ADPOW APT50GP60JDQ2 Power mos 7 igbt Datasheet

APT50GP60JDQ2
600V
TYPICAL PERFORMANCE CURVES
APT50GP60JDQ2
®
®
C
G
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch
Through Technology this IGBT is ideal for many high frequency, high voltage switching
applications and has been optimized for high frequency switchmode power supplies.
• Low Conduction Loss
E
E
POWER MOS 7 IGBT
ISOTOP ®
• SSOA Rated
• Low Gate Charge
S
OT
22
7
"UL Recognized"
file # E145592
C
• Ultrafast Tail Current shutoff
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT50GP60JDQ2
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
100
I C2
Continuous Collector Current @ TC = 110°C
46
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
190
Switching Safe Operating Area @ TJ = 150°C
190A @ 600V
Total Power Dissipation
Watts
329
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 525µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C)
2.1
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
3
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
525
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
3000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Units
nA
11-2005
MIN
Rev A
Characteristic / Test Conditions
050-7496
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT50GP60JDQ2
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
f = 1 MHz
30
Gate Charge
7.5
VGE = 15V
165
15V, L = 100µH,VCE = 600V
465
635
Inductive Switching (125°C)
19
VCC = 400V
36
VGE = 15V
115
RG = 4.3Ω
85
465
I C = 50A
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
44
55
µJ
835
6
Current Fall Time
ns
60
TJ = +25°C
Turn-off Delay Time
nC
85
I C = 50A
Current Rise Time
V
A
36
RG = 4.3Ω
Turn-on Delay Time
pF
190
19
5
UNIT
50
VCC = 400V
4
MAX
40
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
465
TJ = 150°C, R G = 4.3Ω, VGE =
Turn-off Delay Time
Eoff
tr
VGE = 0V, VCE = 25V
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
5700
I C = 50A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 300V
Turn-on Delay Time
Turn-on Switching Energy
MIN
TJ = +125°C
ns
µJ
1260
6
1060
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
RθJC
Junction to Case (IGBT)
RθJC
Junction to Case (DIODE)
WT
VIsolation
MIN
Package Weight
TYP
MAX
.38
1.21
29.2
RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500
UNIT
°C/W
gm
Volts
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-7496
Rev A
11-2005
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
70
70
60
60
IC, COLLECTOR CURRENT (A)
TJ = -55°C
30
TJ = 25°C
20
TJ = 125°C
10
0
70
60
50
TJ = -55°C
40
TJ = 25°C
30
TJ = 125°C
20
10
2 3
4 5 6
7 8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
IC = 100A
3.0
2.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC = 50A
2.0
IC = 25A
1.5
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
0.90
0.85
0.80
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
VCE = 480V
6
4
2
0
20
33.5
40
60 80 100 120 140 160 180
GATE CHARGE (nC)
FIGURE 4, Gate Charge
3
IC = 100A
2.5
IC = 50A
2
IC = 25A
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
120
0.95
VCE = 300V
8
1.15
1.00
VCE = 120V
10
140
1.05
J
12
1.20
1.10
I = 50A
C
T = 25°C
14
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
3.5
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
FIGURE 2, Output Characteristics (TJ = 125°C)
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
80
TJ = 125°C
10
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
TJ = 25°C
20
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
90
TJ = -55°C
30
0
0
0.5
1.0
1.5
2.0
2.5
3.0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
100
40
100
80
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
11-2005
40
50
Rev A
50
APT50GP60JDQ2
050-7496
IC, COLLECTOR CURRENT (A)
TYPICAL PERFORMANCE CURVES
15
10
5 VCE = 400V
TJ = 25°C or 125°C
RG = 4.3Ω
L = 100µH
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VGE = 15V
20
0
90
40
30
TJ = 25 or 125°C,VGE = 15V
tf, FALL TIME (ns)
tr, RISE TIME (ns)
50
20
20 30 40 50 60 70 80 90 100 110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
40
20 VCE = 400V
RG = 4.3Ω
L = 100µH
RG = 4.3Ω, L = 100µH, VCE = 400V
TJ = 125°C, VGE = 15V
80
60
TJ = 25°C, VGE = 15V
40
= 400V
V
CE
= +15V
V
GE
R = 4.3Ω
3500
3500
TJ = 125°C
G
3000
2500
2000
1500
1000
500
20 30 40 50 60 70 80 90 100 110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ = 25°C
EOFF, TURN OFF ENERGY LOSS (µJ)
4000
EON2, TURN ON ENERGY LOSS (µJ)
VGE =15V,TJ=25°C
0
0
= 400V
V
CE
= +15V
V
GE
R = 4.3Ω
3000
G
2500
TJ = 125°C
2000
1500
1000
TJ = 25°C
500
0
0
20 30 40 50 60 70 80 90 100 110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
20 30 40 50 60 70 80 90 100 110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
6000
4000
= 400V
V
CE
= +15V
V
GE
T = 125°C
J
5000
Eon2,100A
4000
Eoff,100A
3000
2000
Eon2,50A
1000 E 25A
on2,
0
Eoff,50A
Eoff,25A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
60
20
10
11-2005
80
100
60
VGE =15V,TJ=125°C
120
70
Rev A
100
20 30 40 50 60 70 80 90 100 110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
RG = 4.3Ω, L = 100µH, VCE = 400V
80
120
0
20 30 40 50 60 70 80 90 100 110
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
050-7496
APT50GP60JDQ2
140
25
= 400V
V
CE
= +15V
V
GE
R = 4.3Ω
3500
G
Eon2,100A
3000
Eoff,100A
2500
2000
1500
1000
Eon2,50A
500
Eon2,25A
0
Eoff,50A
0
Eoff,25A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
Cies
1,000
500
Coes
100
50
APT50GP60JDQ2
200
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
10,000
180
160
140
120
100
80
60
Cres
40
20
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.35
0.30
0.7
0.25
0.5
0.20
Note:
0.15
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.40
0.3
0.10
t1
t2
t
0.05
0
0.1
SINGLE PULSE
0.05
10
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
-5
10
-4
0.0158
0.216
0.313
0.0855
4.49
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
50
10
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 667V
CE
R = 4.3Ω
G
10
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
20
30
40
50
60
70
80
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
11-2005
0.0775
Rev A
Power
(watts)
RC MODEL
100
050-7496
Junction
temp. (°C)
FMAX, OPERATING FREQUENCY (kHz)
220
APT50GP60JDQ2
APT30DQ60
Gate Voltage
10%
TJ = 125 °C
td(on)
V CE
IC
V CC
Collector Current
tr
90%
A
5%
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
90%
Gate Voltage
TJ = 125 °C
tf
Collector Voltage
90%
0
Switching Energy
10%
Collector Current
Rev A
11-2005
Figure 23, Turn-off Switching Waveforms and Definitions
050-7496
5 % Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
td(off)
10%
TYPICAL PERFORMANCE CURVES
APT50GP60JDQ2
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
All Ratings: TC = 25°C unless otherwise specified.
APT50GP60JDQ2
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 100°C, Duty Cycle = 0.5)
30
RMS Forward Current (Square wave, 50% duty)
42
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
IFSM
UNIT
Amps
320
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
MIN
Forward Voltage
VF
TYP
IF = 50A
2.1
IF = 100A
2.6
IF = 50A, TJ = 125°C
MAX
UNIT
Volts
1.75
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
21
trr
Reverse Recovery Time
-
105
Qrr
Reverse Recovery Charge
-
115
-
3
-
125
ns
-
465
nC
-
7
-
60
ns
-
830
nC
-
23
Amps
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 30A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 30A, diF/dt = -200A/µs
IF = 30A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
1.20
D = 0.9
1.00
0.7
0.80
0.5
0.60
0.40
0.3
0.20
0.1
t2
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
10
-4
RC MODEL
Junction
temp (°C)
Power
(watts)
0.320
0.00278
0.515
0.0421
0.375
0.242
Case temperature (°C)
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
11-2005
-5
Rev A
10
t1
050-7496
0
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
1.40
140
80
60
TJ = 125°C
40
TJ = -55°C
20
TJ = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
1400
T = 125°C
J
V = 400V
R
1200
60A
1000
800
30A
600
400
15A
200
0
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
1.2
R
150
30A
100
15A
50
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
35
T = 125°C
J
V = 400V
60A
R
30
25
20
15
30A
10
15A
5
0
0 200 400 600 800 1000 1200 1400 1600
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
50
Qrr
Duty cycle = 0.5
T = 175°C
45
trr
1.0
T = 125°C
J
V = 400V
60A
0
J
40
IRRM
0.8
trr
35
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
trr, REVERSE RECOVERY TIME
(ns)
TJ = 175°C
100
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
120
0
APT50GP60JDQ2
200
0.6
30
25
20
0.4
Qrr
0.2
15
10
5
0.0
0
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
050-7496
Rev A
CJ, JUNCTION CAPACITANCE
(pF)
11-2005
200
150
100
50
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT50GP60JDQ2
Vr
diF /dt Adjust
+18V
APT6017LLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
Dimensions in Millimeters and (Inches)
ISOTOP® is a Registered Trademark of SGS Thomson. APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
11-2005
3.3 (.129)
3.6 (.143)
Rev A
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
050-7496
7.8 (.307)
8.2 (.322)
Similar pages