
SWITCHING CHARACTERISTICS
Turn–On Time
(I C = 10 mAdc, I B1 = 1.0 mAdc)
Turn–Off Time
(I B2 = 1.0 mAdc, V BB = 3.6 Vdc, R 1 = R 2 = 5.0 kΩ, R L = 990 Ω)
EQUIVALENT SWITCHING TIME TEST CIRCUITS
+3.0 V
300 ns
DUTY CYCLE = 2%
275
+10.9 V
10 < t 1 < 500 µs
DUTY CYCLE = 2%
+3.0 V
t
1
275
+10.9 V
10 k
10 k
0
– 0.5 V
– 9.1 V
<1.0 ns
C S < 4.0 pF*
1N916
C S < 4.0 pF*
<1.0 ns
*Total shunt capacitance of test jig and connectors
Figure 1. Turn–On Time
Figure 2. Turn–Off Time
M9–2/6
LESHAN RADIO COMPANY, LTD.
BCW60ALT1 BCW60BLT1 BCW60DLT1
TYPICAL NOISE CHARACTERISTICS
(V CE = 5.0 Vdc, T A = 25°C)
20
100
50
20
30µA
10
7.0
100µA
5.0
10 µA
3.0
30µA
2.0
10
20
50
BANDWIDTH = 1.0 Hz
~
RS ~
IC=1.0mA
8
BANDWIDTH = 1.0 Hz
~0
RS~
I n , NOISE CURRENT (pA)
e n , NOISE VOLTAGE (nV)
IC= 1.0mA
100
200
500 1.0k
2.0k
5.0k
300µA
10
100µA
5.0
2.0
1.0
0.5
30µA
10µA
0.2
0.1
10
10 k
20
50
100
200
500
1.0k
2.0k
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
Figure 3. Noise Voltage
Figure 4. Noise Current
5.0k
10 k
NOISE FIGURE CONTOURS
(V CE = 5.0 Vdc, T A = 25°C)
500k
1.0M
500k
BANDWIDTH = 1.0 Hz
100k
50k
20k
10k
5.0k
2.0 dB
2.0k
1.0k
3.0 dB 4.0dB
6.0 dB
500
10 dB
200
100
50
10
20
30
50
70 100
200
300
500 700 1.0K
R S , SOURCE RESISTANCE ( Ω )
R S , SOURCE RESISTANCE ( Ω )
200k
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
1.0 dB
5.0k
2.0k
2.0 dB
1.0k
3.0dB
500
5.0 dB
200
8.0 dB
100
10
20
30
50
70 100
200
300
500 700 1.0K
I C , COLLECTOR CURRENT (µA)
I C , COLLECTOR CURRENT (µA)
Figure 5. Narrow Band, 100 Hz
Figure 6. Narrow Band, 1.0 kHz
R S , SOURCE RESISTANCE ( Ω )
500k
10 Hz to 15.7Hz
200k
100k
50k
Noise Figure is Defined as:
20k
10k
5.0k
NF = 20 log 10
1.0 dB
2.0k
1.0k
2.0 dB
3.0 dB
500
5.0 dB
200
100
8.0 dB
e n 2 +4KTRS +I n2 R S2
( –––––––––––––––)
4KTR
1/ 2
S
e n = Noise Voltage of the Transistor referred to the input. (Figure 3)
I n = Noise Current of the Transistor referred to the input. (Figure 4)
K = Boltzman’s Constant (1.38 x 10 –23 j/°K)
T = Temperature of the Source Resistance (°K)
R s = Source Resistance ( Ω )
50
10
20
30
50
70
100
200
300
500 700 1.0K
I C , COLLECTOR CURRENT (µA)
Figure 7. Wideband
M9–3/6
LESHAN RADIO COMPANY, LTD.
BCW60ALT1 BCW60BLT1 BCW60DLT1
TYPICAL NOISE CHARACTERISTICS
400
hFE , DC CURRENT GAIN
T J = 125°C
25°C
200
– 55°C
100
80
60
V CE= 1.0 V
V CE= 10 V
40
0.0040.006 0.01
0.02 0.03
0.05 0.07
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0 7.0
10
20
30
50
70
100
Figure 8. DC Current Gain
100
I C , COLLECTOR CURRENT (mA)
1.0
T J = 25°C
0.8
I C= 1.0 mA
0.6
50 mA
10 mA
100 mA
0.4
0.2
0
0.05 0.1 0.2
0.5 1.0 2.0
5.0
10
80
I B= 500 µA
400 µA
300 µA
60
200 µA
40
100 µA
20
20
25
30
35
40
Figure 10. Collector Characteristics
V BE(sat) @ I C /I B = 10
V BE(on)@ V CE= 1.0 V
0.4
V CE(sat) @ I C /I B = 10
0
0.1
15
Figure 9. Collector Saturation Region
1.0
0.2
10
V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
1.2
0.6
5.0
I B , BASE CURRENT (mA)
T J = 25°C
0.8
0
20
1.4
V, VOLTAGE (VOLTS)
T A = 25°C
PULSE WIDTH =300 µs
DUTY CYCLE<2.0%
0
0.002 0.0050.010.02
0.2
0.5
1.0
2.0
5.0
10
20
50
100
θ V , TEMPERATURE COEFFICIENTS (mV/°C)
V CE , COLLECTOR– EMITTER VOLTAGE (VOLTS)
I C , COLLECTOR CURRENT (mA)
1.6
*APPLIES for I C / I B< h FE / 2
0.8
25°C to 125°C
∗ θ VC for V CE(sat)
0
–55°C to 25°C
–0.8
25°C to 125°C
–1.6
θ VB for V BE
–55°C to 25°C
–2.4
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 11. “On” Voltages
Figure 12. Temperature Coefficients
100
M9–4/6
LESHAN RADIO COMPANY, LTD.
BCW60ALT1 BCW60BLT1 BCW60DLT1
TYPICAL DYNAMIC CHARACTERISTICS
300
1000
V CC= 3.0 V
IC /I B= 10
T J= 25°C
200
100
700
ts
500
300
200
50
tf
30
100
t, TIME (ns)
t, TIME (ns)
70
20
td @ V BE(off)= 0.5 Vdc
10
7.0
5.0
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70
20
100
tf
VCC= 3.0 V
IC /I B= 10
IB1=IB2
T J= 25°C
1.0
2.0
3.0
5.0
7.0
10
20
30
50
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 13. Turn–On Time
Figure 14. Turn–Off Time
70
100
10.0
500
T J = 25°C
f=100MHz
300
200
C, CAPACITANCE (pF)
V CE=20 V
5.0 V
100
70
50
0.5
T J= 25°C
f = 1.0MHz
7.0
C ib
5.0
C ob
3.0
2.0
1.0
0.7
1.0
2.0
3.0
5.0 7.0
10
20
30
50
0.05
0.1
0.2
0.5
1.0
2.0
5.0
10
I C , COLLECTOR CURRENT (mA)
V R , REVERSE VOLTAGE (VOLTS)
Figure 15. Current–Gain — Bandwidth Product
Figure 16. Capacitance
20
10
7.0
h fe
~
~
VCE= 10 Vdc
f = 1.0 kHz
T A = 25°C
200 @ I C= 1.0 mA
5.0
3.0
2.0
1.0
0.7
0.5
0.3
0.2
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
hoe , OUTPUT ADMITTANCE ( µmhos )
f T, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz)
30
10
3.0
h ie , INPUT IMPEDANCE ( kΩ )
70
50
20
50
200
100
70
50
VCE= 10 Vdc
f = 1.0 kHz
T A= 25°C
h fe
30
~
~
200 @ I C= 1.0 mA
20
10
7.0
5.0
3.0
2.0
0.1
0.2
0.5
1.0
2.0
5.0
10
20
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 17. Input Impedance
Figure 18. Output Admittance
50
100
M9–5/6
LESHAN RADIO COMPANY, LTD.
BCW60ALT1 BCW60BLT1 BCW60DLT1
r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED)
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
0.1
FIGURE 19A
0.05
0.07
0.05
P(pk)
PULSE TRAIN SHOWN
READ TIME AT t 1 (SEE AN–569)
0.02
0.03
t
0.01
0.02
1
SINGLE PULSE
0.01
0.01
0.02
0.05
0.1
0.2
0.5
1.0
t
2.0
5.0
10
20
50
100
200
DUTY CYCLE, D = t 1 / t 2
D CURVES APPLY FOR POWER
Z θJA(t) = r(t) • RθJA
T J(pk) – T A = P (pk) Z θJA(t)
2
500
1.0k
2.0k
5.0k
10k
20k
50k
100k
t, TIME (ms)
Figure 19. Thermal Response
104
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
V CC = 30 Vdc
I C , COLLECTOR CURRENT (nA)
103
I CEO
102
101
I CBO
AND
100
I CEX @ V BE(off) = 3.0 Vdc
10–1
10–2
–4
–2
0
+20
+40
+60
+80
+100
+120
+140
+160
T J , JUNCTION TEMPERATURE (°C)
Figure 19A.
A train of periodical power pulses can be represented by the
model as shown in Figure 19A. Using the model and the device
thermal response the normalized effective transient thermal resistance of Figure 19 was calculated for various duty cycles.
To find Z θJA(t) , multiply the value obtained from Figure 19 by
the steady state value R θJA .
Example:
The MPS3904 is dissipating 2.0 watts peak under the following conditions:
t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2)
Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the
reading of r(t) is 0.22.
The peak rise in junction temperature is therefore
∆T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C.
For more information, see AN–569.
I C , COLLECTOR CURRENT (mA)
400
1.0 ms
The safe operating area curves indicate I C –V CE limits of
the transistor that must be observed for reliable operation.
Collector load lines for specific circuits must fall below the
limits indicated by the applicable curve.
The data of Figure 20 is based upon T J(pk) = 150°C; T C or
T A is variable depending upon conditions. Pulse curves are
valid for duty cycles to 10% provided T J(pk) <150°C. T J(pk)
may be calculated from the data in Figure 19. At high case
or ambient temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
100µs
200
T C = 25°C
100
60
10µs
1.0 s
dc
T A = 25°C
dc
40
T J = 150°C
20
10
CURRENT LIMIT
6.0
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
4.0
2.0
4.0
6.0
8.0
10
20
40
V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 20.
M9–6/6
Similar pages